basic-api.texi 126 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Versioning::
  9. * Initialization and Termination::
  10. * Workers' Properties::
  11. * Data Management::
  12. * Data Interfaces::
  13. * Data Partition::
  14. * Codelets and Tasks::
  15. * Explicit Dependencies::
  16. * Implicit Data Dependencies::
  17. * Performance Model API::
  18. * Profiling API::
  19. * CUDA extensions::
  20. * OpenCL extensions::
  21. * Miscellaneous helpers::
  22. @end menu
  23. @node Versioning
  24. @section Versioning
  25. @defmac STARPU_MAJOR_VERSION
  26. Define the major version of StarPU
  27. @end defmac
  28. @defmac STARPU_MINOR_VERSION
  29. Define the minor version of StarPU
  30. @end defmac
  31. @node Initialization and Termination
  32. @section Initialization and Termination
  33. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  34. This is StarPU initialization method, which must be called prior to any other
  35. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  36. policy, number of cores, ...) by passing a non-null argument. Default
  37. configuration is used if the passed argument is @code{NULL}.
  38. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  39. indicates that no worker was available (so that StarPU was not initialized).
  40. @end deftypefun
  41. @deftp {Data Type} {struct starpu_driver}
  42. @table @asis
  43. @item @code{enum starpu_archtype type}
  44. The type of the driver. Only STARPU_CPU_DRIVER, STARPU_CUDA_DRIVER and
  45. STARPU_OPENCL_DRIVER are currently supported.
  46. @item @code{union id} Anonymous union
  47. @table @asis
  48. @item @code{unsigned cpu_id}
  49. Should only be used if type is STARPU_CPU_WORKER.
  50. @item @code{unsigned cuda_id}
  51. Should only be used if type is STARPU_CUDA_WORKER.
  52. @item @code{cl_device_id opencl_id}
  53. Should only be used if type is STARPU_OPENCL_WORKER.
  54. @end table
  55. @end table
  56. @end deftp
  57. @deftp {Data Type} {struct starpu_conf}
  58. This structure is passed to the @code{starpu_init} function in order
  59. to configure StarPU. It has to be initialized with @code{starpu_conf_init}.
  60. When the default value is used, StarPU automatically selects the number of
  61. processing units and takes the default scheduling policy. The environment
  62. variables overwrite the equivalent parameters.
  63. @table @asis
  64. @item @code{const char *sched_policy_name} (default = NULL)
  65. This is the name of the scheduling policy. This can also be specified
  66. with the @code{STARPU_SCHED} environment variable.
  67. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  68. This is the definition of the scheduling policy. This field is ignored
  69. if @code{sched_policy_name} is set.
  70. @item @code{int ncpus} (default = -1)
  71. This is the number of CPU cores that StarPU can use. This can also be
  72. specified with the @code{STARPU_NCPU} environment variable.
  73. @item @code{int ncuda} (default = -1)
  74. This is the number of CUDA devices that StarPU can use. This can also
  75. be specified with the @code{STARPU_NCUDA} environment variable.
  76. @item @code{int nopencl} (default = -1)
  77. This is the number of OpenCL devices that StarPU can use. This can
  78. also be specified with the @code{STARPU_NOPENCL} environment variable.
  79. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  80. If this flag is set, the @code{workers_bindid} array indicates where the
  81. different workers are bound, otherwise StarPU automatically selects where to
  82. bind the different workers. This can also be specified with the
  83. @code{STARPU_WORKERS_CPUID} environment variable.
  84. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  85. If the @code{use_explicit_workers_bindid} flag is set, this array
  86. indicates where to bind the different workers. The i-th entry of the
  87. @code{workers_bindid} indicates the logical identifier of the
  88. processor which should execute the i-th worker. Note that the logical
  89. ordering of the CPUs is either determined by the OS, or provided by
  90. the @code{hwloc} library in case it is available.
  91. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  92. If this flag is set, the CUDA workers will be attached to the CUDA devices
  93. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  94. CUDA devices in a round-robin fashion. This can also be specified with the
  95. @code{STARPU_WORKERS_CUDAID} environment variable.
  96. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  97. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  98. contains the logical identifiers of the CUDA devices (as used by
  99. @code{cudaGetDevice}).
  100. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  101. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  102. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects
  103. the OpenCL devices in a round-robin fashion. This can also be specified with
  104. the @code{STARPU_WORKERS_OPENCLID} environment variable.
  105. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  106. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  107. contains the logical identifiers of the OpenCL devices to be used.
  108. @item @code{int calibrate} (default = 0)
  109. If this flag is set, StarPU will calibrate the performance models when
  110. executing tasks. If this value is equal to @code{-1}, the default value is
  111. used. If the value is equal to @code{1}, it will force continuing
  112. calibration. If the value is equal to @code{2}, the existing performance
  113. models will be overwritten. This can also be specified with the
  114. @code{STARPU_CALIBRATE} environment variable.
  115. @item @code{int bus_calibrate} (default = 0)
  116. If this flag is set, StarPU will recalibrate the bus. If this value is equal
  117. to @code{-1}, the default value is used. This can also be specified with the
  118. @code{STARPU_BUS_CALIBRATE} environment variable.
  119. @item @code{int single_combined_worker} (default = 0)
  120. By default, StarPU executes parallel tasks concurrently.
  121. Some parallel libraries (e.g. most OpenMP implementations) however do
  122. not support concurrent calls to parallel code. In such case, setting this flag
  123. makes StarPU only start one parallel task at a time (but other
  124. CPU and GPU tasks are not affected and can be run concurrently). The parallel
  125. task scheduler will however still however still try varying combined worker
  126. sizes to look for the most efficient ones.
  127. This can also be specified with the @code{STARPU_SINGLE_COMBINED_WORKER} environment variable.
  128. @item @code{int disable_asynchronous_copy} (default = 0)
  129. This flag should be set to 1 to disable asynchronous copies between
  130. CPUs and all accelerators. This can also be specified with the
  131. @code{STARPU_DISABLE_ASYNCHRONOUS_COPY} environment variable.
  132. The AMD implementation of OpenCL is known to
  133. fail when copying data asynchronously. When using this implementation,
  134. it is therefore necessary to disable asynchronous data transfers.
  135. This can also be specified at compilation time by giving to the
  136. configure script the option @code{--disable-asynchronous-copy}.
  137. @item @code{int disable_asynchronous_cuda_copy} (default = 0)
  138. This flag should be set to 1 to disable asynchronous copies between
  139. CPUs and CUDA accelerators. This can also be specified with the
  140. @code{STARPU_DISABLE_ASYNCHRONOUS_CUDA_COPY} environment variable.
  141. This can also be specified at compilation time by giving to the
  142. configure script the option @code{--disable-asynchronous-cuda-copy}.
  143. @item @code{int disable_asynchronous_opencl_copy} (default = 0)
  144. This flag should be set to 1 to disable asynchronous copies between
  145. CPUs and OpenCL accelerators. This can also be specified with the
  146. @code{STARPU_DISABLE_ASYNCHRONOUS_OPENCL_COPY} environment variable.
  147. The AMD implementation of OpenCL is known to
  148. fail when copying data asynchronously. When using this implementation,
  149. it is therefore necessary to disable asynchronous data transfers.
  150. This can also be specified at compilation time by giving to the
  151. configure script the option @code{--disable-asynchronous-opencl-copy}.
  152. @item @code{int *cuda_opengl_interoperability} (default = NULL)
  153. This can be set to an array of CUDA device identifiers for which
  154. @code{cudaGLSetGLDevice} should be called instead of @code{cudaSetDevice}. Its
  155. size is specified by the @code{n_cuda_opengl_interoperability} field below
  156. @item @code{int *n_cuda_opengl_interoperability} (default = 0)
  157. This has to be set to the size of the array pointed to by the
  158. @code{cuda_opengl_interoperability} field.
  159. @item @code{struct starpu_driver *not_launched_drivers}
  160. The drivers that should not be launched by StarPU.
  161. @item @code{unsigned n_not_launched_drivers}
  162. The number of StarPU drivers that should not be launched by StarPU.
  163. @item @code{no_auto_start_trace}
  164. The default (0) means that the FxT tracing will start as soon as
  165. @code{starpu_init} is called.
  166. Setting it to 1 permits to avoid tracing start so early, and instead start when the application calls @code{starpu_fxt_start_profiling}.
  167. @item @code{trace_buffer_size}
  168. Specifies the buffer size used for FxT tracing. Starting from FxT version
  169. 0.2.12, the buffer will automatically be flushed when it fills in, but it may
  170. still be interesting to specify a bigger value to avoid any flushing (which
  171. would disturb the trace).
  172. @end table
  173. @end deftp
  174. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  175. This function initializes the @var{conf} structure passed as argument
  176. with the default values. In case some configuration parameters are already
  177. specified through environment variables, @code{starpu_conf_init} initializes
  178. the fields of the structure according to the environment variables. For
  179. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  180. @code{.calibrate} field of the structure passed as argument.
  181. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  182. indicates that the argument was NULL.
  183. @end deftypefun
  184. @deftypefun void starpu_shutdown (void)
  185. This is StarPU termination method. It must be called at the end of the
  186. application: statistics and other post-mortem debugging information are not
  187. guaranteed to be available until this method has been called.
  188. @end deftypefun
  189. @deftypefun int starpu_asynchronous_copy_disabled (void)
  190. Return 1 if asynchronous data transfers between CPU and accelerators
  191. are disabled.
  192. @end deftypefun
  193. @deftypefun int starpu_asynchronous_cuda_copy_disabled (void)
  194. Return 1 if asynchronous data transfers between CPU and CUDA accelerators
  195. are disabled.
  196. @end deftypefun
  197. @deftypefun int starpu_asynchronous_opencl_copy_disabled (void)
  198. Return 1 if asynchronous data transfers between CPU and OpenCL accelerators
  199. are disabled.
  200. @end deftypefun
  201. @node Workers' Properties
  202. @section Workers' Properties
  203. @deftp {Data Type} {enum starpu_archtype}
  204. The different values are:
  205. @table @asis
  206. @item @code{STARPU_CPU_WORKER}
  207. @item @code{STARPU_CUDA_WORKER}
  208. @item @code{STARPU_OPENCL_WORKER}
  209. @end table
  210. @end deftp
  211. @deftypefun unsigned starpu_worker_get_count (void)
  212. This function returns the number of workers (i.e. processing units executing
  213. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  214. @end deftypefun
  215. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  216. Returns the number of workers of the given @var{type}. A positive
  217. (or @code{NULL}) value is returned in case of success, @code{-EINVAL} indicates that
  218. the type is not valid otherwise.
  219. @end deftypefun
  220. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  221. This function returns the number of CPUs controlled by StarPU. The returned
  222. value should be at most @code{STARPU_MAXCPUS}.
  223. @end deftypefun
  224. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  225. This function returns the number of CUDA devices controlled by StarPU. The returned
  226. value should be at most @code{STARPU_MAXCUDADEVS}.
  227. @end deftypefun
  228. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  229. This function returns the number of OpenCL devices controlled by StarPU. The returned
  230. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  231. @end deftypefun
  232. @deftypefun int starpu_worker_get_id (void)
  233. This function returns the identifier of the current worker, i.e the one associated to the calling
  234. thread. The returned value is either -1 if the current context is not a StarPU
  235. worker (i.e. when called from the application outside a task or a callback), or
  236. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  237. @end deftypefun
  238. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  239. This function gets the list of identifiers of workers with the given
  240. type. It fills the workerids array with the identifiers of the workers that have the type
  241. indicated in the first argument. The maxsize argument indicates the size of the
  242. workids array. The returned value gives the number of identifiers that were put
  243. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  244. workers with the appropriate type: in that case, the array is filled with the
  245. maxsize first elements. To avoid such overflows, the value of maxsize can be
  246. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  247. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  248. @end deftypefun
  249. @deftypefun int starpu_worker_get_by_type ({enum starpu_archtype} @var{type}, int @var{num})
  250. This returns the identifier of the @var{num}-th worker that has the specified type
  251. @var{type}. If there are no such worker, -1 is returned.
  252. @end deftypefun
  253. @deftypefun int starpu_worker_get_by_devid ({enum starpu_archtype} @var{type}, int @var{devid})
  254. This returns the identifier of the worker that has the specified type
  255. @var{type} and devid @var{devid} (which may not be the n-th, if some devices are
  256. skipped for instance). If there are no such worker, -1 is returned.
  257. @end deftypefun
  258. @deftypefun int starpu_worker_get_devid (int @var{id})
  259. This functions returns the device id of the given worker. The worker
  260. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  261. CUDA worker, this device identifier is the logical device identifier exposed by
  262. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  263. identifier of a CPU worker is the logical identifier of the core on which the
  264. worker was bound; this identifier is either provided by the OS or by the
  265. @code{hwloc} library in case it is available.
  266. @end deftypefun
  267. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  268. This function returns the type of processing unit associated to a
  269. worker. The worker identifier is a value returned by the
  270. @code{starpu_worker_get_id} function). The returned value
  271. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  272. core, @code{STARPU_CUDA_WORKER} for a CUDA device, and
  273. @code{STARPU_OPENCL_WORKER} for a OpenCL device. The value returned for an invalid
  274. identifier is unspecified.
  275. @end deftypefun
  276. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  277. This function allows to get the name of a given worker.
  278. StarPU associates a unique human readable string to each processing unit. This
  279. function copies at most the @var{maxlen} first bytes of the unique string
  280. associated to a worker identified by its identifier @var{id} into the
  281. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  282. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  283. function on an invalid identifier results in an unspecified behaviour.
  284. @end deftypefun
  285. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  286. This function returns the identifier of the memory node associated to the
  287. worker identified by @var{workerid}.
  288. @end deftypefun
  289. @deftp {Data Type} {enum starpu_node_kind}
  290. todo
  291. @table @asis
  292. @item @code{STARPU_UNUSED}
  293. @item @code{STARPU_CPU_RAM}
  294. @item @code{STARPU_CUDA_RAM}
  295. @item @code{STARPU_OPENCL_RAM}
  296. @end table
  297. @end deftp
  298. @deftypefun {enum starpu_node_kind} starpu_node_get_kind (uint32_t @var{node})
  299. Returns the type of the given node as defined by @code{enum
  300. starpu_node_kind}. For example, when defining a new data interface,
  301. this function should be used in the allocation function to determine
  302. on which device the memory needs to be allocated.
  303. @end deftypefun
  304. @node Data Management
  305. @section Data Management
  306. @menu
  307. * Introduction to Data Management::
  308. * Basic Data Management API::
  309. * Access registered data from the application::
  310. @end menu
  311. This section describes the data management facilities provided by StarPU.
  312. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  313. design their own data interfaces if required.
  314. @node Introduction to Data Management
  315. @subsection Introduction
  316. Data management is done at a high-level in StarPU: rather than accessing a mere
  317. list of contiguous buffers, the tasks may manipulate data that are described by
  318. a high-level construct which we call data interface.
  319. An example of data interface is the "vector" interface which describes a
  320. contiguous data array on a spefic memory node. This interface is a simple
  321. structure containing the number of elements in the array, the size of the
  322. elements, and the address of the array in the appropriate address space (this
  323. address may be invalid if there is no valid copy of the array in the memory
  324. node). More informations on the data interfaces provided by StarPU are
  325. given in @ref{Data Interfaces}.
  326. When a piece of data managed by StarPU is used by a task, the task
  327. implementation is given a pointer to an interface describing a valid copy of
  328. the data that is accessible from the current processing unit.
  329. Every worker is associated to a memory node which is a logical abstraction of
  330. the address space from which the processing unit gets its data. For instance,
  331. the memory node associated to the different CPU workers represents main memory
  332. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  333. Every memory node is identified by a logical index which is accessible from the
  334. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  335. to StarPU, the specified memory node indicates where the piece of data
  336. initially resides (we also call this memory node the home node of a piece of
  337. data).
  338. @node Basic Data Management API
  339. @subsection Basic Data Management API
  340. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  341. This function allocates data of the given size in main memory. It will also try to pin it in
  342. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  343. thus permit data transfer and computation overlapping. The allocated buffer must
  344. be freed thanks to the @code{starpu_free} function.
  345. @end deftypefun
  346. @deftypefun int starpu_free (void *@var{A})
  347. This function frees memory which has previously allocated with
  348. @code{starpu_malloc}.
  349. @end deftypefun
  350. @deftp {Data Type} {enum starpu_access_mode}
  351. This datatype describes a data access mode. The different available modes are:
  352. @table @asis
  353. @item @code{STARPU_R}: read-only mode.
  354. @item @code{STARPU_W}: write-only mode.
  355. @item @code{STARPU_RW}: read-write mode.
  356. This is equivalent to @code{STARPU_R|STARPU_W}.
  357. @item @code{STARPU_SCRATCH}: scratch memory.
  358. A temporary buffer is allocated for the task, but StarPU does not
  359. enforce data consistency---i.e. each device has its own buffer,
  360. independently from each other (even for CPUs), and no data transfer is
  361. ever performed. This is useful for temporary variables to avoid
  362. allocating/freeing buffers inside each task.
  363. Currently, no behavior is defined concerning the relation with the
  364. @code{STARPU_R} and @code{STARPU_W} modes and the value provided at
  365. registration---i.e., the value of the scratch buffer is undefined at
  366. entry of the codelet function. It is being considered for future
  367. extensions at least to define the initial value. For now, data to be
  368. used in @code{SCRATCH} mode should be registered with node @code{-1} and
  369. a @code{NULL} pointer, since the value of the provided buffer is simply
  370. ignored for now.
  371. @item @code{STARPU_REDUX}: reduction mode. TODO!
  372. @end table
  373. @end deftp
  374. @deftp {Data Type} {starpu_data_handle_t}
  375. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  376. data. Once a piece of data has been registered to StarPU, it is associated to a
  377. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  378. over the entire machine, so that we can maintain data consistency and locate
  379. data replicates for instance.
  380. @end deftp
  381. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, uint32_t @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  382. Register a piece of data into the handle located at the @var{handleptr}
  383. address. The @var{data_interface} buffer contains the initial description of the
  384. data in the home node. The @var{ops} argument is a pointer to a structure
  385. describing the different methods used to manipulate this type of interface. See
  386. @ref{struct starpu_data_interface_ops} for more details on this structure.
  387. If @code{home_node} is -1, StarPU will automatically
  388. allocate the memory when it is used for the
  389. first time in write-only mode. Once such data handle has been automatically
  390. allocated, it is possible to access it using any access mode.
  391. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  392. matrix) which can be registered by the means of helper functions (e.g.
  393. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  394. @end deftypefun
  395. @deftypefun void starpu_data_register_same ({starpu_data_handle_t *}@var{handledst}, starpu_data_handle_t @var{handlesrc})
  396. Register a new piece of data into the handle @var{handledst} with the
  397. same interface as the handle @var{handlesrc}.
  398. @end deftypefun
  399. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  400. This function unregisters a data handle from StarPU. If the data was
  401. automatically allocated by StarPU because the home node was -1, all
  402. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  403. is put back into the home node in the buffer that was initially registered.
  404. Using a data handle that has been unregistered from StarPU results in an
  405. undefined behaviour.
  406. @end deftypefun
  407. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  408. This is the same as starpu_data_unregister, except that StarPU does not put back
  409. a valid copy into the home node, in the buffer that was initially registered.
  410. @end deftypefun
  411. @deftypefun void starpu_data_unregister_submit (starpu_data_handle_t @var{handle})
  412. Destroy the data handle once it is not needed anymore by any submitted
  413. task. No coherency is assumed.
  414. @end deftypefun
  415. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  416. Destroy all replicates of the data handle immediately. After data invalidation,
  417. the first access to the handle must be performed in write-only mode.
  418. Accessing an invalidated data in read-mode results in undefined
  419. behaviour.
  420. @end deftypefun
  421. @deftypefun void starpu_data_invalidate_submit (starpu_data_handle_t @var{handle})
  422. Submits invalidation of the data handle after completion of previously submitted tasks.
  423. @end deftypefun
  424. @c TODO create a specific sections about user interaction with the DSM ?
  425. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  426. This function sets the write-through mask of a given data, i.e. a bitmask of
  427. nodes where the data should be always replicated after modification. It also
  428. prevents the data from being evicted from these nodes when memory gets scarse.
  429. @end deftypefun
  430. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  431. Issue a prefetch request for a given data to a given node, i.e.
  432. requests that the data be replicated to the given node, so that it is available
  433. there for tasks. If the @var{async} parameter is 0, the call will block until
  434. the transfer is achieved, else the call will return as soon as the request is
  435. scheduled (which may however have to wait for a task completion).
  436. @end deftypefun
  437. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  438. Return the handle corresponding to the data pointed to by the @var{ptr}
  439. host pointer.
  440. @end deftypefun
  441. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  442. Explicitly ask StarPU to allocate room for a piece of data on the specified
  443. memory node.
  444. @end deftypefun
  445. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  446. Query the status of the handle on the specified memory node.
  447. @end deftypefun
  448. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  449. This function allows to specify that a piece of data can be discarded
  450. without impacting the application.
  451. @end deftypefun
  452. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  453. This sets the codelets to be used for the @var{handle} when it is accessed in
  454. REDUX mode. Per-worker buffers will be initialized with the @var{init_cl}
  455. codelet, and reduction between per-worker buffers will be done with the
  456. @var{redux_cl} codelet.
  457. @end deftypefun
  458. @node Access registered data from the application
  459. @subsection Access registered data from the application
  460. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode})
  461. The application must call this function prior to accessing registered data from
  462. main memory outside tasks. StarPU ensures that the application will get an
  463. up-to-date copy of the data in main memory located where the data was
  464. originally registered, and that all concurrent accesses (e.g. from tasks) will
  465. be consistent with the access mode specified in the @var{mode} argument.
  466. @code{starpu_data_release} must be called once the application does not need to
  467. access the piece of data anymore. Note that implicit data
  468. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  469. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  470. the data, unless they have been disabled explictly by calling
  471. @code{starpu_data_set_default_sequential_consistency_flag} or
  472. @code{starpu_data_set_sequential_consistency_flag}.
  473. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  474. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  475. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  476. @end deftypefun
  477. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  478. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  479. @code{starpu_data_acquire}. When the data specified in the first argument is
  480. available in the appropriate access mode, the callback function is executed.
  481. The application may access the requested data during the execution of this
  482. callback. The callback function must call @code{starpu_data_release} once the
  483. application does not need to access the piece of data anymore.
  484. Note that implicit data dependencies are also enforced by
  485. @code{starpu_data_acquire_cb} in case they are not disabled.
  486. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  487. be called from task callbacks. Upon successful completion, this function
  488. returns 0.
  489. @end deftypefun
  490. @deftypefun int starpu_data_acquire_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode})
  491. This is the same as @code{starpu_data_acquire}, except that the data will be
  492. available on the given memory node instead of main memory.
  493. @end deftypefun
  494. @deftypefun int starpu_data_acquire_on_node_cb (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  495. This is the same as @code{starpu_data_acquire_cb}, except that the data will be
  496. available on the given memory node instead of main memory.
  497. @end deftypefun
  498. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, code)
  499. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  500. except that the code to be executed in a callback is directly provided as a
  501. macro parameter, and the data handle is automatically released after it. This
  502. permits to easily execute code which depends on the value of some registered
  503. data. This is non-blocking too and may be called from task callbacks.
  504. @end defmac
  505. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  506. This function releases the piece of data acquired by the application either by
  507. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  508. @end deftypefun
  509. @deftypefun void starpu_data_release_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node})
  510. This is the same as @code{starpu_data_release}, except that the data will be
  511. available on the given memory node instead of main memory.
  512. @end deftypefun
  513. @node Data Interfaces
  514. @section Data Interfaces
  515. @menu
  516. * Registering Data::
  517. * Accessing Data Interfaces::
  518. * Defining Interface::
  519. @end menu
  520. @node Registering Data
  521. @subsection Registering Data
  522. There are several ways to register a memory region so that it can be managed by
  523. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  524. matrices as well as BCSR and CSR sparse matrices.
  525. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  526. Register a void interface. There is no data really associated to that
  527. interface, but it may be used as a synchronization mechanism. It also
  528. permits to express an abstract piece of data that is managed by the
  529. application internally: this makes it possible to forbid the
  530. concurrent execution of different tasks accessing the same "void" data
  531. in read-write concurrently.
  532. @end deftypefun
  533. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  534. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  535. typically a scalar, and initialize @var{handle} to represent this data
  536. item.
  537. @cartouche
  538. @smallexample
  539. float var;
  540. starpu_data_handle_t var_handle;
  541. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  542. @end smallexample
  543. @end cartouche
  544. @end deftypefun
  545. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  546. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  547. @var{ptr} and initialize @var{handle} to represent it.
  548. @cartouche
  549. @smallexample
  550. float vector[NX];
  551. starpu_data_handle_t vector_handle;
  552. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  553. sizeof(vector[0]));
  554. @end smallexample
  555. @end cartouche
  556. @end deftypefun
  557. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  558. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  559. pointed by @var{ptr} and initialize @var{handle} to represent it.
  560. @var{ld} specifies the number of elements between rows.
  561. a value greater than @var{nx} adds padding, which can be useful for
  562. alignment purposes.
  563. @cartouche
  564. @smallexample
  565. float *matrix;
  566. starpu_data_handle_t matrix_handle;
  567. matrix = (float*)malloc(width * height * sizeof(float));
  568. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  569. width, width, height, sizeof(float));
  570. @end smallexample
  571. @end cartouche
  572. @end deftypefun
  573. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  574. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  575. elements pointed by @var{ptr} and initialize @var{handle} to represent
  576. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  577. between rows and between z planes.
  578. @cartouche
  579. @smallexample
  580. float *block;
  581. starpu_data_handle_t block_handle;
  582. block = (float*)malloc(nx*ny*nz*sizeof(float));
  583. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  584. nx, nx*ny, nx, ny, nz, sizeof(float));
  585. @end smallexample
  586. @end cartouche
  587. @end deftypefun
  588. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  589. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  590. Compressed Sparse Row Representation) sparse matrix interface.
  591. Register the sparse matrix made of @var{nnz} non-zero blocks of elements of size
  592. @var{elemsize} stored in @var{nzval} and initializes @var{handle} to represent
  593. it. Blocks have size @var{r} * @var{c}. @var{nrow} is the number of rows (in
  594. terms of blocks), @code{colind[i]} is the block-column index for block @code{i}
  595. in @code{nzval}, @code{rowptr[i]} is the block-index (in nzval) of the first block of row @code{i}.
  596. @var{firstentry} is the index of the first entry of the given arrays (usually 0
  597. or 1).
  598. @end deftypefun
  599. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  600. This variant of @code{starpu_data_register} uses the CSR (Compressed
  601. Sparse Row Representation) sparse matrix interface.
  602. TODO
  603. @end deftypefun
  604. @deftypefun void starpu_coo_data_register (starpu_data_handle_t *@var{handleptr}, uint32_t @var{home_node}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{n_values}, uint32_t *@var{columns}, uint32_t *@var{rows}, uintptr_t @var{values}, size_t @var{elemsize});
  605. Register the @var{nx}x@var{ny} 2D matrix given in the COO format, using the
  606. @var{columns}, @var{rows}, @var{values} arrays, which must have @var{n_values}
  607. elements of size @var{elemsize}. Initialize @var{handleptr}.
  608. @end deftypefun
  609. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  610. Return the interface associated with @var{handle} on @var{memory_node}.
  611. @end deftypefun
  612. @node Accessing Data Interfaces
  613. @subsection Accessing Data Interfaces
  614. Each data interface is provided with a set of field access functions.
  615. The ones using a @code{void *} parameter aimed to be used in codelet
  616. implementations (see for example the code in @ref{Vector Scaling Using StarPU's API}).
  617. @deftp {Data Type} {enum starpu_data_interface_id}
  618. The different values are:
  619. @table @asis
  620. @item @code{STARPU_MATRIX_INTERFACE_ID}
  621. @item @code{STARPU_BLOCK_INTERFACE_ID}
  622. @item @code{STARPU_VECTOR_INTERFACE_ID}
  623. @item @code{STARPU_CSR_INTERFACE_ID}
  624. @item @code{STARPU_BCSR_INTERFACE_ID}
  625. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  626. @item @code{STARPU_VOID_INTERFACE_ID}
  627. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  628. @item @code{STARPU_COO_INTERCACE_ID}
  629. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  630. @end table
  631. @end deftp
  632. @menu
  633. * Accessing Handle::
  634. * Accessing Variable Data Interfaces::
  635. * Accessing Vector Data Interfaces::
  636. * Accessing Matrix Data Interfaces::
  637. * Accessing Block Data Interfaces::
  638. * Accessing BCSR Data Interfaces::
  639. * Accessing CSR Data Interfaces::
  640. * Accessing COO Data Interfaces::
  641. @end menu
  642. @node Accessing Handle
  643. @subsubsection Handle
  644. @deftypefun {void *} starpu_handle_to_pointer (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  645. Return the pointer associated with @var{handle} on node @var{node} or
  646. @code{NULL} if @var{handle}'s interface does not support this
  647. operation or data for this handle is not allocated on that node.
  648. @end deftypefun
  649. @deftypefun {void *} starpu_handle_get_local_ptr (starpu_data_handle_t @var{handle})
  650. Return the local pointer associated with @var{handle} or @code{NULL}
  651. if @var{handle}'s interface does not have data allocated locally
  652. @end deftypefun
  653. @deftypefun {enum starpu_data_interface_id} starpu_handle_get_interface_id (starpu_data_handle_t @var{handle})
  654. Return the unique identifier of the interface associated with the given @var{handle}.
  655. @end deftypefun
  656. @deftypefun size_t starpu_handle_get_size (starpu_data_handle_t @var{handle})
  657. Return the size of the data associated with @var{handle}
  658. @end deftypefun
  659. @deftypefun int starpu_handle_pack_data (starpu_data_handle_t @var{handle}, {void **}@var{ptr}, {size_t *}@var{count})
  660. Execute the packing operation of the interface of the data registered
  661. at @var{handle} (@pxref{struct starpu_data_interface_ops}). This
  662. packing operation must allocate a buffer large enough at @var{ptr} and
  663. copy into the newly allocated buffer the data associated to
  664. @var{handle}.
  665. The function also sets @var{count} to the size of the data handle by calling
  666. @code{starpu_handle_get_size()}.
  667. @end deftypefun
  668. @deftypefun int starpu_handle_unpack_data (starpu_data_handle_t @var{handle}, {void *}@var{ptr}, size_t @var{count})
  669. Unpack in @var{handle} the data located at @var{ptr} of size
  670. @var{count} as described by the interface of the data. The interface
  671. registered at @var{handle} must define a unpacking operation
  672. (@pxref{struct starpu_data_interface_ops}). The memory at the address @code{ptr}
  673. is freed after calling the data unpacking operation.
  674. @end deftypefun
  675. @node Accessing Variable Data Interfaces
  676. @subsubsection Variable Data Interfaces
  677. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  678. Return the size of the variable designated by @var{handle}.
  679. @end deftypefun
  680. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  681. Return a pointer to the variable designated by @var{handle}.
  682. @end deftypefun
  683. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  684. Return a pointer to the variable designated by @var{interface}.
  685. @end defmac
  686. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  687. Return the size of the variable designated by @var{interface}.
  688. @end defmac
  689. @defmac STARPU_VARIABLE_GET_DEV_HANDLE ({void *}@var{interface})
  690. Return a device handle for the variable designated by @var{interface}, to be
  691. used on OpenCL. The offset documented below has to be used in addition to this.
  692. @end defmac
  693. @defmac STARPU_VARIABLE_GET_OFFSET ({void *}@var{interface})
  694. Return the offset in the variable designated by @var{interface}, to be used
  695. with the device handle.
  696. @end defmac
  697. @node Accessing Vector Data Interfaces
  698. @subsubsection Vector Data Interfaces
  699. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  700. Return the number of elements registered into the array designated by @var{handle}.
  701. @end deftypefun
  702. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  703. Return the size of each element of the array designated by @var{handle}.
  704. @end deftypefun
  705. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  706. Return the local pointer associated with @var{handle}.
  707. @end deftypefun
  708. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  709. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  710. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  711. @end defmac
  712. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  713. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  714. documented below has to be used in addition to this.
  715. @end defmac
  716. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  717. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  718. @end defmac
  719. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  720. Return the number of elements registered into the array designated by @var{interface}.
  721. @end defmac
  722. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  723. Return the size of each element of the array designated by @var{interface}.
  724. @end defmac
  725. @node Accessing Matrix Data Interfaces
  726. @subsubsection Matrix Data Interfaces
  727. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  728. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  729. @end deftypefun
  730. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  731. Return the number of elements on the y-axis of the matrix designated by
  732. @var{handle}.
  733. @end deftypefun
  734. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  735. Return the number of elements between each row of the matrix designated by
  736. @var{handle}. Maybe be equal to nx when there is no padding.
  737. @end deftypefun
  738. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  739. Return the local pointer associated with @var{handle}.
  740. @end deftypefun
  741. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  742. Return the size of the elements registered into the matrix designated by
  743. @var{handle}.
  744. @end deftypefun
  745. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  746. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  747. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  748. used instead.
  749. @end defmac
  750. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  751. Return a device handle for the matrix designated by @var{interface}, to be used
  752. on OpenCL. The offset documented below has to be used in addition to this.
  753. @end defmac
  754. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  755. Return the offset in the matrix designated by @var{interface}, to be used with
  756. the device handle.
  757. @end defmac
  758. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  759. Return the number of elements on the x-axis of the matrix designated by
  760. @var{interface}.
  761. @end defmac
  762. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  763. Return the number of elements on the y-axis of the matrix designated by
  764. @var{interface}.
  765. @end defmac
  766. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  767. Return the number of elements between each row of the matrix designated by
  768. @var{interface}. May be equal to nx when there is no padding.
  769. @end defmac
  770. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  771. Return the size of the elements registered into the matrix designated by
  772. @var{interface}.
  773. @end defmac
  774. @node Accessing Block Data Interfaces
  775. @subsubsection Block Data Interfaces
  776. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  777. Return the number of elements on the x-axis of the block designated by @var{handle}.
  778. @end deftypefun
  779. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  780. Return the number of elements on the y-axis of the block designated by @var{handle}.
  781. @end deftypefun
  782. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  783. Return the number of elements on the z-axis of the block designated by @var{handle}.
  784. @end deftypefun
  785. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  786. Return the number of elements between each row of the block designated by
  787. @var{handle}, in the format of the current memory node.
  788. @end deftypefun
  789. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  790. Return the number of elements between each z plane of the block designated by
  791. @var{handle}, in the format of the current memory node.
  792. @end deftypefun
  793. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  794. Return the local pointer associated with @var{handle}.
  795. @end deftypefun
  796. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  797. Return the size of the elements of the block designated by @var{handle}.
  798. @end deftypefun
  799. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  800. Return a pointer to the block designated by @var{interface}.
  801. @end defmac
  802. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  803. Return a device handle for the block designated by @var{interface}, to be used
  804. on OpenCL. The offset document below has to be used in addition to this.
  805. @end defmac
  806. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  807. Return the offset in the block designated by @var{interface}, to be used with
  808. the device handle.
  809. @end defmac
  810. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  811. Return the number of elements on the x-axis of the block designated by @var{handle}.
  812. @end defmac
  813. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  814. Return the number of elements on the y-axis of the block designated by @var{handle}.
  815. @end defmac
  816. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  817. Return the number of elements on the z-axis of the block designated by @var{handle}.
  818. @end defmac
  819. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  820. Return the number of elements between each row of the block designated by
  821. @var{interface}. May be equal to nx when there is no padding.
  822. @end defmac
  823. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  824. Return the number of elements between each z plane of the block designated by
  825. @var{interface}. May be equal to nx*ny when there is no padding.
  826. @end defmac
  827. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  828. Return the size of the elements of the matrix designated by @var{interface}.
  829. @end defmac
  830. @node Accessing BCSR Data Interfaces
  831. @subsubsection BCSR Data Interfaces
  832. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  833. Return the number of non-zero elements in the matrix designated by @var{handle}.
  834. @end deftypefun
  835. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  836. Return the number of rows (in terms of blocks of size r*c) in the matrix
  837. designated by @var{handle}.
  838. @end deftypefun
  839. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  840. Return the index at which all arrays (the column indexes, the row pointers...)
  841. of the matrix desginated by @var{handle} start.
  842. @end deftypefun
  843. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  844. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  845. @end deftypefun
  846. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  847. Return a pointer to the column index, which holds the positions of the non-zero
  848. entries in the matrix designated by @var{handle}.
  849. @end deftypefun
  850. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  851. Return the row pointer array of the matrix designated by @var{handle}.
  852. @end deftypefun
  853. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  854. Return the number of rows in a block.
  855. @end deftypefun
  856. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  857. Return the numberof columns in a block.
  858. @end deftypefun
  859. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  860. Return the size of the elements in the matrix designated by @var{handle}.
  861. @end deftypefun
  862. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  863. Return the number of non-zero values in the matrix designated by @var{interface}.
  864. @end defmac
  865. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  866. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  867. @end defmac
  868. @defmac STARPU_BCSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  869. Return a device handle for the array of non-zero values in the matrix designated
  870. by @var{interface}. The offset documented below has to be used in addition to
  871. this.
  872. @end defmac
  873. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  874. Return a pointer to the column index of the matrix designated by @var{interface}.
  875. @end defmac
  876. @defmac STARPU_BCSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  877. Return a device handle for the column index of the matrix designated by
  878. @var{interface}. The offset documented below has to be used in addition to
  879. this.
  880. @end defmac
  881. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  882. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  883. @end defmac
  884. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  885. Return a device handle for the row pointer array of the matrix designated by
  886. @var{interface}. The offset documented below has to be used in addition to
  887. this.
  888. @end defmac
  889. @defmac STARPU_BCSR_GET_OFFSET ({void *}@var{interface})
  890. Return the offset in the arrays (coling, rowptr, nzval) of the matrix
  891. designated by @var{interface}, to be used with the device handles.
  892. @end defmac
  893. @node Accessing CSR Data Interfaces
  894. @subsubsection CSR Data Interfaces
  895. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  896. Return the number of non-zero values in the matrix designated by @var{handle}.
  897. @end deftypefun
  898. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  899. Return the size of the row pointer array of the matrix designated by @var{handle}.
  900. @end deftypefun
  901. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  902. Return the index at which all arrays (the column indexes, the row pointers...)
  903. of the matrix designated by @var{handle} start.
  904. @end deftypefun
  905. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  906. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  907. @end deftypefun
  908. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  909. Return a local pointer to the column index of the matrix designated by @var{handle}.
  910. @end deftypefun
  911. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  912. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  913. @end deftypefun
  914. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  915. Return the size of the elements registered into the matrix designated by @var{handle}.
  916. @end deftypefun
  917. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  918. Return the number of non-zero values in the matrix designated by @var{interface}.
  919. @end defmac
  920. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  921. Return the size of the row pointer array of the matrix designated by @var{interface}.
  922. @end defmac
  923. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  924. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  925. @end defmac
  926. @defmac STARPU_CSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  927. Return a device handle for the array of non-zero values in the matrix designated
  928. by @var{interface}. The offset documented below has to be used in addition to
  929. this.
  930. @end defmac
  931. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  932. Return a pointer to the column index of the matrix designated by @var{interface}.
  933. @end defmac
  934. @defmac STARPU_CSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  935. Return a device handle for the column index of the matrix designated by
  936. @var{interface}. The offset documented below has to be used in addition to
  937. this.
  938. @end defmac
  939. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  940. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  941. @end defmac
  942. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  943. Return a device handle for the row pointer array of the matrix designated by
  944. @var{interface}. The offset documented below has to be used in addition to
  945. this.
  946. @end defmac
  947. @defmac STARPU_CSR_GET_OFFSET ({void *}@var{interface})
  948. Return the offset in the arrays (colind, rowptr, nzval) of the matrix
  949. designated by @var{interface}, to be used with the device handles.
  950. @end defmac
  951. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  952. Return the index at which all arrays (the column indexes, the row pointers...)
  953. of the @var{interface} start.
  954. @end defmac
  955. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  956. Return the size of the elements registered into the matrix designated by @var{interface}.
  957. @end defmac
  958. @node Accessing COO Data Interfaces
  959. @subsubsection COO Data Interfaces
  960. @defmac STARPU_COO_GET_COLUMNS ({void *}@var{interface})
  961. Return a pointer to the column array of the matrix designated by
  962. @var{interface}.
  963. @end defmac
  964. @defmac STARPU_COO_GET_COLUMNS_DEV_HANDLE ({void *}@var{interface})
  965. Return a device handle for the column array of the matrix designated by
  966. @var{interface}, to be used on OpenCL. The offset documented below has to be
  967. used in addition to this.
  968. @end defmac
  969. @defmac STARPU_COO_GET_ROWS (interface)
  970. Return a pointer to the rows array of the matrix designated by @var{interface}.
  971. @end defmac
  972. @defmac STARPU_COO_GET_ROWS_DEV_HANDLE ({void *}@var{interface})
  973. Return a device handle for the row array of the matrix designated by
  974. @var{interface}, to be used on OpenCL. The offset documented below has to be
  975. used in addition to this.
  976. @end defmac
  977. @defmac STARPU_COO_GET_VALUES (interface)
  978. Return a pointer to the values array of the matrix designated by
  979. @var{interface}.
  980. @end defmac
  981. @defmac STARPU_COO_GET_VALUES_DEV_HANDLE ({void *}@var{interface})
  982. Return a device handle for the value array of the matrix designated by
  983. @var{interface}, to be used on OpenCL. The offset documented below has to be
  984. used in addition to this.
  985. @end defmac
  986. @defmac STARPU_COO_GET_OFFSET ({void *}@var{itnerface})
  987. Return the offset in the arrays of the COO matrix designated by @var{interface}.
  988. @end defmac
  989. @defmac STARPU_COO_GET_NX (interface)
  990. Return the number of elements on the x-axis of the matrix designated by
  991. @var{interface}.
  992. @end defmac
  993. @defmac STARPU_COO_GET_NY (interface)
  994. Return the number of elements on the y-axis of the matrix designated by
  995. @var{interface}.
  996. @end defmac
  997. @defmac STARPU_COO_GET_NVALUES (interface)
  998. Return the number of values registered in the matrix designated by
  999. @var{interface}.
  1000. @end defmac
  1001. @defmac STARPU_COO_GET_ELEMSIZE (interface)
  1002. Return the size of the elements registered into the matrix designated by
  1003. @var{interface}.
  1004. @end defmac
  1005. @node Defining Interface
  1006. @subsection Defining Interface
  1007. Applications can provide their own interface. An example is provided in
  1008. @code{examples/interface}. A few helpers are provided.
  1009. @deftypefun uintptr_t starpu_allocate_buffer_on_node (uint32_t @var{dst_node}, size_t @var{size})
  1010. Allocate @var{size} bytes on node @var{dst_node}. This returns 0 if allocation
  1011. failed, the allocation method should then return -ENOMEM as allocated size.
  1012. @end deftypefun
  1013. @deftypefun void starpu_free_buffer_on_node (uint32_t @var{dst_node}, uintptr_t @var{addr}, size_t @var{size})
  1014. Free @var{addr} of @var{size} bytes on node @var{dst_node}.
  1015. @end deftypefun
  1016. @node Data Partition
  1017. @section Data Partition
  1018. @menu
  1019. * Basic API::
  1020. * Predefined filter functions::
  1021. @end menu
  1022. @node Basic API
  1023. @subsection Basic API
  1024. @deftp {Data Type} {struct starpu_data_filter}
  1025. The filter structure describes a data partitioning operation, to be given to the
  1026. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  1027. for an example. The different fields are:
  1028. @table @asis
  1029. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  1030. This function fills the @code{child_interface} structure with interface
  1031. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  1032. @item @code{unsigned nchildren}
  1033. This is the number of parts to partition the data into.
  1034. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  1035. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  1036. children depends on the actual data (e.g. the number of blocks in a sparse
  1037. matrix).
  1038. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  1039. In case the resulting children use a different data interface, this function
  1040. returns which interface is used by child number @code{id}.
  1041. @item @code{unsigned filter_arg}
  1042. Allow to define an additional parameter for the filter function.
  1043. @item @code{void *filter_arg_ptr}
  1044. Allow to define an additional pointer parameter for the filter
  1045. function, such as the sizes of the different parts.
  1046. @end table
  1047. @end deftp
  1048. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  1049. @anchor{starpu_data_partition}
  1050. This requests partitioning one StarPU data @var{initial_handle} into several
  1051. subdata according to the filter @var{f}, as shown in the following example:
  1052. @cartouche
  1053. @smallexample
  1054. struct starpu_data_filter f = @{
  1055. .filter_func = starpu_block_filter_func,
  1056. .nchildren = nslicesx,
  1057. .get_nchildren = NULL,
  1058. .get_child_ops = NULL
  1059. @};
  1060. starpu_data_partition(A_handle, &f);
  1061. @end smallexample
  1062. @end cartouche
  1063. @end deftypefun
  1064. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, uint32_t @var{gathering_node})
  1065. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  1066. collected back into one big piece in the @var{gathering_node} (usually 0). Tasks
  1067. working on the partitioned data must be already finished when calling @code{starpu_data_unpartition}.
  1068. @cartouche
  1069. @smallexample
  1070. starpu_data_unpartition(A_handle, 0);
  1071. @end smallexample
  1072. @end cartouche
  1073. @end deftypefun
  1074. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  1075. This function returns the number of children.
  1076. @end deftypefun
  1077. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  1078. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  1079. @end deftypefun
  1080. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  1081. After partitioning a StarPU data by applying a filter,
  1082. @code{starpu_data_get_sub_data} can be used to get handles for each of
  1083. the data portions. @var{root_data} is the parent data that was
  1084. partitioned. @var{depth} is the number of filters to traverse (in
  1085. case several filters have been applied, to e.g. partition in row
  1086. blocks, and then in column blocks), and the subsequent
  1087. parameters are the indexes. The function returns a handle to the
  1088. subdata.
  1089. @cartouche
  1090. @smallexample
  1091. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  1092. @end smallexample
  1093. @end cartouche
  1094. @end deftypefun
  1095. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  1096. This function is similar to @code{starpu_data_get_sub_data} but uses a
  1097. va_list for the parameter list.
  1098. @end deftypefun
  1099. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  1100. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1101. recursively. @var{nfilters} pointers to variables of the type
  1102. starpu_data_filter should be given.
  1103. @end deftypefun
  1104. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  1105. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1106. recursively. It uses a va_list of pointers to variables of the typer
  1107. starpu_data_filter.
  1108. @end deftypefun
  1109. @node Predefined filter functions
  1110. @subsection Predefined filter functions
  1111. @menu
  1112. * Partitioning Vector Data::
  1113. * Partitioning Matrix Data::
  1114. * Partitioning 3D Matrix Data::
  1115. * Partitioning BCSR Data::
  1116. @end menu
  1117. This section gives a partial list of the predefined partitioning functions.
  1118. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  1119. list can be found in @code{starpu_data_filters.h} .
  1120. @node Partitioning Vector Data
  1121. @subsubsection Partitioning Vector Data
  1122. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1123. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1124. vector represented by @var{father_interface} once partitioned in
  1125. @var{nparts} chunks of equal size.
  1126. @end deftypefun
  1127. @deftypefun void starpu_block_shadow_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1128. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1129. vector represented by @var{father_interface} once partitioned in
  1130. @var{nparts} chunks of equal size with a shadow border @code{filter_arg_ptr}, thus getting a vector of size (n-2*shadow)/nparts+2*shadow
  1131. The @code{filter_arg_ptr} field must be the shadow size casted into @code{void*}.
  1132. IMPORTANT: This can only be used for read-only access, as no coherency is
  1133. enforced for the shadowed parts.
  1134. A usage example is available in examples/filters/shadow.c
  1135. @end deftypefun
  1136. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1137. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1138. vector represented by @var{father_interface} once partitioned into
  1139. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  1140. @code{*@var{f}}.
  1141. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  1142. @code{uint32_t} elements, each of which specifies the number of elements
  1143. in each chunk of the partition.
  1144. @end deftypefun
  1145. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1146. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1147. vector represented by @var{father_interface} once partitioned in two
  1148. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  1149. @code{0} or @code{1}.
  1150. @end deftypefun
  1151. @node Partitioning Matrix Data
  1152. @subsubsection Partitioning Matrix Data
  1153. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1154. This partitions a dense Matrix along the x dimension, thus getting (x/nparts,y)
  1155. matrices. If nparts does not divide x, the last submatrix contains the
  1156. remainder.
  1157. @end deftypefun
  1158. @deftypefun void starpu_block_shadow_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1159. This partitions a dense Matrix along the x dimension, with a shadow border
  1160. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y)
  1161. matrices. If nparts does not divide x-2*shadow, the last submatrix contains the
  1162. remainder.
  1163. IMPORTANT: This can only be used for read-only access, as no coherency is
  1164. enforced for the shadowed parts.
  1165. A usage example is available in examples/filters/shadow2d.c
  1166. @end deftypefun
  1167. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1168. This partitions a dense Matrix along the y dimension, thus getting (x,y/nparts)
  1169. matrices. If nparts does not divide y, the last submatrix contains the
  1170. remainder.
  1171. @end deftypefun
  1172. @deftypefun void starpu_vertical_block_shadow_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1173. This partitions a dense Matrix along the y dimension, with a shadow border
  1174. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow)
  1175. matrices. If nparts does not divide y-2*shadow, the last submatrix contains the
  1176. remainder.
  1177. IMPORTANT: This can only be used for read-only access, as no coherency is
  1178. enforced for the shadowed parts.
  1179. A usage example is available in examples/filters/shadow2d.c
  1180. @end deftypefun
  1181. @node Partitioning 3D Matrix Data
  1182. @subsubsection Partitioning 3D Matrix Data
  1183. A usage example is available in examples/filters/shadow3d.c
  1184. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1185. This partitions a 3D matrix along the X dimension, thus getting (x/nparts,y,z)
  1186. 3D matrices. If nparts does not divide x, the last submatrix contains the
  1187. remainder.
  1188. @end deftypefun
  1189. @deftypefun void starpu_block_shadow_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1190. This partitions a 3D matrix along the X dimension, with a shadow border
  1191. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y,z) 3D
  1192. matrices. If nparts does not divide x, the last submatrix contains the
  1193. remainder.
  1194. IMPORTANT: This can only be used for read-only access, as no coherency is
  1195. enforced for the shadowed parts.
  1196. @end deftypefun
  1197. @deftypefun void starpu_vertical_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1198. This partitions a 3D matrix along the Y dimension, thus getting (x,y/nparts,z)
  1199. 3D matrices. If nparts does not divide y, the last submatrix contains the
  1200. remainder.
  1201. @end deftypefun
  1202. @deftypefun void starpu_vertical_block_shadow_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1203. This partitions a 3D matrix along the Y dimension, with a shadow border
  1204. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow,z) 3D
  1205. matrices. If nparts does not divide y, the last submatrix contains the
  1206. remainder.
  1207. IMPORTANT: This can only be used for read-only access, as no coherency is
  1208. enforced for the shadowed parts.
  1209. @end deftypefun
  1210. @deftypefun void starpu_depth_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1211. This partitions a 3D matrix along the Z dimension, thus getting (x,y,z/nparts)
  1212. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1213. remainder.
  1214. @end deftypefun
  1215. @deftypefun void starpu_depth_block_shadow_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1216. This partitions a 3D matrix along the Z dimension, with a shadow border
  1217. @code{filter_arg_ptr}, thus getting (x,y,(z-2*shadow)/nparts+2*shadow)
  1218. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1219. remainder.
  1220. IMPORTANT: This can only be used for read-only access, as no coherency is
  1221. enforced for the shadowed parts.
  1222. @end deftypefun
  1223. @node Partitioning BCSR Data
  1224. @subsubsection Partitioning BCSR Data
  1225. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1226. This partitions a block-sparse matrix into dense matrices.
  1227. @end deftypefun
  1228. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1229. This partitions a block-sparse matrix into vertical block-sparse matrices.
  1230. @end deftypefun
  1231. @node Codelets and Tasks
  1232. @section Codelets and Tasks
  1233. This section describes the interface to manipulate codelets and tasks.
  1234. @deftp {Data Type} {enum starpu_codelet_type}
  1235. Describes the type of parallel task. The different values are:
  1236. @table @asis
  1237. @item @code{STARPU_SEQ} (default) for classical sequential tasks.
  1238. @item @code{STARPU_SPMD} for a parallel task whose threads are handled by
  1239. StarPU, the code has to use @code{starpu_combined_worker_get_size} and
  1240. @code{starpu_combined_worker_get_rank} to distribute the work
  1241. @item @code{STARPU_FORKJOIN} for a parallel task whose threads are started by
  1242. the codelet function, which has to use @code{starpu_combined_worker_get_size} to
  1243. determine how many threads should be started.
  1244. @end table
  1245. See @ref{Parallel Tasks} for details.
  1246. @end deftp
  1247. @defmac STARPU_CPU
  1248. This macro is used when setting the field @code{where} of a @code{struct
  1249. starpu_codelet} to specify the codelet may be executed on a CPU
  1250. processing unit.
  1251. @end defmac
  1252. @defmac STARPU_CUDA
  1253. This macro is used when setting the field @code{where} of a @code{struct
  1254. starpu_codelet} to specify the codelet may be executed on a CUDA
  1255. processing unit.
  1256. @end defmac
  1257. @defmac STARPU_OPENCL
  1258. This macro is used when setting the field @code{where} of a @code{struct
  1259. starpu_codelet} to specify the codelet may be executed on a OpenCL
  1260. processing unit.
  1261. @end defmac
  1262. @defmac STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
  1263. Setting the field @code{cpu_func} of a @code{struct starpu_codelet}
  1264. with this macro indicates the codelet will have several
  1265. implementations. The use of this macro is deprecated. One should
  1266. always only define the field @code{cpu_funcs}.
  1267. @end defmac
  1268. @defmac STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
  1269. Setting the field @code{cuda_func} of a @code{struct starpu_codelet}
  1270. with this macro indicates the codelet will have several
  1271. implementations. The use of this macro is deprecated. One should
  1272. always only define the field @code{cuda_funcs}.
  1273. @end defmac
  1274. @defmac STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
  1275. Setting the field @code{opencl_func} of a @code{struct starpu_codelet}
  1276. with this macro indicates the codelet will have several
  1277. implementations. The use of this macro is deprecated. One should
  1278. always only define the field @code{opencl_funcs}.
  1279. @end defmac
  1280. @deftp {Data Type} {struct starpu_codelet}
  1281. The codelet structure describes a kernel that is possibly implemented on various
  1282. targets. For compatibility, make sure to initialize the whole structure to zero,
  1283. either by using explicit memset, or by letting the compiler implicitly do it in
  1284. e.g. static storage case.
  1285. @table @asis
  1286. @item @code{uint32_t where} (optional)
  1287. Indicates which types of processing units are able to execute the
  1288. codelet. The different values
  1289. @code{STARPU_CPU}, @code{STARPU_CUDA},
  1290. @code{STARPU_OPENCL} can be combined to specify
  1291. on which types of processing units the codelet can be executed.
  1292. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  1293. implemented for both CPU cores and CUDA devices while @code{STARPU_OPENCL}
  1294. indicates that it is only available on OpenCL devices. If the field is
  1295. unset, its value will be automatically set based on the availability
  1296. of the @code{XXX_funcs} fields defined below.
  1297. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  1298. Defines a function which should return 1 if the worker designated by
  1299. @var{workerid} can execute the @var{nimpl}th implementation of the
  1300. given @var{task}, 0 otherwise.
  1301. @item @code{enum starpu_codelet_type type} (optional)
  1302. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  1303. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  1304. implementation is also available. See @ref{Parallel Tasks} for details.
  1305. @item @code{int max_parallelism} (optional)
  1306. If a parallel implementation is available, this denotes the maximum combined
  1307. worker size that StarPU will use to execute parallel tasks for this codelet.
  1308. @item @code{starpu_cpu_func_t cpu_func} (optional)
  1309. This field has been made deprecated. One should use instead the
  1310. @code{cpu_funcs} field.
  1311. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1312. Is an array of function pointers to the CPU implementations of the codelet.
  1313. It must be terminated by a NULL value.
  1314. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  1315. argument being the array of data managed by the data management library, and
  1316. the second argument is a pointer to the argument passed from the @code{cl_arg}
  1317. field of the @code{starpu_task} structure.
  1318. If the @code{where} field is set, then the @code{cpu_funcs} field is
  1319. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  1320. field, it must be non-null otherwise.
  1321. @item @code{starpu_cuda_func_t cuda_func} (optional)
  1322. This field has been made deprecated. One should use instead the
  1323. @code{cuda_funcs} field.
  1324. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1325. Is an array of function pointers to the CUDA implementations of the codelet.
  1326. It must be terminated by a NULL value.
  1327. @emph{The functions must be host-functions written in the CUDA runtime
  1328. API}. Their prototype must
  1329. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  1330. If the @code{where} field is set, then the @code{cuda_funcs}
  1331. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  1332. field, it must be non-null otherwise.
  1333. @item @code{starpu_opencl_func_t opencl_func} (optional)
  1334. This field has been made deprecated. One should use instead the
  1335. @code{opencl_funcs} field.
  1336. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1337. Is an array of function pointers to the OpenCL implementations of the codelet.
  1338. It must be terminated by a NULL value.
  1339. The functions prototype must be:
  1340. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  1341. If the @code{where} field is set, then the @code{opencl_funcs} field
  1342. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  1343. field, it must be non-null otherwise.
  1344. @item @code{unsigned nbuffers}
  1345. Specifies the number of arguments taken by the codelet. These arguments are
  1346. managed by the DSM and are accessed from the @code{void *buffers[]}
  1347. array. The constant argument passed with the @code{cl_arg} field of the
  1348. @code{starpu_task} structure is not counted in this number. This value should
  1349. not be above @code{STARPU_NMAXBUFS}.
  1350. @item @code{enum starpu_access_mode modes[STARPU_NMAXBUFS]}
  1351. Is an array of @code{enum starpu_access_mode}. It describes the
  1352. required access modes to the data neeeded by the codelet (e.g.
  1353. @code{STARPU_RW}). The number of entries in this array must be
  1354. specified in the @code{nbuffers} field (defined above), and should not
  1355. exceed @code{STARPU_NMAXBUFS}.
  1356. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1357. option when configuring StarPU.
  1358. @item @code{struct starpu_perfmodel *model} (optional)
  1359. This is a pointer to the task duration performance model associated to this
  1360. codelet. This optional field is ignored when set to @code{NULL} or
  1361. when its @code{symbol} field is not set.
  1362. @item @code{struct starpu_perfmodel *power_model} (optional)
  1363. This is a pointer to the task power consumption performance model associated
  1364. to this codelet. This optional field is ignored when set to
  1365. @code{NULL} or when its @code{symbol} field is not set.
  1366. In the case of parallel codelets, this has to account for all processing units
  1367. involved in the parallel execution.
  1368. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  1369. Statistics collected at runtime: this is filled by StarPU and should not be
  1370. accessed directly, but for example by calling the
  1371. @code{starpu_display_codelet_stats} function (See
  1372. @ref{starpu_display_codelet_stats} for details).
  1373. @item @code{const char *name} (optional)
  1374. Define the name of the codelet. This can be useful for debugging purposes.
  1375. @end table
  1376. @end deftp
  1377. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  1378. Initialize @var{cl} with default values. Codelets should preferably be
  1379. initialized statically as shown in @ref{Defining a Codelet}. However
  1380. such a initialisation is not always possible, e.g. when using C++.
  1381. @end deftypefun
  1382. @deftp {Data Type} {enum starpu_task_status}
  1383. State of a task, can be either of
  1384. @table @asis
  1385. @item @code{STARPU_TASK_INVALID} The task has just been initialized.
  1386. @item @code{STARPU_TASK_BLOCKED} The task has just been submitted, and its dependencies has not been checked yet.
  1387. @item @code{STARPU_TASK_READY} The task is ready for execution.
  1388. @item @code{STARPU_TASK_RUNNING} The task is running on some worker.
  1389. @item @code{STARPU_TASK_FINISHED} The task is finished executing.
  1390. @item @code{STARPU_TASK_BLOCKED_ON_TAG} The task is waiting for a tag.
  1391. @item @code{STARPU_TASK_BLOCKED_ON_TASK} The task is waiting for a task.
  1392. @item @code{STARPU_TASK_BLOCKED_ON_DATA} The task is waiting for some data.
  1393. @end table
  1394. @end deftp
  1395. @deftp {Data Type} {struct starpu_buffer_descr}
  1396. This type is used to describe a data handle along with an
  1397. access mode.
  1398. @table @asis
  1399. @item @code{starpu_data_handle_t handle} describes a data,
  1400. @item @code{enum starpu_access_mode mode} describes its access mode
  1401. @end table
  1402. @end deftp
  1403. @deftp {Data Type} {struct starpu_task}
  1404. The @code{starpu_task} structure describes a task that can be offloaded on the various
  1405. processing units managed by StarPU. It instantiates a codelet. It can either be
  1406. allocated dynamically with the @code{starpu_task_create} method, or declared
  1407. statically. In the latter case, the programmer has to zero the
  1408. @code{starpu_task} structure and to fill the different fields properly. The
  1409. indicated default values correspond to the configuration of a task allocated
  1410. with @code{starpu_task_create}.
  1411. @table @asis
  1412. @item @code{struct starpu_codelet *cl}
  1413. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1414. describes where the kernel should be executed, and supplies the appropriate
  1415. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1416. such empty tasks can be useful for synchronization purposes.
  1417. @item @code{struct starpu_buffer_descr buffers[STARPU_NMAXBUFS]}
  1418. This field has been made deprecated. One should use instead the
  1419. @code{handles} field to specify the handles to the data accessed by
  1420. the task. The access modes are now defined in the @code{mode} field of
  1421. the @code{struct starpu_codelet cl} field defined above.
  1422. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1423. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1424. to the different pieces of data accessed by the task. The number
  1425. of entries in this array must be specified in the @code{nbuffers} field of the
  1426. @code{struct starpu_codelet} structure, and should not exceed
  1427. @code{STARPU_NMAXBUFS}.
  1428. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1429. option when configuring StarPU.
  1430. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1431. The actual data pointers to the memory node where execution will happen, managed
  1432. by the DSM.
  1433. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1434. This pointer is passed to the codelet through the second argument
  1435. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1436. @item @code{size_t cl_arg_size} (optional)
  1437. For some specific drivers, the @code{cl_arg} pointer cannot not be directly
  1438. given to the driver function. A buffer of size @code{cl_arg_size}
  1439. needs to be allocated on the driver. This buffer is then filled with
  1440. the @code{cl_arg_size} bytes starting at address @code{cl_arg}. In
  1441. this case, the argument given to the codelet is therefore not the
  1442. @code{cl_arg} pointer, but the address of the buffer in local store
  1443. (LS) instead.
  1444. This field is ignored for CPU, CUDA and OpenCL codelets, where the
  1445. @code{cl_arg} pointer is given as such.
  1446. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1447. This is a function pointer of prototype @code{void (*f)(void *)} which
  1448. specifies a possible callback. If this pointer is non-null, the callback
  1449. function is executed @emph{on the host} after the execution of the task. Tasks
  1450. which depend on it might already be executing. The callback is passed the
  1451. value contained in the @code{callback_arg} field. No callback is executed if the
  1452. field is set to @code{NULL}.
  1453. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1454. This is the pointer passed to the callback function. This field is ignored if
  1455. the @code{callback_func} is set to @code{NULL}.
  1456. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1457. If set, this flag indicates that the task should be associated with the tag
  1458. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1459. with the task and to express task dependencies easily.
  1460. @item @code{starpu_tag_t tag_id}
  1461. This fields contains the tag associated to the task if the @code{use_tag} field
  1462. was set, it is ignored otherwise.
  1463. @item @code{unsigned synchronous}
  1464. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1465. returns only when the task has been executed (or if no worker is able to
  1466. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1467. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1468. This field indicates a level of priority for the task. This is an integer value
  1469. that must be set between the return values of the
  1470. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1471. and that of the @code{starpu_sched_get_max_priority} for the most important
  1472. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1473. are provided for convenience and respectively returns value of
  1474. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1475. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1476. order to allow static task initialization. Scheduling strategies that take
  1477. priorities into account can use this parameter to take better scheduling
  1478. decisions, but the scheduling policy may also ignore it.
  1479. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1480. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1481. task to the worker specified by the @code{workerid} field.
  1482. @item @code{unsigned workerid} (optional)
  1483. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1484. which is the identifier of the worker that should process this task (as
  1485. returned by @code{starpu_worker_get_id}). This field is ignored if
  1486. @code{execute_on_a_specific_worker} field is set to 0.
  1487. @item @code{starpu_task_bundle_t bundle} (optional)
  1488. The bundle that includes this task. If no bundle is used, this should be NULL.
  1489. @item @code{int detach} (optional) (default: @code{1})
  1490. If this flag is set, it is not possible to synchronize with the task
  1491. by the means of @code{starpu_task_wait} later on. Internal data structures
  1492. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1493. flag is not set.
  1494. @item @code{int destroy} (optional) (default: @code{0} for starpu_task_init, @code{1} for starpu_task_create)
  1495. If this flag is set, the task structure will automatically be freed, either
  1496. after the execution of the callback if the task is detached, or during
  1497. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1498. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1499. called explicitly. Setting this flag for a statically allocated task structure
  1500. will result in undefined behaviour. The flag is set to 1 when the task is
  1501. created by calling @code{starpu_task_create()}. Note that
  1502. @code{starpu_task_wait_for_all} will not free any task.
  1503. @item @code{int regenerate} (optional)
  1504. If this flag is set, the task will be re-submitted to StarPU once it has been
  1505. executed. This flag must not be set if the destroy flag is set too.
  1506. @item @code{enum starpu_task_status status} (optional)
  1507. Current state of the task.
  1508. @item @code{struct starpu_task_profiling_info *profiling_info} (optional)
  1509. Profiling information for the task.
  1510. @item @code{double predicted} (output field)
  1511. Predicted duration of the task. This field is only set if the scheduling
  1512. strategy used performance models.
  1513. @item @code{double predicted_transfer} (optional)
  1514. Predicted data transfer duration for the task in microseconds. This field is
  1515. only valid if the scheduling strategy uses performance models.
  1516. @item @code{struct starpu_task *prev}
  1517. A pointer to the previous task. This should only be used by StarPU.
  1518. @item @code{struct starpu_task *next}
  1519. A pointer to the next task. This should only be used by StarPU.
  1520. @item @code{unsigned int mf_skip}
  1521. This is only used for tasks that use multiformat handle. This should only be
  1522. used by StarPU.
  1523. @item @code{void *starpu_private}
  1524. This is private to StarPU, do not modify. If the task is allocated by hand
  1525. (without starpu_task_create), this field should be set to NULL.
  1526. @item @code{int magic}
  1527. This field is set when initializing a task. It prevents a task from being
  1528. submitted if it has not been properly initialized.
  1529. @end table
  1530. @end deftp
  1531. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1532. Initialize @var{task} with default values. This function is implicitly
  1533. called by @code{starpu_task_create}. By default, tasks initialized with
  1534. @code{starpu_task_init} must be deinitialized explicitly with
  1535. @code{starpu_task_clean}. Tasks can also be initialized statically,
  1536. using @code{STARPU_TASK_INITIALIZER} defined below.
  1537. @end deftypefun
  1538. @defmac STARPU_TASK_INITIALIZER
  1539. It is possible to initialize statically allocated tasks with this
  1540. value. This is equivalent to initializing a starpu_task structure with
  1541. the @code{starpu_task_init} function defined above.
  1542. @end defmac
  1543. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1544. Allocate a task structure and initialize it with default values. Tasks
  1545. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1546. task is terminated. This means that the task pointer can not be used any more
  1547. once the task is submitted, since it can be executed at any time (unless
  1548. dependencies make it wait) and thus freed at any time.
  1549. If the destroy flag is explicitly unset, the resources used
  1550. by the task have to be freed by calling
  1551. @code{starpu_task_destroy}.
  1552. @end deftypefun
  1553. @deftypefun void starpu_task_clean ({struct starpu_task} *@var{task})
  1554. Release all the structures automatically allocated to execute @var{task}, but
  1555. not the task structure itself and values set by the user remain unchanged.
  1556. It is thus useful for statically allocated tasks for instance.
  1557. It is also useful when the user wants to execute the same operation several
  1558. times with as least overhead as possible.
  1559. It is called automatically by @code{starpu_task_destroy}.
  1560. It has to be called only after explicitly waiting for the task or after
  1561. @code{starpu_shutdown} (waiting for the callback is not enough, since starpu
  1562. still manipulates the task after calling the callback).
  1563. @end deftypefun
  1564. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1565. Free the resource allocated during @code{starpu_task_create} and
  1566. associated with @var{task}. This function is already called automatically
  1567. after the execution of a task when the @code{destroy} flag of the
  1568. @code{starpu_task} structure is set, which is the default for tasks created by
  1569. @code{starpu_task_create}. Calling this function on a statically allocated task
  1570. results in an undefined behaviour.
  1571. @end deftypefun
  1572. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1573. This function blocks until @var{task} has been executed. It is not possible to
  1574. synchronize with a task more than once. It is not possible to wait for
  1575. synchronous or detached tasks.
  1576. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1577. indicates that the specified task was either synchronous or detached.
  1578. @end deftypefun
  1579. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1580. This function submits @var{task} to StarPU. Calling this function does
  1581. not mean that the task will be executed immediately as there can be data or task
  1582. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1583. scheduling this task with respect to such dependencies.
  1584. This function returns immediately if the @code{synchronous} field of the
  1585. @code{starpu_task} structure was set to 0, and block until the termination of
  1586. the task otherwise. It is also possible to synchronize the application with
  1587. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1588. function for instance.
  1589. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1590. means that there is no worker able to process this task (e.g. there is no GPU
  1591. available and this task is only implemented for CUDA devices).
  1592. starpu_task_submit() can be called from anywhere, including codelet
  1593. functions and callbacks, provided that the @code{synchronous} field of the
  1594. @code{starpu_task} structure is left to 0.
  1595. @end deftypefun
  1596. @deftypefun int starpu_task_wait_for_all (void)
  1597. This function blocks until all the tasks that were submitted are terminated. It
  1598. does not destroy these tasks.
  1599. @end deftypefun
  1600. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1601. This function returns the task currently executed by the worker, or
  1602. NULL if it is called either from a thread that is not a task or simply
  1603. because there is no task being executed at the moment.
  1604. @end deftypefun
  1605. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet} *@var{cl})
  1606. @anchor{starpu_display_codelet_stats}
  1607. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1608. @end deftypefun
  1609. @deftypefun int starpu_task_wait_for_no_ready (void)
  1610. This function waits until there is no more ready task.
  1611. @end deftypefun
  1612. @c Callbacks: what can we put in callbacks ?
  1613. @node Explicit Dependencies
  1614. @section Explicit Dependencies
  1615. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1616. Declare task dependencies between a @var{task} and an array of tasks of length
  1617. @var{ndeps}. This function must be called prior to the submission of the task,
  1618. but it may called after the submission or the execution of the tasks in the
  1619. array, provided the tasks are still valid (ie. they were not automatically
  1620. destroyed). Calling this function on a task that was already submitted or with
  1621. an entry of @var{task_array} that is not a valid task anymore results in an
  1622. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1623. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1624. same task, in this case, the dependencies are added. It is possible to have
  1625. redundancy in the task dependencies.
  1626. @end deftypefun
  1627. @deftp {Data Type} {starpu_tag_t}
  1628. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1629. dependencies between tasks by the means of those tags. To do so, fill the
  1630. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1631. be arbitrary) and set the @code{use_tag} field to 1.
  1632. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1633. not be started until the tasks which holds the declared dependency tags are
  1634. completed.
  1635. @end deftp
  1636. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  1637. Specify the dependencies of the task identified by tag @var{id}. The first
  1638. argument specifies the tag which is configured, the second argument gives the
  1639. number of tag(s) on which @var{id} depends. The following arguments are the
  1640. tags which have to be terminated to unlock the task.
  1641. This function must be called before the associated task is submitted to StarPU
  1642. with @code{starpu_task_submit}.
  1643. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  1644. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  1645. typically need to be explicitly casted. Using the
  1646. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  1647. @cartouche
  1648. @smallexample
  1649. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1650. starpu_tag_declare_deps((starpu_tag_t)0x1,
  1651. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  1652. @end smallexample
  1653. @end cartouche
  1654. @end deftypefun
  1655. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  1656. This function is similar to @code{starpu_tag_declare_deps}, except
  1657. that its does not take a variable number of arguments but an array of
  1658. tags of size @var{ndeps}.
  1659. @cartouche
  1660. @smallexample
  1661. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1662. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  1663. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  1664. @end smallexample
  1665. @end cartouche
  1666. @end deftypefun
  1667. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  1668. This function blocks until the task associated to tag @var{id} has been
  1669. executed. This is a blocking call which must therefore not be called within
  1670. tasks or callbacks, but only from the application directly. It is possible to
  1671. synchronize with the same tag multiple times, as long as the
  1672. @code{starpu_tag_remove} function is not called. Note that it is still
  1673. possible to synchronize with a tag associated to a task which @code{starpu_task}
  1674. data structure was freed (e.g. if the @code{destroy} flag of the
  1675. @code{starpu_task} was enabled).
  1676. @end deftypefun
  1677. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  1678. This function is similar to @code{starpu_tag_wait} except that it blocks until
  1679. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  1680. terminated.
  1681. @end deftypefun
  1682. @deftypefun void starpu_tag_restart (starpu_tag_t @var{id})
  1683. This function can be used to clear the "already notified" status
  1684. of a tag which is not associated with a task. Before that, calling
  1685. @code{starpu_tag_notify_from_apps} again will not notify the successors. After
  1686. that, the next call to @code{starpu_tag_notify_from_apps} will notify the
  1687. successors.
  1688. @end deftypefun
  1689. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  1690. This function releases the resources associated to tag @var{id}. It can be
  1691. called once the corresponding task has been executed and when there is
  1692. no other tag that depend on this tag anymore.
  1693. @end deftypefun
  1694. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  1695. This function explicitly unlocks tag @var{id}. It may be useful in the
  1696. case of applications which execute part of their computation outside StarPU
  1697. tasks (e.g. third-party libraries). It is also provided as a
  1698. convenient tool for the programmer, for instance to entirely construct the task
  1699. DAG before actually giving StarPU the opportunity to execute the tasks. When
  1700. called several times on the same tag, notification will be done only on first
  1701. call, thus implementing "OR" dependencies, until the tag is restarted using
  1702. @code{starpu_tag_restart}.
  1703. @end deftypefun
  1704. @node Implicit Data Dependencies
  1705. @section Implicit Data Dependencies
  1706. In this section, we describe how StarPU makes it possible to insert implicit
  1707. task dependencies in order to enforce sequential data consistency. When this
  1708. data consistency is enabled on a specific data handle, any data access will
  1709. appear as sequentially consistent from the application. For instance, if the
  1710. application submits two tasks that access the same piece of data in read-only
  1711. mode, and then a third task that access it in write mode, dependencies will be
  1712. added between the two first tasks and the third one. Implicit data dependencies
  1713. are also inserted in the case of data accesses from the application.
  1714. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  1715. Set the default sequential consistency flag. If a non-zero value is passed, a
  1716. sequential data consistency will be enforced for all handles registered after
  1717. this function call, otherwise it is disabled. By default, StarPU enables
  1718. sequential data consistency. It is also possible to select the data consistency
  1719. mode of a specific data handle with the
  1720. @code{starpu_data_set_sequential_consistency_flag} function.
  1721. @end deftypefun
  1722. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  1723. Return the default sequential consistency flag
  1724. @end deftypefun
  1725. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  1726. Sets the data consistency mode associated to a data handle. The consistency
  1727. mode set using this function has the priority over the default mode which can
  1728. be set with @code{starpu_data_set_default_sequential_consistency_flag}.
  1729. @end deftypefun
  1730. @node Performance Model API
  1731. @section Performance Model API
  1732. @deftp {Data Type} {enum starpu_perf_archtype}
  1733. Enumerates the various types of architectures.
  1734. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  1735. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  1736. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  1737. @table @asis
  1738. @item @code{STARPU_CPU_DEFAULT}
  1739. @item @code{STARPU_CUDA_DEFAULT}
  1740. @item @code{STARPU_OPENCL_DEFAULT}
  1741. @end table
  1742. @end deftp
  1743. @deftp {Data Type} {enum starpu_perfmodel_type}
  1744. The possible values are:
  1745. @table @asis
  1746. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  1747. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  1748. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  1749. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  1750. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  1751. @end table
  1752. @end deftp
  1753. @deftp {Data Type} {struct starpu_perfmodel}
  1754. @anchor{struct starpu_perfmodel}
  1755. contains all information about a performance model. At least the
  1756. @code{type} and @code{symbol} fields have to be filled when defining a
  1757. performance model for a codelet. For compatibility, make sure to initialize the
  1758. whole structure to zero, either by using explicit memset, or by letting the
  1759. compiler implicitly do it in e.g. static storage case.
  1760. If not provided, other fields have to be zero.
  1761. @table @asis
  1762. @item @code{type}
  1763. is the type of performance model @code{enum starpu_perfmodel_type}:
  1764. @code{STARPU_HISTORY_BASED},
  1765. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  1766. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  1767. @code{per_arch} has to be filled with functions which return the cost in
  1768. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  1769. a function that returns the cost in micro-seconds on a CPU, timing on other
  1770. archs will be determined by multiplying by an arch-specific factor.
  1771. @item @code{const char *symbol}
  1772. is the symbol name for the performance model, which will be used as
  1773. file name to store the model. It must be set otherwise the model will
  1774. be ignored.
  1775. @item @code{double (*cost_model)(struct starpu_buffer_descr *)}
  1776. This field is deprecated. Use instead the @code{cost_function} field.
  1777. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  1778. Used by @code{STARPU_COMMON}: takes a task and
  1779. implementation number, and must return a task duration estimation in micro-seconds.
  1780. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  1781. Used by @code{STARPU_HISTORY_BASED} and
  1782. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  1783. implementation number, and returns the size to be used as index for
  1784. history and regression.
  1785. @item @code{struct starpu_perfmodel_per_arch per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  1786. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  1787. starpu_per_arch_perfmodel} structures.
  1788. @item @code{unsigned is_loaded}
  1789. Whether the performance model is already loaded from the disk.
  1790. @item @code{unsigned benchmarking}
  1791. Whether the performance model is still being calibrated.
  1792. @item @code{pthread_rwlock_t model_rwlock}
  1793. Lock to protect concurrency between loading from disk (W), updating the values
  1794. (W), and making a performance estimation (R).
  1795. @end table
  1796. @end deftp
  1797. @deftp {Data Type} {struct starpu_perfmodel_regression_model}
  1798. @table @asis
  1799. @item @code{double sumlny} sum of ln(measured)
  1800. @item @code{double sumlnx} sum of ln(size)
  1801. @item @code{double sumlnx2} sum of ln(size)^2
  1802. @item @code{unsigned long minx} minimum size
  1803. @item @code{unsigned long maxx} maximum size
  1804. @item @code{double sumlnxlny} sum of ln(size)*ln(measured)
  1805. @item @code{double alpha} estimated = alpha * size ^ beta
  1806. @item @code{double beta}
  1807. @item @code{unsigned valid} whether the linear regression model is valid (i.e. enough measures)
  1808. @item @code{double a, b, c} estimaed = a size ^b + c
  1809. @item @code{unsigned nl_valid} whether the non-linear regression model is valid (i.e. enough measures)
  1810. @item @code{unsigned nsample} number of sample values for non-linear regression
  1811. @end table
  1812. @end deftp
  1813. @deftp {Data Type} {struct starpu_perfmodel_per_arch}
  1814. contains information about the performance model of a given arch.
  1815. @table @asis
  1816. @item @code{double (*cost_model)(struct starpu_buffer_descr *t)}
  1817. This field is deprecated. Use instead the @code{cost_function} field.
  1818. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perf_archtype arch, unsigned nimpl)}
  1819. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  1820. target arch and implementation number (as mere conveniency, since the array
  1821. is already indexed by these), and must return a task duration estimation in
  1822. micro-seconds.
  1823. @item @code{size_t (*size_base)(struct starpu_task *, enum
  1824. starpu_perf_archtype arch, unsigned nimpl)}
  1825. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  1826. case it depends on the architecture-specific implementation.
  1827. @item @code{struct starpu_htbl32_node *history}
  1828. The history of performance measurements.
  1829. @item @code{struct starpu_perfmodel_history_list *list}
  1830. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  1831. records all execution history measures.
  1832. @item @code{struct starpu_perfmodel_regression_model regression}
  1833. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  1834. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  1835. regression.
  1836. @end table
  1837. @end deftp
  1838. @deftypefun int starpu_perfmodel_load_symbol ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  1839. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{$STARPU_HOME/.starpu}.
  1840. @end deftypefun
  1841. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  1842. returns the path to the debugging information for the performance model.
  1843. @end deftypefun
  1844. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  1845. returns the architecture name for @var{arch}.
  1846. @end deftypefun
  1847. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  1848. returns the architecture type of a given worker.
  1849. @end deftypefun
  1850. @deftypefun int starpu_perfmodel_list ({FILE *}@var{output})
  1851. prints a list of all performance models on @var{output}.
  1852. @end deftypefun
  1853. @deftypefun void starpu_perfmodel_print ({struct starpu_perfmodel *}@var{model}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl}, {char *}@var{parameter}, {uint32_t *}footprint, {FILE *}@var{output})
  1854. todo
  1855. @end deftypefun
  1856. @deftypefun int starpu_perfmodel_print_all ({struct starpu_perfmodel *}@var{model}, {char *}@var{arch}, @var{char *}parameter, {uint32_t *}@var{footprint}, {FILE *}@var{output})
  1857. todo
  1858. @end deftypefun
  1859. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  1860. prints a matrix of bus bandwidths on @var{f}.
  1861. @end deftypefun
  1862. @deftypefun void starpu_bus_print_affinity ({FILE *}@var{f})
  1863. prints the affinity devices on @var{f}.
  1864. @end deftypefun
  1865. @deftypefun void starpu_topology_print ({FILE *}@var{f})
  1866. prints a description of the topology on @var{f}.
  1867. @end deftypefun
  1868. @deftypefun void starpu_perfmodel_update_history ({struct starpu_perfmodel *}@var{model}, {struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{cpuid}, unsigned @var{nimpl}, double @var{measured});
  1869. This feeds the performance model @var{model} with an explicit measurement
  1870. @var{measured}, in addition to measurements done by StarPU itself. This can be
  1871. useful when the application already has an existing set of measurements done
  1872. in good conditions, that StarPU could benefit from instead of doing on-line
  1873. measurements. And example of use can be see in @ref{Performance model example}.
  1874. @end deftypefun
  1875. @node Profiling API
  1876. @section Profiling API
  1877. @deftypefun int starpu_profiling_status_set (int @var{status})
  1878. Thie function sets the profiling status. Profiling is activated by passing
  1879. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  1880. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  1881. resets all profiling measurements. When profiling is enabled, the
  1882. @code{profiling_info} field of the @code{struct starpu_task} structure points
  1883. to a valid @code{struct starpu_task_profiling_info} structure containing
  1884. information about the execution of the task.
  1885. Negative return values indicate an error, otherwise the previous status is
  1886. returned.
  1887. @end deftypefun
  1888. @deftypefun int starpu_profiling_status_get (void)
  1889. Return the current profiling status or a negative value in case there was an error.
  1890. @end deftypefun
  1891. @deftypefun void starpu_set_profiling_id (int @var{new_id})
  1892. This function sets the ID used for profiling trace filename. It needs to be
  1893. called before starpu_init.
  1894. @end deftypefun
  1895. @deftp {Data Type} {struct starpu_task_profiling_info}
  1896. This structure contains information about the execution of a task. It is
  1897. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  1898. structure if profiling was enabled. The different fields are:
  1899. @table @asis
  1900. @item @code{struct timespec submit_time}
  1901. Date of task submission (relative to the initialization of StarPU).
  1902. @item @code{struct timespec push_start_time}
  1903. Time when the task was submitted to the scheduler.
  1904. @item @code{struct timespec push_end_time}
  1905. Time when the scheduler finished with the task submission.
  1906. @item @code{struct timespec pop_start_time}
  1907. Time when the scheduler started to be requested for a task, and eventually gave
  1908. that task.
  1909. @item @code{struct timespec pop_end_time}
  1910. Time when the scheduler finished providing the task for execution.
  1911. @item @code{struct timespec acquire_data_start_time}
  1912. Time when the worker started fetching input data.
  1913. @item @code{struct timespec acquire_data_end_time}
  1914. Time when the worker finished fetching input data.
  1915. @item @code{struct timespec start_time}
  1916. Date of task execution beginning (relative to the initialization of StarPU).
  1917. @item @code{struct timespec end_time}
  1918. Date of task execution termination (relative to the initialization of StarPU).
  1919. @item @code{struct timespec release_data_start_time}
  1920. Time when the worker started releasing data.
  1921. @item @code{struct timespec release_data_end_time}
  1922. Time when the worker finished releasing data.
  1923. @item @code{struct timespec callback_start_time}
  1924. Time when the worker started the application callback for the task.
  1925. @item @code{struct timespec callback_end_time}
  1926. Time when the worker finished the application callback for the task.
  1927. @item @code{workerid}
  1928. Identifier of the worker which has executed the task.
  1929. @item @code{uint64_t used_cycles}
  1930. Number of cycles used by the task, only available in the MoviSim
  1931. @item @code{uint64_t stall_cycles}
  1932. Number of cycles stalled within the task, only available in the MoviSim
  1933. @item @code{double power_consumed}
  1934. Power consumed by the task, only available in the MoviSim
  1935. @end table
  1936. @end deftp
  1937. @deftp {Data Type} {struct starpu_worker_profiling_info}
  1938. This structure contains the profiling information associated to a
  1939. worker. The different fields are:
  1940. @table @asis
  1941. @item @code{struct timespec start_time}
  1942. Starting date for the reported profiling measurements.
  1943. @item @code{struct timespec total_time}
  1944. Duration of the profiling measurement interval.
  1945. @item @code{struct timespec executing_time}
  1946. Time spent by the worker to execute tasks during the profiling measurement interval.
  1947. @item @code{struct timespec sleeping_time}
  1948. Time spent idling by the worker during the profiling measurement interval.
  1949. @item @code{int executed_tasks}
  1950. Number of tasks executed by the worker during the profiling measurement interval.
  1951. @item @code{uint64_t used_cycles}
  1952. Number of cycles used by the worker, only available in the MoviSim
  1953. @item @code{uint64_t stall_cycles}
  1954. Number of cycles stalled within the worker, only available in the MoviSim
  1955. @item @code{double power_consumed}
  1956. Power consumed by the worker, only available in the MoviSim
  1957. @end table
  1958. @end deftp
  1959. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  1960. Get the profiling info associated to the worker identified by @var{workerid},
  1961. and reset the profiling measurements. If the @var{worker_info} argument is
  1962. NULL, only reset the counters associated to worker @var{workerid}.
  1963. Upon successful completion, this function returns 0. Otherwise, a negative
  1964. value is returned.
  1965. @end deftypefun
  1966. @deftp {Data Type} {struct starpu_bus_profiling_info}
  1967. The different fields are:
  1968. @table @asis
  1969. @item @code{struct timespec start_time}
  1970. Time of bus profiling startup.
  1971. @item @code{struct timespec total_time}
  1972. Total time of bus profiling.
  1973. @item @code{int long long transferred_bytes}
  1974. Number of bytes transferred during profiling.
  1975. @item @code{int transfer_count}
  1976. Number of transfers during profiling.
  1977. @end table
  1978. @end deftp
  1979. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_bus_profiling_info *}@var{bus_info})
  1980. Get the profiling info associated to the worker designated by @var{workerid},
  1981. and reset the profiling measurements. If worker_info is NULL, only reset the
  1982. counters.
  1983. @end deftypefun
  1984. @deftypefun int starpu_bus_get_count (void)
  1985. Return the number of buses in the machine.
  1986. @end deftypefun
  1987. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  1988. Return the identifier of the bus between @var{src} and @var{dst}
  1989. @end deftypefun
  1990. @deftypefun int starpu_bus_get_src (int @var{busid})
  1991. Return the source point of bus @var{busid}
  1992. @end deftypefun
  1993. @deftypefun int starpu_bus_get_dst (int @var{busid})
  1994. Return the destination point of bus @var{busid}
  1995. @end deftypefun
  1996. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  1997. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  1998. @end deftypefun
  1999. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  2000. Converts the given timespec @var{ts} into microseconds.
  2001. @end deftypefun
  2002. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  2003. Displays statistics about the bus on stderr. if the environment
  2004. variable @code{STARPU_BUS_STATS} is defined. The function is called
  2005. automatically by @code{starpu_shutdown()}.
  2006. @end deftypefun
  2007. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  2008. Displays statistics about the workers on stderr if the environment
  2009. variable @code{STARPU_WORKER_STATS} is defined. The function is called
  2010. automatically by @code{starpu_shutdown()}.
  2011. @end deftypefun
  2012. @deftypefun void starpu_memory_display_stats ()
  2013. Display statistics about the current data handles registered within
  2014. StarPU. StarPU must have been configured with the option
  2015. @code{----enable-memory-stats} (@pxref{Memory feedback}).
  2016. @end deftypefun
  2017. @node CUDA extensions
  2018. @section CUDA extensions
  2019. @defmac STARPU_USE_CUDA
  2020. This macro is defined when StarPU has been installed with CUDA
  2021. support. It should be used in your code to detect the availability of
  2022. CUDA as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2023. @end defmac
  2024. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  2025. This function gets the current worker's CUDA stream.
  2026. StarPU provides a stream for every CUDA device controlled by StarPU. This
  2027. function is only provided for convenience so that programmers can easily use
  2028. asynchronous operations within codelets without having to create a stream by
  2029. hand. Note that the application is not forced to use the stream provided by
  2030. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  2031. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  2032. the likelihood of having all transfers overlapped.
  2033. @end deftypefun
  2034. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  2035. This function returns a pointer to device properties for worker @var{workerid}
  2036. (assumed to be a CUDA worker).
  2037. @end deftypefun
  2038. @deftypefun size_t starpu_cuda_get_global_mem_size (unsigned @var{devid})
  2039. Return the size of the global memory of CUDA device @var{devid}.
  2040. @end deftypefun
  2041. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  2042. Report a CUDA error.
  2043. @end deftypefun
  2044. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  2045. Calls starpu_cuda_report_error, passing the current function, file and line
  2046. position.
  2047. @end defmac
  2048. @deftypefun int starpu_cuda_copy_async_sync ({void *}@var{src_ptr}, unsigned @var{src_node}, {void *}@var{dst_ptr}, unsigned @var{dst_node}, size_t @var{ssize}, cudaStream_t @var{stream}, {enum cudaMemcpyKind} @var{kind})
  2049. Copy @var{ssize} bytes from the pointer @var{src_ptr} on
  2050. @var{src_node} to the pointer @var{dst_ptr} on @var{dst_node}.
  2051. The function first tries to copy the data asynchronous (unless
  2052. @var{stream} is @code{NULL}. If the asynchronous copy fails or if
  2053. @var{stream} is @code{NULL}, it copies the data synchronously.
  2054. The function returns @code{-EAGAIN} if the asynchronous copy was
  2055. successfull. It returns 0 if the synchronous copy was successful, or
  2056. fails otherwise.
  2057. @end deftypefun
  2058. @deftypefun void starpu_cuda_set_device (unsigned @var{devid})
  2059. Calls @code{cudaSetDevice(devid)} or @code{cudaGLSetGLDevice(devid)}, according to
  2060. whether @code{devid} is among the @code{cuda_opengl_interoperability} field of
  2061. the @code{starpu_conf} structure.
  2062. @end deftypefun
  2063. @deftypefun void starpu_helper_cublas_init (void)
  2064. This function initializes CUBLAS on every CUDA device.
  2065. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  2066. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  2067. controlled by StarPU. This call blocks until CUBLAS has been properly
  2068. initialized on every device.
  2069. @end deftypefun
  2070. @deftypefun void starpu_helper_cublas_shutdown (void)
  2071. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  2072. @end deftypefun
  2073. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  2074. Report a cublas error.
  2075. @end deftypefun
  2076. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  2077. Calls starpu_cublas_report_error, passing the current function, file and line
  2078. position.
  2079. @end defmac
  2080. @node OpenCL extensions
  2081. @section OpenCL extensions
  2082. @menu
  2083. * Writing OpenCL kernels:: Writing OpenCL kernels
  2084. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  2085. * Loading OpenCL kernels:: Loading OpenCL kernels
  2086. * OpenCL statistics:: Collecting statistics from OpenCL
  2087. * OpenCL utilities:: Utilities for OpenCL
  2088. @end menu
  2089. @defmac STARPU_USE_OPENCL
  2090. This macro is defined when StarPU has been installed with OpenCL
  2091. support. It should be used in your code to detect the availability of
  2092. OpenCL as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2093. @end defmac
  2094. @node Writing OpenCL kernels
  2095. @subsection Writing OpenCL kernels
  2096. @deftypefun size_t starpu_opencl_get_global_mem_size (int @var{devid})
  2097. Return the size of global device memory in bytes.
  2098. @end deftypefun
  2099. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  2100. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  2101. @end deftypefun
  2102. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  2103. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  2104. @end deftypefun
  2105. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  2106. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  2107. @end deftypefun
  2108. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  2109. Return the context of the current worker.
  2110. @end deftypefun
  2111. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  2112. Return the computation kernel command queue of the current worker.
  2113. @end deftypefun
  2114. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  2115. Sets the arguments of a given kernel. The list of arguments must be given as
  2116. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  2117. The last argument must be 0. Returns the number of arguments that were
  2118. successfully set. In case of failure, returns the id of the argument
  2119. that could not be set and @var{err} is set to the error returned by
  2120. OpenCL. Otherwise, returns the number of arguments that were set.
  2121. @cartouche
  2122. @smallexample
  2123. int n;
  2124. cl_int err;
  2125. cl_kernel kernel;
  2126. n = starpu_opencl_set_kernel_args(&err, 2, &kernel,
  2127. sizeof(foo), &foo,
  2128. sizeof(bar), &bar,
  2129. 0);
  2130. if (n != 2)
  2131. fprintf(stderr, "Error : %d\n", err);
  2132. @end smallexample
  2133. @end cartouche
  2134. @end deftypefun
  2135. @node Compiling OpenCL kernels
  2136. @subsection Compiling OpenCL kernels
  2137. Source codes for OpenCL kernels can be stored in a file or in a
  2138. string. StarPU provides functions to build the program executable for
  2139. each available OpenCL device as a @code{cl_program} object. This
  2140. program executable can then be loaded within a specific queue as
  2141. explained in the next section. These are only helpers, Applications
  2142. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  2143. use (e.g. different programs on the different OpenCL devices, for
  2144. relocation purpose for instance).
  2145. @deftp {Data Type} {struct starpu_opencl_program}
  2146. Stores the OpenCL programs as compiled for the different OpenCL
  2147. devices. The different fields are:
  2148. @table @asis
  2149. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  2150. Stores each program for each OpenCL device.
  2151. @end table
  2152. @end deftp
  2153. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2154. @anchor{starpu_opencl_load_opencl_from_file}
  2155. This function compiles an OpenCL source code stored in a file.
  2156. @end deftypefun
  2157. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2158. This function compiles an OpenCL source code stored in a string.
  2159. @end deftypefun
  2160. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  2161. This function unloads an OpenCL compiled code.
  2162. @end deftypefun
  2163. @deftypefun void starpu_opencl_load_program_source ({const char *}@var{source_file_name}, char *@var{located_file_name}, char *@var{located_dir_name}, char *@var{opencl_program_source})
  2164. @anchor{starpu_opencl_load_program_source}
  2165. Store the contents of the file @var{source_file_name} in the buffer
  2166. @var{opencl_program_source}. The file @var{source_file_name} can be
  2167. located in the current directory, or in the directory specified by the
  2168. environment variable @code{STARPU_OPENCL_PROGRAM_DIR} (@pxref{STARPU_OPENCL_PROGRAM_DIR}), or in the
  2169. directory @code{share/starpu/opencl} of the installation directory of
  2170. StarPU, or in the source directory of StarPU.
  2171. When the file is found, @code{located_file_name} is the full name of
  2172. the file as it has been located on the system, @code{located_dir_name}
  2173. the directory where it has been located. Otherwise, they are both set
  2174. to the empty string.
  2175. @end deftypefun
  2176. @deftypefun int starpu_opencl_compile_opencl_from_file ({const char *}@var{source_file_name}, {const char *} @var{build_options})
  2177. Compile the OpenCL kernel stored in the file @code{source_file_name}
  2178. with the given options @code{build_options} and stores the result in
  2179. the directory @code{$STARPU_HOME/.starpu/opencl} with the same
  2180. filename as @code{source_file_name}. The compilation is done for every
  2181. OpenCL device, and the filename is suffixed with the vendor id and the
  2182. device id of the OpenCL device.
  2183. @end deftypefun
  2184. @deftypefun int starpu_opencl_compile_opencl_from_string ({const char *}@var{opencl_program_source}, {const char *}@var{file_name}, {const char* }@var{build_options})
  2185. Compile the OpenCL kernel in the string @code{opencl_program_source}
  2186. with the given options @code{build_options} and stores the result in
  2187. the directory @code{$STARPU_HOME/.starpu/opencl}
  2188. with the filename
  2189. @code{file_name}. The compilation is done for every
  2190. OpenCL device, and the filename is suffixed with the vendor id and the
  2191. device id of the OpenCL device.
  2192. @end deftypefun
  2193. @deftypefun int starpu_opencl_load_binary_opencl ({const char *}@var{kernel_id}, {struct starpu_opencl_program *}@var{opencl_programs})
  2194. Compile the binary OpenCL kernel identified with @var{id}. For every
  2195. OpenCL device, the binary OpenCL kernel will be loaded from the file
  2196. @code{$STARPU_HOME/.starpu/opencl/<kernel_id>.<device_type>.vendor_id_<vendor_id>_device_id_<device_id>}.
  2197. @end deftypefun
  2198. @node Loading OpenCL kernels
  2199. @subsection Loading OpenCL kernels
  2200. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  2201. Create a kernel @var{kernel} for device @var{devid}, on its computation command
  2202. queue returned in @var{queue}, using program @var{opencl_programs} and name
  2203. @var{kernel_name}
  2204. @end deftypefun
  2205. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  2206. Release the given @var{kernel}, to be called after kernel execution.
  2207. @end deftypefun
  2208. @node OpenCL statistics
  2209. @subsection OpenCL statistics
  2210. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  2211. This function allows to collect statistics on a kernel execution.
  2212. After termination of the kernels, the OpenCL codelet should call this function
  2213. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  2214. collect statistics about the kernel execution (used cycles, consumed power).
  2215. @end deftypefun
  2216. @node OpenCL utilities
  2217. @subsection OpenCL utilities
  2218. @deftypefun {const char *} starpu_opencl_error_string (cl_int @var{status})
  2219. Return the error message in English corresponding to @var{status}, an
  2220. OpenCL error code.
  2221. @end deftypefun
  2222. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2223. Given a valid error @var{status}, prints the corresponding error message on
  2224. stdout, along with the given function name @var{func}, the given filename
  2225. @var{file}, the given line number @var{line} and the given message @var{msg}.
  2226. @end deftypefun
  2227. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  2228. Call the function @code{starpu_opencl_display_error} with the given
  2229. error @var{status}, the current function name, current file and line
  2230. number, and a empty message.
  2231. @end defmac
  2232. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2233. Call the function @code{starpu_opencl_display_error} and abort.
  2234. @end deftypefun
  2235. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  2236. Call the function @code{starpu_opencl_report_error} with the given
  2237. error @var{status}, with the current function name, current file and
  2238. line number, and a empty message.
  2239. @end defmac
  2240. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  2241. Call the function @code{starpu_opencl_report_error} with the given
  2242. message and the given error @var{status}, with the current function
  2243. name, current file and line number.
  2244. @end defmac
  2245. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  2246. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  2247. valid combination of cl_mem_flags values.
  2248. @end deftypefun
  2249. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2250. Copy @var{size} bytes from the given @var{ptr} on
  2251. @var{src_node} to the given @var{buffer} on @var{dst_node}.
  2252. @var{offset} is the offset, in bytes, in @var{buffer}.
  2253. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2254. synchronised before returning. If non NULL, @var{event} can be used
  2255. after the call to wait for this particular copy to complete.
  2256. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2257. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  2258. was successful, or to 0 if event was NULL.
  2259. @end deftypefun
  2260. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2261. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  2262. @var{src_node} to the given @var{ptr} on @var{dst_node}.
  2263. @var{offset} is the offset, in bytes, in @var{buffer}.
  2264. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2265. synchronised before returning. If non NULL, @var{event} can be used
  2266. after the call to wait for this particular copy to complete.
  2267. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2268. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  2269. was successful, or to 0 if event was NULL.
  2270. @end deftypefun
  2271. @node Miscellaneous helpers
  2272. @section Miscellaneous helpers
  2273. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  2274. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  2275. The @var{asynchronous} parameter indicates whether the function should
  2276. block or not. In the case of an asynchronous call, it is possible to
  2277. synchronize with the termination of this operation either by the means of
  2278. implicit dependencies (if enabled) or by calling
  2279. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  2280. this callback function is executed after the handle has been copied, and it is
  2281. given the @var{callback_arg} pointer as argument.
  2282. @end deftypefun
  2283. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  2284. This function executes the given function on a subset of workers.
  2285. When calling this method, the offloaded function specified by the first argument is
  2286. executed by every StarPU worker that may execute the function.
  2287. The second argument is passed to the offloaded function.
  2288. The last argument specifies on which types of processing units the function
  2289. should be executed. Similarly to the @var{where} field of the
  2290. @code{struct starpu_codelet} structure, it is possible to specify that the function
  2291. should be executed on every CUDA device and every CPU by passing
  2292. @code{STARPU_CPU|STARPU_CUDA}.
  2293. This function blocks until the function has been executed on every appropriate
  2294. processing units, so that it may not be called from a callback function for
  2295. instance.
  2296. @end deftypefun