cholesky_implicit.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009, 2010, 2011 Université de Bordeaux 1
  4. * Copyright (C) 2010 Mehdi Juhoor <mjuhoor@gmail.com>
  5. * Copyright (C) 2010, 2011 Centre National de la Recherche Scientifique
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. #include "cholesky.h"
  19. #include "../sched_ctx_utils/sched_ctx_utils.h"
  20. /*
  21. * Create the codelets
  22. */
  23. static starpu_codelet cl11 =
  24. {
  25. .where = STARPU_CPU|STARPU_CUDA,
  26. .type = STARPU_SEQ,
  27. .cpu_func = chol_cpu_codelet_update_u11,
  28. #ifdef STARPU_USE_CUDA
  29. .cuda_func = chol_cublas_codelet_update_u11,
  30. #endif
  31. .nbuffers = 1,
  32. .model = &chol_model_11
  33. };
  34. static starpu_codelet cl21 =
  35. {
  36. .where = STARPU_CPU|STARPU_CUDA,
  37. .type = STARPU_SEQ,
  38. .cpu_func = chol_cpu_codelet_update_u21,
  39. #ifdef STARPU_USE_CUDA
  40. .cuda_func = chol_cublas_codelet_update_u21,
  41. #endif
  42. .nbuffers = 2,
  43. .model = &chol_model_21
  44. };
  45. static starpu_codelet cl22 =
  46. {
  47. .where = STARPU_CPU|STARPU_CUDA,
  48. .type = STARPU_SEQ,
  49. .max_parallelism = INT_MAX,
  50. .cpu_func = chol_cpu_codelet_update_u22,
  51. #ifdef STARPU_USE_CUDA
  52. .cuda_func = chol_cublas_codelet_update_u22,
  53. #endif
  54. .nbuffers = 3,
  55. .model = &chol_model_22
  56. };
  57. /*
  58. * code to bootstrap the factorization
  59. * and construct the DAG
  60. */
  61. static void callback_turn_spmd_on(void *arg __attribute__ ((unused)))
  62. {
  63. cl22.type = STARPU_SPMD;
  64. }
  65. static void _cholesky(starpu_data_handle dataA, unsigned nblocks)
  66. {
  67. struct timeval start;
  68. struct timeval end;
  69. unsigned i,j,k;
  70. int prio_level = noprio?STARPU_DEFAULT_PRIO:STARPU_MAX_PRIO;
  71. gettimeofday(&start, NULL);
  72. /* create all the DAG nodes */
  73. for (k = 0; k < nblocks; k++)
  74. {
  75. starpu_data_handle sdatakk = starpu_data_get_sub_data(dataA, 2, k, k);
  76. starpu_insert_task(&cl11,
  77. STARPU_PRIORITY, prio_level,
  78. STARPU_RW, sdatakk,
  79. STARPU_CALLBACK, (k == 3*nblocks/4)?callback_turn_spmd_on:NULL,
  80. 0);
  81. for (j = k+1; j<nblocks; j++)
  82. {
  83. starpu_data_handle sdatakj = starpu_data_get_sub_data(dataA, 2, k, j);
  84. starpu_insert_task(&cl21,
  85. STARPU_PRIORITY, (j == k+1)?prio_level:STARPU_DEFAULT_PRIO,
  86. STARPU_R, sdatakk,
  87. STARPU_RW, sdatakj,
  88. 0);
  89. for (i = k+1; i<nblocks; i++)
  90. {
  91. if (i <= j)
  92. {
  93. starpu_data_handle sdataki = starpu_data_get_sub_data(dataA, 2, k, i);
  94. starpu_data_handle sdataij = starpu_data_get_sub_data(dataA, 2, i, j);
  95. starpu_insert_task(&cl22,
  96. STARPU_PRIORITY, ((i == k+1) && (j == k+1))?prio_level:STARPU_DEFAULT_PRIO,
  97. STARPU_R, sdataki,
  98. STARPU_R, sdatakj,
  99. STARPU_RW, sdataij,
  100. 0);
  101. }
  102. }
  103. }
  104. }
  105. starpu_task_wait_for_all();
  106. starpu_data_unpartition(dataA, 0);
  107. gettimeofday(&end, NULL);
  108. double timing = (double)((end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec));
  109. unsigned long n = starpu_matrix_get_nx(dataA);
  110. double flop = (1.0f*n*n*n)/3.0f;
  111. if(with_ctxs || with_noctxs || chole1 || chole2)
  112. update_sched_ctx_timing_results((flop/timing/1000.0f), (timing/1000000.0f));
  113. else
  114. {
  115. FPRINTF(stderr, "Computation took (in ms)\n");
  116. FPRINTF(stdout, "%2.2f\n", timing/1000);
  117. FPRINTF(stderr, "Synthetic GFlops : %2.2f\n", (flop/timing/1000.0f));
  118. }
  119. }
  120. static void cholesky(float *matA, unsigned size, unsigned ld, unsigned nblocks)
  121. {
  122. starpu_data_handle dataA;
  123. /* monitor and partition the A matrix into blocks :
  124. * one block is now determined by 2 unsigned (i,j) */
  125. starpu_matrix_data_register(&dataA, 0, (uintptr_t)matA, ld, size, size, sizeof(float));
  126. struct starpu_data_filter f = {
  127. .filter_func = starpu_vertical_block_filter_func,
  128. .nchildren = nblocks
  129. };
  130. struct starpu_data_filter f2 = {
  131. .filter_func = starpu_block_filter_func,
  132. .nchildren = nblocks
  133. };
  134. starpu_data_map_filters(dataA, 2, &f, &f2);
  135. _cholesky(dataA, nblocks);
  136. }
  137. static void execute_cholesky(unsigned size, unsigned nblocks)
  138. {
  139. float *mat;
  140. starpu_malloc((void **)&mat, (size_t)size*size*sizeof(float));
  141. unsigned i,j;
  142. for (i = 0; i < size; i++)
  143. {
  144. for (j = 0; j < size; j++)
  145. {
  146. mat[j +i*size] = (1.0f/(1.0f+i+j)) + ((i == j)?1.0f*size:0.0f);
  147. /* mat[j +i*size] = ((i == j)?1.0f*size:0.0f); */
  148. }
  149. }
  150. /* #define PRINT_OUTPUT */
  151. #ifdef PRINT_OUTPUT
  152. FPRINTF(stdout, "Input :\n");
  153. for (j = 0; j < size; j++)
  154. {
  155. for (i = 0; i < size; i++)
  156. {
  157. if (i <= j) {
  158. FPRINTF(stdout, "%2.2f\t", mat[j +i*size]);
  159. }
  160. else {
  161. FPRINTF(stdout, ".\t");
  162. }
  163. }
  164. FPRINTF(stdout, "\n");
  165. }
  166. #endif
  167. cholesky(mat, size, size, nblocks);
  168. #ifdef PRINT_OUTPUT
  169. FPRINTF(stdout, "Results :\n");
  170. for (j = 0; j < size; j++)
  171. {
  172. for (i = 0; i < size; i++)
  173. {
  174. if (i <= j) {
  175. FPRINTF(stdout, "%2.2f\t", mat[j +i*size]);
  176. }
  177. else {
  178. FPRINTF(stdout, ".\t");
  179. mat[j+i*size] = 0.0f; /* debug */
  180. }
  181. }
  182. FPRINTF(stdout, "\n");
  183. }
  184. #endif
  185. if (check)
  186. {
  187. FPRINTF(stderr, "compute explicit LLt ...\n");
  188. for (j = 0; j < size; j++)
  189. {
  190. for (i = 0; i < size; i++)
  191. {
  192. if (i > j) {
  193. mat[j+i*size] = 0.0f; /* debug */
  194. }
  195. }
  196. }
  197. float *test_mat = malloc(size*size*sizeof(float));
  198. STARPU_ASSERT(test_mat);
  199. SSYRK("L", "N", size, size, 1.0f,
  200. mat, size, 0.0f, test_mat, size);
  201. FPRINTF(stderr, "comparing results ...\n");
  202. #ifdef PRINT_OUTPUT
  203. for (j = 0; j < size; j++)
  204. {
  205. for (i = 0; i < size; i++)
  206. {
  207. if (i <= j) {
  208. FPRINTF(stdout, "%2.2f\t", test_mat[j +i*size]);
  209. }
  210. else {
  211. FPRINTF(stdout, ".\t");
  212. }
  213. }
  214. FPRINTF(stdout, "\n");
  215. }
  216. #endif
  217. for (j = 0; j < size; j++)
  218. {
  219. for (i = 0; i < size; i++)
  220. {
  221. if (i <= j) {
  222. float orig = (1.0f/(1.0f+i+j)) + ((i == j)?1.0f*size:0.0f);
  223. float err = abs(test_mat[j +i*size] - orig);
  224. if (err > 0.00001) {
  225. FPRINTF(stderr, "Error[%u, %u] --> %2.2f != %2.2f (err %2.2f)\n", i, j, test_mat[j +i*size], orig, err);
  226. assert(0);
  227. }
  228. }
  229. }
  230. }
  231. }
  232. }
  233. int main(int argc, char **argv)
  234. {
  235. /* create a simple definite positive symetric matrix example
  236. *
  237. * Hilbert matrix : h(i,j) = 1/(i+j+1)
  238. * */
  239. parse_args(argc, argv);
  240. if(with_ctxs || with_noctxs || chole1 || chole2)
  241. parse_args_ctx(argc, argv);
  242. starpu_init(NULL);
  243. starpu_helper_cublas_init();
  244. if(with_ctxs)
  245. {
  246. construct_contexts(execute_cholesky);
  247. start_2benchs(execute_cholesky);
  248. }
  249. else if(with_noctxs)
  250. start_2benchs(execute_cholesky);
  251. else if(chole1)
  252. start_1stbench(execute_cholesky);
  253. else if(chole2)
  254. start_2ndbench(execute_cholesky);
  255. else
  256. execute_cholesky(size, nblocks);
  257. starpu_helper_cublas_shutdown();
  258. starpu_shutdown();
  259. return 0;
  260. }