starpu.texi 181 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @include version.texi
  7. @setchapternewpage odd
  8. @dircategory Development
  9. @direntry
  10. * StarPU: (starpu). StarPU Handbook
  11. @end direntry
  12. @titlepage
  13. @title StarPU Handbook
  14. @subtitle for StarPU @value{VERSION}
  15. @page
  16. @vskip 0pt plus 1fill
  17. @comment For the @value{version-GCC} Version*
  18. @end titlepage
  19. @c @summarycontents
  20. @contents
  21. @page
  22. @node Top
  23. @top Preface
  24. @cindex Preface
  25. This manual documents the usage of StarPU version @value{VERSION}. It
  26. was last updated on @value{UPDATED}.
  27. @comment
  28. @comment When you add a new menu item, please keep the right hand
  29. @comment aligned to the same column. Do not use tabs. This provides
  30. @comment better formatting.
  31. @comment
  32. @menu
  33. * Introduction:: A basic introduction to using StarPU
  34. * Installing StarPU:: How to configure, build and install StarPU
  35. * Using StarPU:: How to run StarPU application
  36. * Basic Examples:: Basic examples of the use of StarPU
  37. * Performance optimization:: How to optimize performance with StarPU
  38. * Performance feedback:: Performance debugging tools
  39. * StarPU MPI support:: How to combine StarPU with MPI
  40. * Configuring StarPU:: How to configure StarPU
  41. * StarPU API:: The API to use StarPU
  42. * Advanced Topics:: Advanced use of StarPU
  43. * Full source code for the 'Scaling a Vector' example::
  44. * Function Index:: Index of C functions.
  45. @end menu
  46. @c ---------------------------------------------------------------------
  47. @c Introduction to StarPU
  48. @c ---------------------------------------------------------------------
  49. @node Introduction
  50. @chapter Introduction to StarPU
  51. @menu
  52. * Motivation:: Why StarPU ?
  53. * StarPU in a Nutshell:: The Fundamentals of StarPU
  54. @end menu
  55. @node Motivation
  56. @section Motivation
  57. @c complex machines with heterogeneous cores/devices
  58. The use of specialized hardware such as accelerators or coprocessors offers an
  59. interesting approach to overcome the physical limits encountered by processor
  60. architects. As a result, many machines are now equipped with one or several
  61. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  62. efforts have been devoted to offload computation onto such accelerators, very
  63. little attention as been paid to portability concerns on the one hand, and to the
  64. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  65. StarPU is a runtime system that offers support for heterogeneous multicore
  66. architectures, it not only offers a unified view of the computational resources
  67. (i.e. CPUs and accelerators at the same time), but it also takes care of
  68. efficiently mapping and executing tasks onto an heterogeneous machine while
  69. transparently handling low-level issues such as data transfers in a portable
  70. fashion.
  71. @c this leads to a complicated distributed memory design
  72. @c which is not (easily) manageable by hand
  73. @c added value/benefits of StarPU
  74. @c - portability
  75. @c - scheduling, perf. portability
  76. @node StarPU in a Nutshell
  77. @section StarPU in a Nutshell
  78. @menu
  79. * Codelet and Tasks::
  80. * StarPU Data Management Library::
  81. * Glossary::
  82. * Research Papers::
  83. @end menu
  84. From a programming point of view, StarPU is not a new language but a library
  85. that executes tasks explicitly submitted by the application. The data that a
  86. task manipulates are automatically transferred onto the accelerator so that the
  87. programmer does not have to take care of complex data movements. StarPU also
  88. takes particular care of scheduling those tasks efficiently and allows
  89. scheduling experts to implement custom scheduling policies in a portable
  90. fashion.
  91. @c explain the notion of codelet and task (i.e. g(A, B)
  92. @node Codelet and Tasks
  93. @subsection Codelet and Tasks
  94. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  95. computational kernel that can possibly be implemented on multiple architectures
  96. such as a CPU, a CUDA device or a Cell's SPU.
  97. @c TODO insert illustration f : f_spu, f_cpu, ...
  98. Another important data structure is the @b{task}. Executing a StarPU task
  99. consists in applying a codelet on a data set, on one of the architectures on
  100. which the codelet is implemented. A task thus describes the codelet that it
  101. uses, but also which data are accessed, and how they are
  102. accessed during the computation (read and/or write).
  103. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  104. operation. The task structure can also specify a @b{callback} function that is
  105. called once StarPU has properly executed the task. It also contains optional
  106. fields that the application may use to give hints to the scheduler (such as
  107. priority levels).
  108. By default, task dependencies are inferred from data dependency (sequential
  109. coherence) by StarPU. The application can however disable sequential coherency
  110. for some data, and dependencies be expressed by hand.
  111. A task may be identified by a unique 64-bit number chosen by the application
  112. which we refer as a @b{tag}.
  113. Task dependencies can be enforced by hand either by the means of callback functions, by
  114. submitting other tasks, or by expressing dependencies
  115. between tags (which can thus correspond to tasks that have not been submitted
  116. yet).
  117. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  118. @c DSM
  119. @node StarPU Data Management Library
  120. @subsection StarPU Data Management Library
  121. Because StarPU schedules tasks at runtime, data transfers have to be
  122. done automatically and ``just-in-time'' between processing units,
  123. relieving the application programmer from explicit data transfers.
  124. Moreover, to avoid unnecessary transfers, StarPU keeps data
  125. where it was last needed, even if was modified there, and it
  126. allows multiple copies of the same data to reside at the same time on
  127. several processing units as long as it is not modified.
  128. @node Glossary
  129. @subsection Glossary
  130. A @b{codelet} records pointers to various implementations of the same
  131. theoretical function.
  132. A @b{memory node} can be either the main RAM or GPU-embedded memory.
  133. A @b{bus} is a link between memory nodes.
  134. A @b{data handle} keeps track of replicates of the same data (@b{registered} by the
  135. application) over various memory nodes. The data management library manages
  136. keeping them coherent.
  137. The @b{home} memory node of a data handle is the memory node from which the data
  138. was registered (usually the main memory node).
  139. A @b{task} represents a scheduled execution of a codelet on some data handles.
  140. A @b{tag} is a rendez-vous point. Tasks typically have their own tag, and can
  141. depend on other tags. The value is chosen by the application.
  142. A @b{worker} execute tasks. There is typically one per CPU computation core and
  143. one per accelerator (for which a whole CPU core is dedicated).
  144. A @b{driver} drives a given kind of workers. There are currently CPU, CUDA,
  145. OpenCL and Gordon drivers. They usually start several workers to actually drive
  146. them.
  147. A @b{performance model} is a (dynamic or static) model of the performance of a
  148. given codelet. Codelets can have execution time performance model as well as
  149. power consumption performance models.
  150. A data @b{interface} describes the layout of the data: for a vector, a pointer
  151. for the start, the number of elements and the size of elements ; for a matrix, a
  152. pointer for the start, the number of elements per row, the offset between rows,
  153. and the size of each element ; etc. To access their data, codelet functions are
  154. given interfaces for the local memory node replicates of the data handles of the
  155. scheduled task.
  156. @b{Partitioning} data means dividing the data of a given data handle (called
  157. @b{father}) into a series of @b{children} data handles which designate various
  158. portions of the former.
  159. A @b{filter} is the function which computes children data handles from a father
  160. data handle, and thus describes how the partitioning should be done (horizontal,
  161. vertical, etc.)
  162. @b{Acquiring} a data handle can be done from the main application, to safely
  163. access the data of a data handle from its home node, without having to
  164. unregister it.
  165. @node Research Papers
  166. @subsection Research Papers
  167. Research papers about StarPU can be found at
  168. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  169. Notably a good overview in the research report
  170. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  171. @c ---------------------------------------------------------------------
  172. @c Installing StarPU
  173. @c ---------------------------------------------------------------------
  174. @node Installing StarPU
  175. @chapter Installing StarPU
  176. @menu
  177. * Downloading StarPU::
  178. * Configuration of StarPU::
  179. * Building and Installing StarPU::
  180. @end menu
  181. StarPU can be built and installed by the standard means of the GNU
  182. autotools. The following chapter is intended to briefly remind how these tools
  183. can be used to install StarPU.
  184. @node Downloading StarPU
  185. @section Downloading StarPU
  186. @menu
  187. * Getting Sources::
  188. * Optional dependencies::
  189. @end menu
  190. @node Getting Sources
  191. @subsection Getting Sources
  192. The simplest way to get StarPU sources is to download the latest official
  193. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  194. or the latest nightly snapshot from
  195. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  196. how to get the very latest version from the subversion repository itself, it
  197. should be needed only if you need the very latest changes (i.e. less than a
  198. day!)
  199. The source code is managed by a Subversion server hosted by the
  200. InriaGforge. To get the source code, you need:
  201. @itemize
  202. @item
  203. To install the client side of the software Subversion if it is
  204. not already available on your system. The software can be obtained from
  205. @indicateurl{http://subversion.tigris.org} . If you are running
  206. on Windows, you will probably prefer to use TortoiseSVN from
  207. @indicateurl{http://tortoisesvn.tigris.org/} .
  208. @item
  209. You can check out the project's SVN repository through anonymous
  210. access. This will provide you with a read access to the
  211. repository.
  212. If you need to have write access on the StarPU project, you can also choose to
  213. become a member of the project @code{starpu}. For this, you first need to get
  214. an account to the gForge server. You can then send a request to join the project
  215. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  216. @item
  217. More information on how to get a gForge account, to become a member of
  218. a project, or on any other related task can be obtained from the
  219. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  220. thing is to upload your public SSH key on the gForge server (see the
  221. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  222. instructions).
  223. @end itemize
  224. You can now check out the latest version from the Subversion server:
  225. @itemize
  226. @item
  227. using the anonymous access via svn:
  228. @example
  229. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  230. @end example
  231. @item
  232. using the anonymous access via https:
  233. @example
  234. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  235. @end example
  236. The password is @code{anonsvn}.
  237. @item
  238. using your gForge account
  239. @example
  240. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  241. @end example
  242. @end itemize
  243. The following step requires the availability of @code{autoconf} and
  244. @code{automake} to generate the @code{./configure} script. This is
  245. done by calling @code{./autogen.sh}. The required version for
  246. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  247. @example
  248. % ./autogen.sh
  249. @end example
  250. If the autotools are not available on your machine or not recent
  251. enough, you can choose to download the latest nightly tarball, which
  252. is provided with a @code{configure} script.
  253. @example
  254. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  255. @end example
  256. @node Optional dependencies
  257. @subsection Optional dependencies
  258. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  259. but strongly recommended. It allows to increase performance, and to
  260. perform some topology aware scheduling.
  261. @code{hwloc} is available in major distributions and for most OSes and can be
  262. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  263. @node Configuration of StarPU
  264. @section Configuration of StarPU
  265. @menu
  266. * Generating Makefiles and configuration scripts::
  267. * Running the configuration::
  268. @end menu
  269. @node Generating Makefiles and configuration scripts
  270. @subsection Generating Makefiles and configuration scripts
  271. This step is not necessary when using the tarball releases of StarPU. If you
  272. are using the source code from the svn repository, you first need to generate
  273. the configure scripts and the Makefiles.
  274. @example
  275. % ./autogen.sh
  276. @end example
  277. @node Running the configuration
  278. @subsection Running the configuration
  279. @example
  280. % ./configure
  281. @end example
  282. Details about options that are useful to give to @code{./configure} are given in
  283. @ref{Compilation configuration}.
  284. @node Building and Installing StarPU
  285. @section Building and Installing StarPU
  286. @menu
  287. * Building::
  288. * Sanity Checks::
  289. * Installing::
  290. @end menu
  291. @node Building
  292. @subsection Building
  293. @example
  294. % make
  295. @end example
  296. @node Sanity Checks
  297. @subsection Sanity Checks
  298. In order to make sure that StarPU is working properly on the system, it is also
  299. possible to run a test suite.
  300. @example
  301. % make check
  302. @end example
  303. @node Installing
  304. @subsection Installing
  305. In order to install StarPU at the location that was specified during
  306. configuration:
  307. @example
  308. % make install
  309. @end example
  310. @c ---------------------------------------------------------------------
  311. @c Using StarPU
  312. @c ---------------------------------------------------------------------
  313. @node Using StarPU
  314. @chapter Using StarPU
  315. @menu
  316. * Setting flags for compiling and linking applications::
  317. * Running a basic StarPU application::
  318. * Kernel threads started by StarPU::
  319. * Using accelerators::
  320. @end menu
  321. @node Setting flags for compiling and linking applications
  322. @section Setting flags for compiling and linking applications
  323. Compiling and linking an application against StarPU may require to use
  324. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  325. To this end, it is possible to use the @code{pkg-config} tool.
  326. If StarPU was not installed at some standard location, the path of StarPU's
  327. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  328. that @code{pkg-config} can find it. For example if StarPU was installed in
  329. @code{$prefix_dir}:
  330. @example
  331. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  332. @end example
  333. The flags required to compile or link against StarPU are then
  334. accessible with the following commands:
  335. @example
  336. % pkg-config --cflags libstarpu # options for the compiler
  337. % pkg-config --libs libstarpu # options for the linker
  338. @end example
  339. @node Running a basic StarPU application
  340. @section Running a basic StarPU application
  341. Basic examples using StarPU are built in the directory
  342. @code{examples/basic_examples/} (and installed in
  343. @code{$prefix_dir/lib/starpu/examples/}). You can for example run the example
  344. @code{vector_scal}.
  345. @example
  346. % ./examples/basic_examples/vector_scal
  347. BEFORE : First element was 1.000000
  348. AFTER First element is 3.140000
  349. %
  350. @end example
  351. When StarPU is used for the first time, the directory
  352. @code{$HOME/.starpu/} is created, performance models will be stored in
  353. that directory.
  354. Please note that buses are benchmarked when StarPU is launched for the
  355. first time. This may take a few minutes, or less if @code{hwloc} is
  356. installed. This step is done only once per user and per machine.
  357. @node Kernel threads started by StarPU
  358. @section Kernel threads started by StarPU
  359. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  360. them per GPU. The application is not supposed to do computations in its own
  361. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  362. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  363. worker).
  364. @node Using accelerators
  365. @section Using accelerators
  366. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  367. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  368. This design choice was necessary as OpenCL and CUDA can not run at the
  369. same time on the same NVIDIA GPU, as there is currently no interoperability
  370. between them.
  371. Details on how to specify devices running OpenCL and the ones running
  372. CUDA are given in @ref{Enabling OpenCL}.
  373. @c ---------------------------------------------------------------------
  374. @c Basic Examples
  375. @c ---------------------------------------------------------------------
  376. @node Basic Examples
  377. @chapter Basic Examples
  378. @menu
  379. * Compiling and linking options::
  380. * Hello World:: Submitting Tasks
  381. * Scaling a Vector:: Manipulating Data
  382. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  383. * Task and Worker Profiling::
  384. * Partitioning Data:: Partitioning Data
  385. * Performance model example::
  386. * Theoretical lower bound on execution time::
  387. * Insert Task Utility::
  388. * More examples:: More examples shipped with StarPU
  389. * Debugging:: When things go wrong.
  390. @end menu
  391. @node Compiling and linking options
  392. @section Compiling and linking options
  393. Let's suppose StarPU has been installed in the directory
  394. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  395. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  396. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  397. libraries at runtime.
  398. @example
  399. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  400. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  401. @end example
  402. The Makefile could for instance contain the following lines to define which
  403. options must be given to the compiler and to the linker:
  404. @cartouche
  405. @example
  406. CFLAGS += $$(pkg-config --cflags libstarpu)
  407. LDFLAGS += $$(pkg-config --libs libstarpu)
  408. @end example
  409. @end cartouche
  410. @node Hello World
  411. @section Hello World
  412. @menu
  413. * Required Headers::
  414. * Defining a Codelet::
  415. * Submitting a Task::
  416. * Execution of Hello World::
  417. @end menu
  418. In this section, we show how to implement a simple program that submits a task to StarPU.
  419. @node Required Headers
  420. @subsection Required Headers
  421. The @code{starpu.h} header should be included in any code using StarPU.
  422. @cartouche
  423. @smallexample
  424. #include <starpu.h>
  425. @end smallexample
  426. @end cartouche
  427. @node Defining a Codelet
  428. @subsection Defining a Codelet
  429. @cartouche
  430. @smallexample
  431. struct params @{
  432. int i;
  433. float f;
  434. @};
  435. void cpu_func(void *buffers[], void *cl_arg)
  436. @{
  437. struct params *params = cl_arg;
  438. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  439. @}
  440. starpu_codelet cl =
  441. @{
  442. .where = STARPU_CPU,
  443. .cpu_func = cpu_func,
  444. .nbuffers = 0
  445. @};
  446. @end smallexample
  447. @end cartouche
  448. A codelet is a structure that represents a computational kernel. Such a codelet
  449. may contain an implementation of the same kernel on different architectures
  450. (e.g. CUDA, Cell's SPU, x86, ...).
  451. The @code{nbuffers} field specifies the number of data buffers that are
  452. manipulated by the codelet: here the codelet does not access or modify any data
  453. that is controlled by our data management library. Note that the argument
  454. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  455. structure) does not count as a buffer since it is not managed by our data
  456. management library, but just contain trivial parameters.
  457. @c TODO need a crossref to the proper description of "where" see bla for more ...
  458. We create a codelet which may only be executed on the CPUs. The @code{where}
  459. field is a bitmask that defines where the codelet may be executed. Here, the
  460. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  461. (@pxref{Codelets and Tasks} for more details on this field).
  462. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  463. which @emph{must} have the following prototype:
  464. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  465. In this example, we can ignore the first argument of this function which gives a
  466. description of the input and output buffers (e.g. the size and the location of
  467. the matrices) since there is none.
  468. The second argument is a pointer to a buffer passed as an
  469. argument to the codelet by the means of the @code{cl_arg} field of the
  470. @code{starpu_task} structure.
  471. @c TODO rewrite so that it is a little clearer ?
  472. Be aware that this may be a pointer to a
  473. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  474. if the codelet modifies this buffer, there is no guarantee that the initial
  475. buffer will be modified as well: this for instance implies that the buffer
  476. cannot be used as a synchronization medium. If synchronization is needed, data
  477. has to be registered to StarPU, see @ref{Scaling a Vector}.
  478. @node Submitting a Task
  479. @subsection Submitting a Task
  480. @cartouche
  481. @smallexample
  482. void callback_func(void *callback_arg)
  483. @{
  484. printf("Callback function (arg %x)\n", callback_arg);
  485. @}
  486. int main(int argc, char **argv)
  487. @{
  488. /* @b{initialize StarPU} */
  489. starpu_init(NULL);
  490. struct starpu_task *task = starpu_task_create();
  491. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  492. struct params params = @{ 1, 2.0f @};
  493. task->cl_arg = &params;
  494. task->cl_arg_size = sizeof(params);
  495. task->callback_func = callback_func;
  496. task->callback_arg = 0x42;
  497. /* @b{starpu_task_submit will be a blocking call} */
  498. task->synchronous = 1;
  499. /* @b{submit the task to StarPU} */
  500. starpu_task_submit(task);
  501. /* @b{terminate StarPU} */
  502. starpu_shutdown();
  503. return 0;
  504. @}
  505. @end smallexample
  506. @end cartouche
  507. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  508. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  509. be submitted after the termination of StarPU by a call to
  510. @code{starpu_shutdown}.
  511. In the example above, a task structure is allocated by a call to
  512. @code{starpu_task_create}. This function only allocates and fills the
  513. corresponding structure with the default settings (@pxref{Codelets and
  514. Tasks, starpu_task_create}), but it does not submit the task to StarPU.
  515. @c not really clear ;)
  516. The @code{cl} field is a pointer to the codelet which the task will
  517. execute: in other words, the codelet structure describes which computational
  518. kernel should be offloaded on the different architectures, and the task
  519. structure is a wrapper containing a codelet and the piece of data on which the
  520. codelet should operate.
  521. The optional @code{cl_arg} field is a pointer to a buffer (of size
  522. @code{cl_arg_size}) with some parameters for the kernel
  523. described by the codelet. For instance, if a codelet implements a computational
  524. kernel that multiplies its input vector by a constant, the constant could be
  525. specified by the means of this buffer, instead of registering it as a StarPU
  526. data. It must however be noted that StarPU avoids making copy whenever possible
  527. and rather passes the pointer as such, so the buffer which is pointed at must
  528. kept allocated until the task terminates, and if several tasks are submitted
  529. with various parameters, each of them must be given a pointer to their own
  530. buffer.
  531. Once a task has been executed, an optional callback function is be called.
  532. While the computational kernel could be offloaded on various architectures, the
  533. callback function is always executed on a CPU. The @code{callback_arg}
  534. pointer is passed as an argument of the callback. The prototype of a callback
  535. function must be:
  536. @code{void (*callback_function)(void *);}
  537. If the @code{synchronous} field is non-zero, task submission will be
  538. synchronous: the @code{starpu_task_submit} function will not return until the
  539. task was executed. Note that the @code{starpu_shutdown} method does not
  540. guarantee that asynchronous tasks have been executed before it returns,
  541. @code{starpu_task_wait_for_all} can be used to that effect, or data can be
  542. unregistered (@code{starpu_data_unregister(vector_handle);}), which will
  543. implicitly wait for all the tasks scheduled to work on it, unless explicitly
  544. disabled thanks to @code{starpu_data_set_default_sequential_consistency_flag} or
  545. @code{starpu_data_set_sequential_consistency_flag}.
  546. @node Execution of Hello World
  547. @subsection Execution of Hello World
  548. @smallexample
  549. % make hello_world
  550. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  551. % ./hello_world
  552. Hello world (params = @{1, 2.000000@} )
  553. Callback function (arg 42)
  554. @end smallexample
  555. @node Scaling a Vector
  556. @section Manipulating Data: Scaling a Vector
  557. The previous example has shown how to submit tasks. In this section,
  558. we show how StarPU tasks can manipulate data. The full source code for
  559. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  560. @menu
  561. * Source code of Vector Scaling::
  562. * Execution of Vector Scaling::
  563. @end menu
  564. @node Source code of Vector Scaling
  565. @subsection Source code of Vector Scaling
  566. Programmers can describe the data layout of their application so that StarPU is
  567. responsible for enforcing data coherency and availability across the machine.
  568. Instead of handling complex (and non-portable) mechanisms to perform data
  569. movements, programmers only declare which piece of data is accessed and/or
  570. modified by a task, and StarPU makes sure that when a computational kernel
  571. starts somewhere (e.g. on a GPU), its data are available locally.
  572. Before submitting those tasks, the programmer first needs to declare the
  573. different pieces of data to StarPU using the @code{starpu_*_data_register}
  574. functions. To ease the development of applications for StarPU, it is possible
  575. to describe multiple types of data layout. A type of data layout is called an
  576. @b{interface}. There are different predefined interfaces available in StarPU:
  577. here we will consider the @b{vector interface}.
  578. The following lines show how to declare an array of @code{NX} elements of type
  579. @code{float} using the vector interface:
  580. @cartouche
  581. @smallexample
  582. float vector[NX];
  583. starpu_data_handle vector_handle;
  584. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  585. sizeof(vector[0]));
  586. @end smallexample
  587. @end cartouche
  588. The first argument, called the @b{data handle}, is an opaque pointer which
  589. designates the array in StarPU. This is also the structure which is used to
  590. describe which data is used by a task. The second argument is the node number
  591. where the data originally resides. Here it is 0 since the @code{vector} array is in
  592. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  593. the number of elements in the vector and the size of each element.
  594. The following shows how to construct a StarPU task that will manipulate the
  595. vector and a constant factor.
  596. @cartouche
  597. @smallexample
  598. float factor = 3.14;
  599. struct starpu_task *task = starpu_task_create();
  600. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  601. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  602. task->buffers[0].mode = STARPU_RW;
  603. task->cl_arg = &factor;
  604. task->cl_arg_size = sizeof(factor);
  605. task->synchronous = 1;
  606. starpu_task_submit(task);
  607. @end smallexample
  608. @end cartouche
  609. Since the factor is a mere constant float value parameter,
  610. it does not need a preliminary registration, and
  611. can just be passed through the @code{cl_arg} pointer like in the previous
  612. example. The vector parameter is described by its handle.
  613. There are two fields in each element of the @code{buffers} array.
  614. @code{handle} is the handle of the data, and @code{mode} specifies how the
  615. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  616. write-only and @code{STARPU_RW} for read and write access).
  617. The definition of the codelet can be written as follows:
  618. @cartouche
  619. @smallexample
  620. void scal_cpu_func(void *buffers[], void *cl_arg)
  621. @{
  622. unsigned i;
  623. float *factor = cl_arg;
  624. /* length of the vector */
  625. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  626. /* CPU copy of the vector pointer */
  627. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  628. for (i = 0; i < n; i++)
  629. val[i] *= *factor;
  630. @}
  631. starpu_codelet cl = @{
  632. .where = STARPU_CPU,
  633. .cpu_func = scal_cpu_func,
  634. .nbuffers = 1
  635. @};
  636. @end smallexample
  637. @end cartouche
  638. The first argument is an array that gives
  639. a description of all the buffers passed in the @code{task->buffers}@ array. The
  640. size of this array is given by the @code{nbuffers} field of the codelet
  641. structure. For the sake of genericity, this array contains pointers to the
  642. different interfaces describing each buffer. In the case of the @b{vector
  643. interface}, the location of the vector (resp. its length) is accessible in the
  644. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  645. read-write fashion, any modification will automatically affect future accesses
  646. to this vector made by other tasks.
  647. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  648. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  649. constant factor from this pointer.
  650. @node Execution of Vector Scaling
  651. @subsection Execution of Vector Scaling
  652. @smallexample
  653. % make vector_scal
  654. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  655. % ./vector_scal
  656. 0.000000 3.000000 6.000000 9.000000 12.000000
  657. @end smallexample
  658. @node Vector Scaling on an Hybrid CPU/GPU Machine
  659. @section Vector Scaling on an Hybrid CPU/GPU Machine
  660. Contrary to the previous examples, the task submitted in this example may not
  661. only be executed by the CPUs, but also by a CUDA device.
  662. @menu
  663. * Definition of the CUDA Kernel::
  664. * Definition of the OpenCL Kernel::
  665. * Definition of the Main Code::
  666. * Execution of Hybrid Vector Scaling::
  667. @end menu
  668. @node Definition of the CUDA Kernel
  669. @subsection Definition of the CUDA Kernel
  670. The CUDA implementation can be written as follows. It needs to be compiled with
  671. a CUDA compiler such as nvcc, the NVIDIA CUDA compiler driver. It must be noted
  672. that the vector pointer returned by STARPU_VECTOR_GET_PTR is here a pointer in GPU
  673. memory, so that it can be passed as such to the @code{vector_mult_cuda} kernel
  674. call.
  675. @cartouche
  676. @smallexample
  677. #include <starpu.h>
  678. static __global__ void vector_mult_cuda(float *val, unsigned n,
  679. float factor)
  680. @{
  681. unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
  682. if (i < n)
  683. val[i] *= factor;
  684. @}
  685. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  686. @{
  687. float *factor = (float *)_args;
  688. /* length of the vector */
  689. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  690. /* CUDA copy of the vector pointer */
  691. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  692. unsigned threads_per_block = 64;
  693. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  694. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  695. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  696. @}
  697. @end smallexample
  698. @end cartouche
  699. @node Definition of the OpenCL Kernel
  700. @subsection Definition of the OpenCL Kernel
  701. The OpenCL implementation can be written as follows. StarPU provides
  702. tools to compile a OpenCL kernel stored in a file.
  703. @cartouche
  704. @smallexample
  705. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  706. @{
  707. const int i = get_global_id(0);
  708. if (i < nx) @{
  709. val[i] *= factor;
  710. @}
  711. @}
  712. @end smallexample
  713. @end cartouche
  714. Similarly to CUDA, the pointer returned by @code{STARPU_VECTOR_GET_PTR} is here
  715. a device pointer, so that it is passed as such to the OpenCL kernel.
  716. @cartouche
  717. @smallexample
  718. #include <starpu.h>
  719. @i{#include <starpu_opencl.h>}
  720. @i{extern struct starpu_opencl_program programs;}
  721. void scal_opencl_func(void *buffers[], void *_args)
  722. @{
  723. float *factor = _args;
  724. @i{ int id, devid, err;}
  725. @i{ cl_kernel kernel;}
  726. @i{ cl_command_queue queue;}
  727. @i{ cl_event event;}
  728. /* length of the vector */
  729. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  730. /* OpenCL copy of the vector pointer */
  731. cl_mem val = (cl_mem) STARPU_VECTOR_GET_PTR(buffers[0]);
  732. @i{ id = starpu_worker_get_id();}
  733. @i{ devid = starpu_worker_get_devid(id);}
  734. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  735. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  736. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  737. @i{ err = clSetKernelArg(kernel, 0, sizeof(val), &val);}
  738. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  739. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  740. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  741. @i{ @{}
  742. @i{ size_t global=1;}
  743. @i{ size_t local=1;}
  744. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  745. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  746. @i{ @}}
  747. @i{ clFinish(queue);}
  748. @i{ starpu_opencl_collect_stats(event);}
  749. @i{ clReleaseEvent(event);}
  750. @i{ starpu_opencl_release_kernel(kernel);}
  751. @}
  752. @end smallexample
  753. @end cartouche
  754. @node Definition of the Main Code
  755. @subsection Definition of the Main Code
  756. The CPU implementation is the same as in the previous section.
  757. Here is the source of the main application. You can notice the value of the
  758. field @code{where} for the codelet. We specify
  759. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  760. can be executed either on a CPU or on a CUDA or an OpenCL device.
  761. @cartouche
  762. @smallexample
  763. #include <starpu.h>
  764. #define NX 2048
  765. extern void scal_cuda_func(void *buffers[], void *_args);
  766. extern void scal_cpu_func(void *buffers[], void *_args);
  767. extern void scal_opencl_func(void *buffers[], void *_args);
  768. /* @b{Definition of the codelet} */
  769. static starpu_codelet cl = @{
  770. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  771. /* @b{on a CUDA device, or on an OpenCL device} */
  772. .cuda_func = scal_cuda_func;
  773. .cpu_func = scal_cpu_func;
  774. .opencl_func = scal_opencl_func;
  775. .nbuffers = 1;
  776. @}
  777. #ifdef STARPU_USE_OPENCL
  778. /* @b{The compiled version of the OpenCL program} */
  779. struct starpu_opencl_program programs;
  780. #endif
  781. int main(int argc, char **argv)
  782. @{
  783. float *vector;
  784. int i, ret;
  785. float factor=3.0;
  786. struct starpu_task *task;
  787. starpu_data_handle vector_handle;
  788. starpu_init(NULL); /* @b{Initialising StarPU} */
  789. #ifdef STARPU_USE_OPENCL
  790. starpu_opencl_load_opencl_from_file(
  791. "examples/basic_examples/vector_scal_opencl_codelet.cl",
  792. &programs, NULL);
  793. #endif
  794. vector = malloc(NX*sizeof(vector[0]));
  795. assert(vector);
  796. for(i=0 ; i<NX ; i++) vector[i] = i;
  797. @end smallexample
  798. @end cartouche
  799. @cartouche
  800. @smallexample
  801. /* @b{Registering data within StarPU} */
  802. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  803. NX, sizeof(vector[0]));
  804. /* @b{Definition of the task} */
  805. task = starpu_task_create();
  806. task->cl = &cl;
  807. task->buffers[0].handle = vector_handle;
  808. task->buffers[0].mode = STARPU_RW;
  809. task->cl_arg = &factor;
  810. task->cl_arg_size = sizeof(factor);
  811. @end smallexample
  812. @end cartouche
  813. @cartouche
  814. @smallexample
  815. /* @b{Submitting the task} */
  816. ret = starpu_task_submit(task);
  817. if (ret == -ENODEV) @{
  818. fprintf(stderr, "No worker may execute this task\n");
  819. return 1;
  820. @}
  821. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  822. /* @b{Waiting for its termination} */
  823. starpu_task_wait_for_all();
  824. /* @b{Update the vector in RAM} */
  825. starpu_data_acquire(vector_handle, STARPU_R);
  826. @end smallexample
  827. @end cartouche
  828. @cartouche
  829. @smallexample
  830. /* @b{Access the data} */
  831. for(i=0 ; i<NX; i++) @{
  832. fprintf(stderr, "%f ", vector[i]);
  833. @}
  834. fprintf(stderr, "\n");
  835. /* @b{Release the RAM view of the data before unregistering it and shutting down StarPU} */
  836. starpu_data_release(vector_handle);
  837. starpu_data_unregister(vector_handle);
  838. starpu_shutdown();
  839. return 0;
  840. @}
  841. @end smallexample
  842. @end cartouche
  843. @node Execution of Hybrid Vector Scaling
  844. @subsection Execution of Hybrid Vector Scaling
  845. The Makefile given at the beginning of the section must be extended to
  846. give the rules to compile the CUDA source code. Note that the source
  847. file of the OpenCL kernel does not need to be compiled now, it will
  848. be compiled at run-time when calling the function
  849. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  850. @cartouche
  851. @smallexample
  852. CFLAGS += $(shell pkg-config --cflags libstarpu)
  853. LDFLAGS += $(shell pkg-config --libs libstarpu)
  854. CC = gcc
  855. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  856. %.o: %.cu
  857. nvcc $(CFLAGS) $< -c $@
  858. clean:
  859. rm -f vector_scal *.o
  860. @end smallexample
  861. @end cartouche
  862. @smallexample
  863. % make
  864. @end smallexample
  865. and to execute it, with the default configuration:
  866. @smallexample
  867. % ./vector_scal
  868. 0.000000 3.000000 6.000000 9.000000 12.000000
  869. @end smallexample
  870. or for example, by disabling CPU devices:
  871. @smallexample
  872. % STARPU_NCPUS=0 ./vector_scal
  873. 0.000000 3.000000 6.000000 9.000000 12.000000
  874. @end smallexample
  875. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  876. see @ref{Using accelerators}):
  877. @smallexample
  878. % STARPU_NCUDA=0 ./vector_scal
  879. 0.000000 3.000000 6.000000 9.000000 12.000000
  880. @end smallexample
  881. @node Task and Worker Profiling
  882. @section Task and Worker Profiling
  883. A full example showing how to use the profiling API is available in
  884. the StarPU sources in the directory @code{examples/profiling/}.
  885. @cartouche
  886. @smallexample
  887. struct starpu_task *task = starpu_task_create();
  888. task->cl = &cl;
  889. task->synchronous = 1;
  890. /* We will destroy the task structure by hand so that we can
  891. * query the profiling info before the task is destroyed. */
  892. task->destroy = 0;
  893. /* Submit and wait for completion (since synchronous was set to 1) */
  894. starpu_task_submit(task);
  895. /* The task is finished, get profiling information */
  896. struct starpu_task_profiling_info *info = task->profiling_info;
  897. /* How much time did it take before the task started ? */
  898. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  899. /* How long was the task execution ? */
  900. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  901. /* We don't need the task structure anymore */
  902. starpu_task_destroy(task);
  903. @end smallexample
  904. @end cartouche
  905. @cartouche
  906. @smallexample
  907. /* Display the occupancy of all workers during the test */
  908. int worker;
  909. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  910. @{
  911. struct starpu_worker_profiling_info worker_info;
  912. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  913. STARPU_ASSERT(!ret);
  914. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  915. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  916. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  917. float executing_ratio = 100.0*executing_time/total_time;
  918. float sleeping_ratio = 100.0*sleeping_time/total_time;
  919. char workername[128];
  920. starpu_worker_get_name(worker, workername, 128);
  921. fprintf(stderr, "Worker %s:\n", workername);
  922. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  923. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  924. executing_ratio);
  925. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  926. sleeping_ratio);
  927. @}
  928. @end smallexample
  929. @end cartouche
  930. @node Partitioning Data
  931. @section Partitioning Data
  932. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  933. @cartouche
  934. @smallexample
  935. int vector[NX];
  936. starpu_data_handle handle;
  937. /* Declare data to StarPU */
  938. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  939. /* Partition the vector in PARTS sub-vectors */
  940. starpu_filter f =
  941. @{
  942. .filter_func = starpu_block_filter_func_vector,
  943. .nchildren = PARTS,
  944. .get_nchildren = NULL,
  945. .get_child_ops = NULL
  946. @};
  947. starpu_data_partition(handle, &f);
  948. @end smallexample
  949. @end cartouche
  950. @cartouche
  951. @smallexample
  952. /* Submit a task on each sub-vector */
  953. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  954. /* Get subdata number i (there is only 1 dimension) */
  955. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  956. struct starpu_task *task = starpu_task_create();
  957. task->buffers[0].handle = sub_handle;
  958. task->buffers[0].mode = STARPU_RW;
  959. task->cl = &cl;
  960. task->synchronous = 1;
  961. task->cl_arg = &factor;
  962. task->cl_arg_size = sizeof(factor);
  963. starpu_task_submit(task);
  964. @}
  965. @end smallexample
  966. @end cartouche
  967. Partitioning can be applied several times, see
  968. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  969. @node Performance model example
  970. @section Performance model example
  971. To achieve good scheduling, StarPU scheduling policies need to be able to
  972. estimate in advance the duration of a task. This is done by giving to codelets a
  973. performance model. There are several kinds of performance models.
  974. @itemize
  975. @item
  976. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  977. see for instance
  978. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  979. @item
  980. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  981. given set of data input/output sizes, the performance will always be about the
  982. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  983. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  984. few different sets of data input/output sizes. StarPU will then keep record of
  985. the average time of previous executions on the various processing units, and use
  986. it as an estimation. History is done per task size, by using a hash of the input
  987. and ouput sizes as an index.
  988. It will also save it in @code{~/.starpu/sampling/codelets}
  989. for further executions, and can be observed by using the
  990. @code{starpu_perfmodel_display} command. The models are indexed by machine name. To share the models between machines (e.g. for a homogeneous cluster), use @code{export STARPU_HOSTNAME=some_global_name}. The following is a small code example.
  991. If e.g. the code is recompiled with other compilation options, or several
  992. variants of the code are used, the symbol string should be changed to reflect
  993. that, in order to recalibrate the model from zero.
  994. @cartouche
  995. @smallexample
  996. static struct starpu_perfmodel_t mult_perf_model = @{
  997. .type = STARPU_HISTORY_BASED,
  998. .symbol = "mult_perf_model"
  999. @};
  1000. starpu_codelet cl = @{
  1001. .where = STARPU_CPU,
  1002. .cpu_func = cpu_mult,
  1003. .nbuffers = 3,
  1004. /* for the scheduling policy to be able to use performance models */
  1005. .model = &mult_perf_model
  1006. @};
  1007. @end smallexample
  1008. @end cartouche
  1009. @item
  1010. Measured at runtime and refined by regression (STARPU_REGRESSION_*_BASED
  1011. model type). This still assumes performance regularity, but can work
  1012. with various data input sizes, by applying regression over observed
  1013. execution times. STARPU_REGRESSION_BASED uses an a*n^b regression
  1014. form, STARPU_NL_REGRESSION_BASED uses an a*n^b+c (more precise than
  1015. STARPU_REGRESSION_BASED, but costs a lot more to compute)
  1016. @item
  1017. Provided explicitly by the application (STARPU_PER_ARCH model type): the
  1018. @code{.per_arch[i].cost_model} fields have to be filled with pointers to
  1019. functions which return the expected duration of the task in micro-seconds, one
  1020. per architecture.
  1021. @end itemize
  1022. How to use schedulers which can benefit from such performance model is explained
  1023. in @ref{Task scheduling policy}.
  1024. The same can be done for task power consumption estimation, by setting the
  1025. @code{power_model} field the same way as the @code{model} field. Note: for
  1026. now, the application has to give to the power consumption performance model
  1027. a name which is different from the execution time performance model.
  1028. @node Theoretical lower bound on execution time
  1029. @section Theoretical lower bound on execution time
  1030. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  1031. bound for the execution time of a whole set of tasks. See for
  1032. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  1033. call @code{starpu_bound_start}, and after complete execution, call
  1034. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  1035. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  1036. problem corresponding to the schedule of your tasks. Run it through
  1037. @code{lp_solve} or any other linear programming solver, and that will give you a
  1038. lower bound for the total execution time of your tasks. If StarPU was compiled
  1039. with the glpk library installed, @code{starpu_bound_compute} can be used to
  1040. solve it immediately and get the optimized minimum. Its @code{integer}
  1041. parameter allows to decide whether integer resolution should be computed
  1042. and returned.
  1043. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  1044. dependencies into account. It must be understood that the linear programming
  1045. problem size is quadratic with the number of tasks and thus the time to solve it
  1046. will be very long, it could be minutes for just a few dozen tasks. You should
  1047. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  1048. problem to MPS format and then use a better solver, @code{glpsol} might be
  1049. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  1050. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  1051. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  1052. of @code{lp_solve}. For instance, we often just use
  1053. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  1054. the @code{-gr} option can also be quite useful.
  1055. Setting @code{deps} to 0 will only take into account the actual computations
  1056. on processing units. It however still properly takes into account the varying
  1057. performances of kernels and processing units, which is quite more accurate than
  1058. just comparing StarPU performances with the fastest of the kernels being used.
  1059. The @code{prio} parameter tells StarPU whether to simulate taking into account
  1060. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  1061. tasks before less prioritized tasks, to check to which extend this results
  1062. to a less optimal solution. This increases even more computation time.
  1063. Note that for simplicity, all this however doesn't take into account data
  1064. transfers, which are assumed to be completely overlapped.
  1065. @node Insert Task Utility
  1066. @section Insert Task Utility
  1067. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  1068. the creation and submission of tasks.
  1069. @deftypefun int starpu_insert_task (starpu_codelet *@var{cl}, ...)
  1070. Create and submit a task corresponding to @var{cl} with the following
  1071. arguments. The argument list must be zero-terminated.
  1072. The arguments following the codelets can be of the following types:
  1073. @itemize
  1074. @item
  1075. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH}, @code{STARPU_REDUX} an access mode followed by a data handle;
  1076. @item
  1077. @code{STARPU_VALUE} followed by a pointer to a constant value and
  1078. the size of the constant;
  1079. @item
  1080. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  1081. @item
  1082. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1083. argument to the callback function;
  1084. @item
  1085. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1086. @end itemize
  1087. Parameters to be passed to the codelet implementation are defined
  1088. through the type @code{STARPU_VALUE}. The function
  1089. @code{starpu_unpack_cl_args} must be called within the codelet
  1090. implementation to retrieve them.
  1091. @end deftypefun
  1092. Here the implementation of the codelet:
  1093. @smallexample
  1094. void func_cpu(void *descr[], void *_args)
  1095. @{
  1096. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1097. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1098. int ifactor;
  1099. float ffactor;
  1100. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1101. *x0 = *x0 * ifactor;
  1102. *x1 = *x1 * ffactor;
  1103. @}
  1104. starpu_codelet mycodelet = @{
  1105. .where = STARPU_CPU,
  1106. .cpu_func = func_cpu,
  1107. .nbuffers = 2
  1108. @};
  1109. @end smallexample
  1110. And the call to the @code{starpu_insert_task} wrapper:
  1111. @smallexample
  1112. starpu_insert_task(&mycodelet,
  1113. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1114. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1115. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1116. 0);
  1117. @end smallexample
  1118. The call to @code{starpu_insert_task} is equivalent to the following
  1119. code:
  1120. @smallexample
  1121. struct starpu_task *task = starpu_task_create();
  1122. task->cl = &mycodelet;
  1123. task->buffers[0].handle = data_handles[0];
  1124. task->buffers[0].mode = STARPU_RW;
  1125. task->buffers[1].handle = data_handles[1];
  1126. task->buffers[1].mode = STARPU_RW;
  1127. char *arg_buffer;
  1128. size_t arg_buffer_size;
  1129. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  1130. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1131. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1132. 0);
  1133. task->cl_arg = arg_buffer;
  1134. task->cl_arg_size = arg_buffer_size;
  1135. int ret = starpu_task_submit(task);
  1136. @end smallexample
  1137. @node Debugging
  1138. @section Debugging
  1139. StarPU provides several tools to help debugging aplications. Execution traces
  1140. can be generated and displayed graphically, see @ref{Generating traces}. Some
  1141. gdb helpers are also provided to show the whole StarPU state:
  1142. @smallexample
  1143. (gdb) source tools/gdbinit
  1144. (gdb) help starpu
  1145. @end smallexample
  1146. @node More examples
  1147. @section More examples
  1148. More examples are available in the StarPU sources in the @code{examples/}
  1149. directory. Simple examples include:
  1150. @table @asis
  1151. @item @code{incrementer/}:
  1152. Trivial incrementation test.
  1153. @item @code{basic_examples/}:
  1154. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1155. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1156. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1157. interface, and an example using the variable data interface.
  1158. @item @code{matvecmult/}:
  1159. OpenCL example from NVidia, adapted to StarPU.
  1160. @item @code{axpy/}:
  1161. AXPY CUBLAS operation adapted to StarPU.
  1162. @item @code{fortran/}:
  1163. Example of Fortran bindings.
  1164. @end table
  1165. More advanced examples include:
  1166. @table @asis
  1167. @item @code{filters/}:
  1168. Examples using filters, as shown in @ref{Partitioning Data}.
  1169. @item @code{lu/}:
  1170. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1171. @item @code{cholesky/}:
  1172. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1173. @end table
  1174. @c ---------------------------------------------------------------------
  1175. @c Performance options
  1176. @c ---------------------------------------------------------------------
  1177. @node Performance optimization
  1178. @chapter How to optimize performance with StarPU
  1179. TODO: improve!
  1180. @menu
  1181. * Data management::
  1182. * Task submission::
  1183. * Task priorities::
  1184. * Task scheduling policy::
  1185. * Performance model calibration::
  1186. * Task distribution vs Data transfer::
  1187. * Data prefetch::
  1188. * Power-based scheduling::
  1189. * Profiling::
  1190. * CUDA-specific optimizations::
  1191. @end menu
  1192. Simply encapsulating application kernels into tasks already permits to
  1193. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1194. few additional changes are needed.
  1195. @node Data management
  1196. @section Data management
  1197. When the application allocates data, whenever possible it should use the
  1198. @code{starpu_malloc} function, which will ask CUDA or
  1199. OpenCL to make the allocation itself and pin the corresponding allocated
  1200. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1201. transfer to overlap with computations.
  1202. By default, StarPU leaves replicates of data wherever they were used, in case they
  1203. will be re-used by other tasks, thus saving the data transfer time. When some
  1204. task modifies some data, all the other replicates are invalidated, and only the
  1205. processing unit which ran that task will have a valid replicate of the data. If the application knows
  1206. that this data will not be re-used by further tasks, it should advise StarPU to
  1207. immediately replicate it to a desired list of memory nodes (given through a
  1208. bitmask). This can be understood like the write-through mode of CPU caches.
  1209. @example
  1210. starpu_data_set_wt_mask(img_handle, 1<<0);
  1211. @end example
  1212. will for instance request to always transfer a replicate into the main memory (node
  1213. 0), as bit 0 of the write-through bitmask is being set.
  1214. @node Task submission
  1215. @section Task submission
  1216. To let StarPU make online optimizations, tasks should be submitted
  1217. asynchronously as much as possible. Ideally, all the tasks should be
  1218. submitted, and mere calls to @code{starpu_task_wait_for_all} or
  1219. @code{starpu_data_unregister} be done to wait for
  1220. termination. StarPU will then be able to rework the whole schedule, overlap
  1221. computation with communication, manage accelerator local memory usage, etc.
  1222. @node Task priorities
  1223. @section Task priorities
  1224. By default, StarPU will consider the tasks in the order they are submitted by
  1225. the application. If the application programmer knows that some tasks should
  1226. be performed in priority (for instance because their output is needed by many
  1227. other tasks and may thus be a bottleneck if not executed early enough), the
  1228. @code{priority} field of the task structure should be set to transmit the
  1229. priority information to StarPU.
  1230. @node Task scheduling policy
  1231. @section Task scheduling policy
  1232. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1233. because it provides correct load balance even if the application codelets do not
  1234. have performance models. If your application codelets have performance models
  1235. (@pxref{Performance model example} for examples showing how to do it),
  1236. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1237. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1238. the list of available schedulers.
  1239. The @b{eager} scheduler uses a central task queue, from which workers draw tasks
  1240. to work on. This however does not permit to prefetch data since the scheduling
  1241. decision is taken late. If a task has a non-0 priority, it is put at the front of the queue.
  1242. The @b{prio} scheduler also uses a central task queue, but sorts tasks by
  1243. priority (between -5 and 5).
  1244. The @b{random} scheduler distributes tasks randomly according to assumed worker
  1245. overall performance.
  1246. The @b{ws} (work stealing) scheduler schedules tasks on the local worker by
  1247. default. When a worker becomes idle, it steals a task from the most loaded
  1248. worker.
  1249. The @b{dm} (deque model) scheduler uses task execution performance models into account to
  1250. perform an HEFT-similar scheduling strategy: it schedules tasks where their
  1251. termination time will be minimal.
  1252. The @b{dmda} (deque model data aware) scheduler is similar to dm, it also takes
  1253. into account data transfer time.
  1254. The @b{dmdar} (deque model data aware ready) scheduler is similar to dmda,
  1255. it also sorts tasks on per-worker queues by number of already-available data
  1256. buffers.
  1257. The @b{dmdas} (deque model data aware sorted) scheduler is similar to dmda, it
  1258. also supports arbitrary priority values.
  1259. The @b{heft} (HEFT) scheduler is similar to dmda, it also supports task bundles.
  1260. The @b{pheft} (parallel HEFT) scheduler is similar to heft, it also supports
  1261. parallel tasks (still experimental).
  1262. The @b{pgreedy} (parallel greedy) scheduler is similar to greedy, it also
  1263. supports parallel tasks (still experimental).
  1264. @node Performance model calibration
  1265. @section Performance model calibration
  1266. Most schedulers are based on an estimation of codelet duration on each kind
  1267. of processing unit. For this to be possible, the application programmer needs
  1268. to configure a performance model for the codelets of the application (see
  1269. @ref{Performance model example} for instance). History-based performance models
  1270. use on-line calibration. StarPU will automatically calibrate codelets
  1271. which have never been calibrated yet, and save the result in
  1272. @code{~/.starpu/sampling/codelets}.
  1273. The models are indexed by machine name. To share the models between machines (e.g. for a homogeneous cluster), use @code{export STARPU_HOSTNAME=some_global_name}. To force continuing calibration, use
  1274. @code{export STARPU_CALIBRATE=1} . This may be necessary if your application
  1275. has not-so-stable performance. Details on the current performance model status
  1276. can be obtained from the @code{starpu_perfmodel_display} command: the @code{-l}
  1277. option lists the available performance models, and the @code{-s} option permits
  1278. to choose the performance model to be displayed. The result looks like:
  1279. @example
  1280. $ starpu_perfmodel_display -s starpu_dlu_lu_model_22
  1281. performance model for cpu
  1282. # hash size mean dev n
  1283. 5c6c3401 1572864 1.216300e+04 2.277778e+03 1240
  1284. @end example
  1285. Which shows that for the LU 22 kernel with a 1.5MiB matrix, the average
  1286. execution time on CPUs was about 12ms, with a 2ms standard deviation, over
  1287. 1240 samples. It is a good idea to check this before doing actual performance
  1288. measurements.
  1289. If a kernel source code was modified (e.g. performance improvement), the
  1290. calibration information is stale and should be dropped, to re-calibrate from
  1291. start. This can be done by using @code{export STARPU_CALIBRATE=2}.
  1292. Note: due to CUDA limitations, to be able to measure kernel duration,
  1293. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1294. disables data transfer / computation overlapping, and should thus not be used
  1295. for eventual benchmarks. Note 2: history-based performance models get calibrated
  1296. only if a performance-model-based scheduler is chosen.
  1297. @node Task distribution vs Data transfer
  1298. @section Task distribution vs Data transfer
  1299. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1300. thus needs to find a balance between both. The target function that the
  1301. @code{dmda} scheduler of StarPU
  1302. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1303. @code{T_execution} is the estimated execution time of the codelet (usually
  1304. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1305. latter is estimated based on bus calibration before execution start,
  1306. i.e. with an idle machine, thus without contention. You can force bus re-calibration by running
  1307. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1308. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance,
  1309. since during real application execution, contention makes transfer times bigger.
  1310. This is of course imprecise, but in practice, a rough estimation already gives
  1311. the good results that a precise estimation would give.
  1312. @node Data prefetch
  1313. @section Data prefetch
  1314. The @code{heft}, @code{dmda} and @code{pheft} scheduling policies perform data prefetch (see @ref{STARPU_PREFETCH}):
  1315. as soon as a scheduling decision is taken for a task, requests are issued to
  1316. transfer its required data to the target processing unit, if needeed, so that
  1317. when the processing unit actually starts the task, its data will hopefully be
  1318. already available and it will not have to wait for the transfer to finish.
  1319. The application may want to perform some manual prefetching, for several reasons
  1320. such as excluding initial data transfers from performance measurements, or
  1321. setting up an initial statically-computed data distribution on the machine
  1322. before submitting tasks, which will thus guide StarPU toward an initial task
  1323. distribution (since StarPU will try to avoid further transfers).
  1324. This can be achieved by giving the @code{starpu_data_prefetch_on_node} function
  1325. the handle and the desired target memory node.
  1326. @node Power-based scheduling
  1327. @section Power-based scheduling
  1328. If the application can provide some power performance model (through
  1329. the @code{power_model} field of the codelet structure), StarPU will
  1330. take it into account when distributing tasks. The target function that
  1331. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1332. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1333. is the estimated task consumption in Joules. To tune this parameter, use
  1334. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1335. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1336. @code{alpha} and @code{beta} to zero permits to only take into account power consumption.
  1337. This is however not sufficient to correctly optimize power: the scheduler would
  1338. simply tend to run all computations on the most energy-conservative processing
  1339. unit. To account for the consumption of the whole machine (including idle
  1340. processing units), the idle power of the machine should be given by setting
  1341. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1342. be obtained from the machine power supplier.
  1343. The power actually consumed by the total execution can be displayed by setting
  1344. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1345. @node Profiling
  1346. @section Profiling
  1347. A quick view of how many tasks each worker has executed can be obtained by setting
  1348. @code{export STARPU_WORKER_STATS=1} This is a convenient way to check that
  1349. execution did happen on accelerators without penalizing performance with
  1350. the profiling overhead.
  1351. A quick view of how much data transfers have been issued can be obtained by setting
  1352. @code{export STARPU_BUS_STATS=1} .
  1353. More detailed profiling information can be enabled by using @code{export STARPU_PROFILING=1} or by
  1354. calling @code{starpu_profiling_status_set} from the source code.
  1355. Statistics on the execution can then be obtained by using @code{export
  1356. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} .
  1357. More details on performance feedback are provided by the next chapter.
  1358. @node CUDA-specific optimizations
  1359. @section CUDA-specific optimizations
  1360. Due to CUDA limitations, StarPU will have a hard time overlapping its own
  1361. communications and the codelet computations if the application does not use a
  1362. dedicated CUDA stream for its computations. StarPU provides one by the use of
  1363. @code{starpu_cuda_get_local_stream()} which should be used by all CUDA codelet
  1364. operations. For instance:
  1365. @example
  1366. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1367. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1368. @end example
  1369. StarPU already does appropriate calls for the CUBLAS library.
  1370. Unfortunately, some CUDA libraries do not have stream variants of
  1371. kernels. That will lower the potential for overlapping.
  1372. @c ---------------------------------------------------------------------
  1373. @c Performance feedback
  1374. @c ---------------------------------------------------------------------
  1375. @node Performance feedback
  1376. @chapter Performance feedback
  1377. @menu
  1378. * On-line:: On-line performance feedback
  1379. * Off-line:: Off-line performance feedback
  1380. * Codelet performance:: Performance of codelets
  1381. @end menu
  1382. @node On-line
  1383. @section On-line performance feedback
  1384. @menu
  1385. * Enabling monitoring:: Enabling on-line performance monitoring
  1386. * Task feedback:: Per-task feedback
  1387. * Codelet feedback:: Per-codelet feedback
  1388. * Worker feedback:: Per-worker feedback
  1389. * Bus feedback:: Bus-related feedback
  1390. @end menu
  1391. @node Enabling monitoring
  1392. @subsection Enabling on-line performance monitoring
  1393. In order to enable online performance monitoring, the application can call
  1394. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1395. detect whether monitoring is already enabled or not by calling
  1396. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1397. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1398. can also be set to 1 to achieve the same effect.
  1399. Likewise, performance monitoring is stopped by calling
  1400. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1401. does not reset the performance counters so that the application may consult
  1402. them later on.
  1403. More details about the performance monitoring API are available in section
  1404. @ref{Profiling API}.
  1405. @node Task feedback
  1406. @subsection Per-task feedback
  1407. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1408. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1409. structure when a task terminates.
  1410. This structure is automatically destroyed when the task structure is destroyed,
  1411. either automatically or by calling @code{starpu_task_destroy}.
  1412. The @code{starpu_task_profiling_info} structure indicates the date when the
  1413. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1414. terminated (@code{end_time}), relative to the initialization of
  1415. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1416. that has executed the task (@code{workerid}).
  1417. These date are stored as @code{timespec} structures which the user may convert
  1418. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1419. function.
  1420. It it worth noting that the application may directly access this structure from
  1421. the callback executed at the end of the task. The @code{starpu_task} structure
  1422. associated to the callback currently being executed is indeed accessible with
  1423. the @code{starpu_get_current_task()} function.
  1424. @node Codelet feedback
  1425. @subsection Per-codelet feedback
  1426. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1427. an array of counters. The i-th entry of the array is incremented every time a
  1428. task implementing the codelet is executed on the i-th worker.
  1429. This array is not reinitialized when profiling is enabled or disabled.
  1430. @node Worker feedback
  1431. @subsection Per-worker feedback
  1432. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1433. function is a @code{starpu_worker_profiling_info} structure that gives
  1434. statistics about the specified worker. This structure specifies when StarPU
  1435. started collecting profiling information for that worker (@code{start_time}),
  1436. the duration of the profiling measurement interval (@code{total_time}), the
  1437. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1438. because there is no task to execute at all (@code{sleeping_time}), and the
  1439. number of tasks that were executed while profiling was enabled.
  1440. These values give an estimation of the proportion of time spent do real work,
  1441. and the time spent either sleeping because there are not enough executable
  1442. tasks or simply wasted in pure StarPU overhead.
  1443. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1444. information associated to a worker.
  1445. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1446. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1447. generate a graphic showing the evolution of these values during the time, for
  1448. the different workers.
  1449. @node Bus feedback
  1450. @subsection Bus-related feedback
  1451. TODO
  1452. @c how to enable/disable performance monitoring
  1453. @c what kind of information do we get ?
  1454. @node Off-line
  1455. @section Off-line performance feedback
  1456. @menu
  1457. * Generating traces:: Generating traces with FxT
  1458. * Gantt diagram:: Creating a Gantt Diagram
  1459. * DAG:: Creating a DAG with graphviz
  1460. * starpu-top:: Monitoring activity
  1461. @end menu
  1462. @node Generating traces
  1463. @subsection Generating traces with FxT
  1464. StarPU can use the FxT library (see
  1465. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1466. with a limited runtime overhead.
  1467. You can either get a tarball:
  1468. @example
  1469. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.2.tar.gz
  1470. @end example
  1471. or use the FxT library from CVS (autotools are required):
  1472. @example
  1473. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1474. % ./bootstrap
  1475. @end example
  1476. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1477. done following the standard procedure:
  1478. @example
  1479. % ./configure --prefix=$FXTDIR
  1480. % make
  1481. % make install
  1482. @end example
  1483. In order to have StarPU to generate traces, StarPU should be configured with
  1484. the @code{--with-fxt} option:
  1485. @example
  1486. $ ./configure --with-fxt=$FXTDIR
  1487. @end example
  1488. Or you can simply point the @code{PKG_CONFIG_PATH} to
  1489. @code{$FXTDIR/lib/pkgconfig} and pass @code{--with-fxt} to @code{./configure}
  1490. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1491. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1492. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1493. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1494. @code{/tmp/} directory by default, or by the directory specified by
  1495. the @code{STARPU_FXT_PREFIX} environment variable.
  1496. @node Gantt diagram
  1497. @subsection Creating a Gantt Diagram
  1498. When the FxT trace file @code{filename} has been generated, it is possible to
  1499. generate a trace in the Paje format by calling:
  1500. @example
  1501. % starpu_fxt_tool -i filename
  1502. @end example
  1503. Or alternatively, setting the @code{STARPU_GENERATE_TRACE} environment variable
  1504. to 1 before application execution will make StarPU do it automatically at
  1505. application shutdown.
  1506. This will create a @code{paje.trace} file in the current directory that can be
  1507. inspected with the ViTE trace visualizing open-source tool. More information
  1508. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1509. possible to open the @code{paje.trace} file with ViTE by using the following
  1510. command:
  1511. @example
  1512. % vite paje.trace
  1513. @end example
  1514. @node DAG
  1515. @subsection Creating a DAG with graphviz
  1516. When the FxT trace file @code{filename} has been generated, it is possible to
  1517. generate a task graph in the DOT format by calling:
  1518. @example
  1519. $ starpu_fxt_tool -i filename
  1520. @end example
  1521. This will create a @code{dag.dot} file in the current directory. This file is a
  1522. task graph described using the DOT language. It is possible to get a
  1523. graphical output of the graph by using the graphviz library:
  1524. @example
  1525. $ dot -Tpdf dag.dot -o output.pdf
  1526. @end example
  1527. @node starpu-top
  1528. @subsection Monitoring activity
  1529. When the FxT trace file @code{filename} has been generated, it is possible to
  1530. generate a activity trace by calling:
  1531. @example
  1532. $ starpu_fxt_tool -i filename
  1533. @end example
  1534. This will create an @code{activity.data} file in the current
  1535. directory. A profile of the application showing the activity of StarPU
  1536. during the execution of the program can be generated:
  1537. @example
  1538. $ starpu_top.sh activity.data
  1539. @end example
  1540. This will create a file named @code{activity.eps} in the current directory.
  1541. This picture is composed of two parts.
  1542. The first part shows the activity of the different workers. The green sections
  1543. indicate which proportion of the time was spent executed kernels on the
  1544. processing unit. The red sections indicate the proportion of time spent in
  1545. StartPU: an important overhead may indicate that the granularity may be too
  1546. low, and that bigger tasks may be appropriate to use the processing unit more
  1547. efficiently. The black sections indicate that the processing unit was blocked
  1548. because there was no task to process: this may indicate a lack of parallelism
  1549. which may be alleviated by creating more tasks when it is possible.
  1550. The second part of the @code{activity.eps} picture is a graph showing the
  1551. evolution of the number of tasks available in the system during the execution.
  1552. Ready tasks are shown in black, and tasks that are submitted but not
  1553. schedulable yet are shown in grey.
  1554. @node Codelet performance
  1555. @section Performance of codelets
  1556. The performance model of codelets can be examined by using the
  1557. @code{starpu_perfmodel_display} tool:
  1558. @example
  1559. $ starpu_perfmodel_display -l
  1560. file: <malloc_pinned.hannibal>
  1561. file: <starpu_slu_lu_model_21.hannibal>
  1562. file: <starpu_slu_lu_model_11.hannibal>
  1563. file: <starpu_slu_lu_model_22.hannibal>
  1564. file: <starpu_slu_lu_model_12.hannibal>
  1565. @end example
  1566. Here, the codelets of the lu example are available. We can examine the
  1567. performance of the 22 kernel:
  1568. @example
  1569. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1570. performance model for cpu
  1571. # hash size mean dev n
  1572. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1573. performance model for cuda_0
  1574. # hash size mean dev n
  1575. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1576. performance model for cuda_1
  1577. # hash size mean dev n
  1578. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1579. performance model for cuda_2
  1580. # hash size mean dev n
  1581. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1582. @end example
  1583. We can see that for the given size, over a sample of a few hundreds of
  1584. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1585. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1586. CPUs.
  1587. @c ---------------------------------------------------------------------
  1588. @c MPI support
  1589. @c ---------------------------------------------------------------------
  1590. @node StarPU MPI support
  1591. @chapter StarPU MPI support
  1592. The integration of MPI transfers within task parallelism is done in a
  1593. very natural way by the means of asynchronous interactions between the
  1594. application and StarPU. This is implemented in a separate libstarpumpi library
  1595. which basically provides "StarPU" equivalents of @code{MPI_*} functions, where
  1596. @code{void *} buffers are replaced with @code{starpu_data_handle}s, and all
  1597. GPU-RAM-NIC transfers are handled efficiently by StarPU-MPI.
  1598. @menu
  1599. * The API::
  1600. * Simple Example::
  1601. * MPI Insert Task Utility::
  1602. * MPI Collective Operations::
  1603. @end menu
  1604. @node The API
  1605. @section The API
  1606. @subsection Initialisation
  1607. @deftypefun int starpu_mpi_initialize (void)
  1608. Initializes the starpumpi library. This must be called between calling
  1609. @code{starpu_init} and other @code{starpu_mpi} functions. This
  1610. function does not call @code{MPI_Init}, it should be called beforehand.
  1611. @end deftypefun
  1612. @deftypefun int starpu_mpi_initialize_extended (int *@var{rank}, int *@var{world_size})
  1613. Initializes the starpumpi library. This must be called between calling
  1614. @code{starpu_init} and other @code{starpu_mpi} functions.
  1615. This function calls @code{MPI_Init}, and therefore should be prefered
  1616. to the previous one for MPI implementations which are not thread-safe.
  1617. Returns the current MPI node rank and world size.
  1618. @end deftypefun
  1619. @deftypefun int starpu_mpi_shutdown (void)
  1620. Cleans the starpumpi library. This must be called between calling
  1621. @code{starpu_mpi} functions and @code{starpu_shutdown}.
  1622. @code{MPI_Finalize} will be called if StarPU-MPI has been initialized
  1623. by calling @code{starpu_mpi_initialize_extended}.
  1624. @end deftypefun
  1625. @subsection Communication
  1626. @deftypefun int starpu_mpi_send (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1627. @end deftypefun
  1628. @deftypefun int starpu_mpi_recv (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, MPI_Status *@var{status})
  1629. @end deftypefun
  1630. @deftypefun int starpu_mpi_isend (starpu_data_handle @var{data_handle}, starpu_mpi_req *@var{req}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1631. @end deftypefun
  1632. @deftypefun int starpu_mpi_irecv (starpu_data_handle @var{data_handle}, starpu_mpi_req *@var{req}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1633. @end deftypefun
  1634. @deftypefun int starpu_mpi_isend_detached (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  1635. @end deftypefun
  1636. @deftypefun int starpu_mpi_irecv_detached (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  1637. @end deftypefun
  1638. @deftypefun int starpu_mpi_wait (starpu_mpi_req *@var{req}, MPI_Status *@var{status})
  1639. @end deftypefun
  1640. @deftypefun int starpu_mpi_test (starpu_mpi_req *@var{req}, int *@var{flag}, MPI_Status *@var{status})
  1641. @end deftypefun
  1642. @deftypefun int starpu_mpi_barrier (MPI_Comm @var{comm})
  1643. @end deftypefun
  1644. @deftypefun int starpu_mpi_isend_detached_unlock_tag (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  1645. When the transfer is completed, the tag is unlocked
  1646. @end deftypefun
  1647. @deftypefun int starpu_mpi_irecv_detached_unlock_tag (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  1648. @end deftypefun
  1649. @deftypefun int starpu_mpi_isend_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle *@var{data_handle}, int *@var{dest}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  1650. Asynchronously send an array of buffers, and unlocks the tag once all
  1651. of them are transmitted.
  1652. @end deftypefun
  1653. @deftypefun int starpu_mpi_irecv_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle *@var{data_handle}, int *@var{source}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  1654. @end deftypefun
  1655. @page
  1656. @node Simple Example
  1657. @section Simple Example
  1658. @cartouche
  1659. @smallexample
  1660. void increment_token(void)
  1661. @{
  1662. struct starpu_task *task = starpu_task_create();
  1663. task->cl = &increment_cl;
  1664. task->buffers[0].handle = token_handle;
  1665. task->buffers[0].mode = STARPU_RW;
  1666. starpu_task_submit(task);
  1667. @}
  1668. @end smallexample
  1669. @end cartouche
  1670. @cartouche
  1671. @smallexample
  1672. int main(int argc, char **argv)
  1673. @{
  1674. int rank, size;
  1675. starpu_init(NULL);
  1676. starpu_mpi_initialize_extended(&rank, &size);
  1677. starpu_vector_data_register(&token_handle, 0, (uintptr_t)&token, 1, sizeof(unsigned));
  1678. unsigned nloops = NITER;
  1679. unsigned loop;
  1680. unsigned last_loop = nloops - 1;
  1681. unsigned last_rank = size - 1;
  1682. @end smallexample
  1683. @end cartouche
  1684. @cartouche
  1685. @smallexample
  1686. for (loop = 0; loop < nloops; loop++) @{
  1687. int tag = loop*size + rank;
  1688. if (loop == 0 && rank == 0)
  1689. @{
  1690. token = 0;
  1691. fprintf(stdout, "Start with token value %d\n", token);
  1692. @}
  1693. else
  1694. @{
  1695. starpu_mpi_irecv_detached(token_handle, (rank+size-1)%size, tag,
  1696. MPI_COMM_WORLD, NULL, NULL);
  1697. @}
  1698. increment_token();
  1699. if (loop == last_loop && rank == last_rank)
  1700. @{
  1701. starpu_data_acquire(token_handle, STARPU_R);
  1702. fprintf(stdout, "Finished : token value %d\n", token);
  1703. starpu_data_release(token_handle);
  1704. @}
  1705. else
  1706. @{
  1707. starpu_mpi_isend_detached(token_handle, (rank+1)%size, tag+1,
  1708. MPI_COMM_WORLD, NULL, NULL);
  1709. @}
  1710. @}
  1711. starpu_task_wait_for_all();
  1712. @end smallexample
  1713. @end cartouche
  1714. @cartouche
  1715. @smallexample
  1716. starpu_mpi_shutdown();
  1717. starpu_shutdown();
  1718. if (rank == last_rank)
  1719. @{
  1720. fprintf(stderr, "[%d] token = %d == %d * %d ?\n", rank, token, nloops, size);
  1721. STARPU_ASSERT(token == nloops*size);
  1722. @}
  1723. @end smallexample
  1724. @end cartouche
  1725. @page
  1726. @node MPI Insert Task Utility
  1727. @section MPI Insert Task Utility
  1728. @deftypefun void starpu_mpi_insert_task (MPI_Comm @var{comm}, starpu_codelet *@var{cl}, ...)
  1729. Create and submit a task corresponding to @var{cl} with the following
  1730. arguments. The argument list must be zero-terminated.
  1731. The arguments following the codelets are the same types as for the
  1732. function @code{starpu_insert_task} defined in @ref{Insert Task
  1733. Utility}. The extra argument @code{STARPU_EXECUTE_ON_NODE} followed by an
  1734. integer allows to specify the node to execute the codelet. It is also
  1735. possible to specify that the node owning a specific data will execute
  1736. the codelet, by using @code{STARPU_EXECUTE_ON_DATA} followed by a data
  1737. handle.
  1738. The algorithm is as follows:
  1739. @enumerate
  1740. @item Find out whether we are to execute the codelet because we own the
  1741. data to be written to. If different tasks own data to be written to,
  1742. the argument @code{STARPU_EXECUTE_ON_NODE} or
  1743. @code{STARPU_EXECUTE_ON_DATA} should be used to specify the executing
  1744. task @code{ET}.
  1745. @item Send and receive data as requested. Tasks owning data which need
  1746. to be read by the executing task @code{ET} are sending them to @code{ET}.
  1747. @item Execute the codelet. This is done by the task selected in the
  1748. 1st step of the algorithm.
  1749. @item In the case when different tasks own data to be written to, send
  1750. W data back to their owners.
  1751. @end enumerate
  1752. The algorithm also includes a cache mechanism that allows not to send
  1753. data twice to the same task, unless the data has been modified.
  1754. @end deftypefun
  1755. @deftypefun void starpu_mpi_get_data_on_node (MPI_Comm @var{comm}, starpu_data_handle @var{data_handle}, int @var{node})
  1756. @end deftypefun
  1757. @page
  1758. Here an example showing how to use @code{starpu_mpi_insert_task}. One
  1759. first needs to define a distribution function which specifies the
  1760. locality of the data. Note that that distribution information needs to
  1761. be given to StarPU by calling @code{starpu_data_set_rank}.
  1762. @cartouche
  1763. @smallexample
  1764. /* Returns the MPI node number where data is */
  1765. int my_distrib(int x, int y, int nb_nodes) @{
  1766. /* Cyclic distrib */
  1767. return ((int)(x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * sqrt(nb_nodes))) % nb_nodes;
  1768. // /* Linear distrib */
  1769. // return x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * X;
  1770. @}
  1771. @end smallexample
  1772. @end cartouche
  1773. Now the data can be registered within StarPU. Data which are not
  1774. owned but will be needed for computations can be registered through
  1775. the lazy allocation mechanism, i.e. with a @code{home_node} set to -1.
  1776. StarPU will automatically allocate the memory when it is used for the
  1777. first time.
  1778. @cartouche
  1779. @smallexample
  1780. unsigned matrix[X][Y];
  1781. starpu_data_handle data_handles[X][Y];
  1782. for(x = 0; x < X; x++) @{
  1783. for (y = 0; y < Y; y++) @{
  1784. int mpi_rank = my_distrib(x, y, size);
  1785. if (mpi_rank == rank)
  1786. /* Owning data */
  1787. starpu_variable_data_register(&data_handles[x][y], 0,
  1788. (uintptr_t)&(matrix[x][y]), sizeof(unsigned));
  1789. else if (rank == mpi_rank+1 || rank == mpi_rank-1)
  1790. /* I don't own that index, but will need it for my computations */
  1791. starpu_variable_data_register(&data_handles[x][y], -1,
  1792. (uintptr_t)NULL, sizeof(unsigned));
  1793. else
  1794. /* I know it's useless to allocate anything for this */
  1795. data_handles[x][y] = NULL;
  1796. if (data_handles[x][y])
  1797. starpu_data_set_rank(data_handles[x][y], mpi_rank);
  1798. @}
  1799. @}
  1800. @end smallexample
  1801. @end cartouche
  1802. Now @code{starpu_mpi_insert_task()} can be called for the different
  1803. steps of the application.
  1804. @cartouche
  1805. @smallexample
  1806. for(loop=0 ; loop<niter; loop++)
  1807. for (x = 1; x < X-1; x++)
  1808. for (y = 1; y < Y-1; y++)
  1809. starpu_mpi_insert_task(MPI_COMM_WORLD, &stencil5_cl,
  1810. STARPU_RW, data_handles[x][y],
  1811. STARPU_R, data_handles[x-1][y],
  1812. STARPU_R, data_handles[x+1][y],
  1813. STARPU_R, data_handles[x][y-1],
  1814. STARPU_R, data_handles[x][y+1],
  1815. 0);
  1816. starpu_task_wait_for_all();
  1817. @end smallexample
  1818. @end cartouche
  1819. @node MPI Collective Operations
  1820. @section MPI Collective Operations
  1821. @deftypefun int starpu_mpi_scatter_detached (starpu_data_handle *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm})
  1822. Scatter data among processes of the communicator based on the ownership of
  1823. the data. For each data of the array @var{data_handles}, the
  1824. process @var{root} sends the data to the process owning this data.
  1825. Processes receiving data must have valid data handles to receive them.
  1826. @end deftypefun
  1827. @deftypefun int starpu_mpi_gather_detached (starpu_data_handle *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm})
  1828. Gather data from the different processes of the communicator onto the
  1829. process @var{root}. Each process owning data handle in the array
  1830. @var{data_handles} will send them to the process @var{root}. The
  1831. process @var{root} must have valid data handles to receive the data.
  1832. @end deftypefun
  1833. @page
  1834. @cartouche
  1835. @smallexample
  1836. if (rank == root)
  1837. @{
  1838. /* Allocate the vector */
  1839. vector = malloc(nblocks * sizeof(float *));
  1840. for(x=0 ; x<nblocks ; x++)
  1841. @{
  1842. starpu_malloc((void **)&vector[x], block_size*sizeof(float));
  1843. @}
  1844. @}
  1845. /* Allocate data handles and register data to StarPU */
  1846. data_handles = malloc(nblocks*sizeof(starpu_data_handle *));
  1847. for(x = 0; x < nblocks ; x++)
  1848. @{
  1849. int mpi_rank = my_distrib(x, nodes);
  1850. if (rank == root) @{
  1851. starpu_vector_data_register(&data_handles[x], 0, (uintptr_t)vector[x],
  1852. blocks_size, sizeof(float));
  1853. @}
  1854. else if ((mpi_rank == rank) || ((rank == mpi_rank+1 || rank == mpi_rank-1))) @{
  1855. /* I own that index, or i will need it for my computations */
  1856. starpu_vector_data_register(&data_handles[x], -1, (uintptr_t)NULL,
  1857. block_size, sizeof(float));
  1858. @}
  1859. else @{
  1860. /* I know it's useless to allocate anything for this */
  1861. data_handles[x] = NULL;
  1862. @}
  1863. if (data_handles[x]) @{
  1864. starpu_data_set_rank(data_handles[x], mpi_rank);
  1865. @}
  1866. @}
  1867. /* Scatter the matrix among the nodes */
  1868. starpu_mpi_scatter_detached(data_handles, nblocks, root, MPI_COMM_WORLD);
  1869. /* Calculation */
  1870. for(x = 0; x < nblocks ; x++) @{
  1871. if (data_handles[x]) @{
  1872. int owner = starpu_data_get_rank(data_handles[x]);
  1873. if (owner == rank) @{
  1874. starpu_insert_task(&cl, STARPU_RW, data_handles[x], 0);
  1875. @}
  1876. @}
  1877. @}
  1878. /* Gather the matrix on main node */
  1879. starpu_mpi_gather_detached(data_handles, nblocks, 0, MPI_COMM_WORLD);
  1880. @end smallexample
  1881. @end cartouche
  1882. @c ---------------------------------------------------------------------
  1883. @c Configuration options
  1884. @c ---------------------------------------------------------------------
  1885. @node Configuring StarPU
  1886. @chapter Configuring StarPU
  1887. @menu
  1888. * Compilation configuration::
  1889. * Execution configuration through environment variables::
  1890. @end menu
  1891. @node Compilation configuration
  1892. @section Compilation configuration
  1893. The following arguments can be given to the @code{configure} script.
  1894. @menu
  1895. * Common configuration::
  1896. * Configuring workers::
  1897. * Advanced configuration::
  1898. @end menu
  1899. @node Common configuration
  1900. @subsection Common configuration
  1901. @menu
  1902. * --enable-debug::
  1903. * --enable-fast::
  1904. * --enable-verbose::
  1905. * --enable-coverage::
  1906. @end menu
  1907. @node --enable-debug
  1908. @subsubsection @code{--enable-debug}
  1909. @table @asis
  1910. @item @emph{Description}:
  1911. Enable debugging messages.
  1912. @end table
  1913. @node --enable-fast
  1914. @subsubsection @code{--enable-fast}
  1915. @table @asis
  1916. @item @emph{Description}:
  1917. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1918. @end table
  1919. @node --enable-verbose
  1920. @subsubsection @code{--enable-verbose}
  1921. @table @asis
  1922. @item @emph{Description}:
  1923. Augment the verbosity of the debugging messages. This can be disabled
  1924. at runtime by setting the environment variable @code{STARPU_SILENT} to
  1925. any value.
  1926. @smallexample
  1927. % STARPU_SILENT=1 ./vector_scal
  1928. @end smallexample
  1929. @end table
  1930. @node --enable-coverage
  1931. @subsubsection @code{--enable-coverage}
  1932. @table @asis
  1933. @item @emph{Description}:
  1934. Enable flags for the @code{gcov} coverage tool.
  1935. @end table
  1936. @node Configuring workers
  1937. @subsection Configuring workers
  1938. @menu
  1939. * --enable-nmaxcpus::
  1940. * --disable-cpu::
  1941. * --enable-maxcudadev::
  1942. * --disable-cuda::
  1943. * --with-cuda-dir::
  1944. * --with-cuda-include-dir::
  1945. * --with-cuda-lib-dir::
  1946. * --enable-maxopencldev::
  1947. * --disable-opencl::
  1948. * --with-opencl-dir::
  1949. * --with-opencl-include-dir::
  1950. * --with-opencl-lib-dir::
  1951. * --enable-gordon::
  1952. * --with-gordon-dir::
  1953. @end menu
  1954. @node --enable-nmaxcpus
  1955. @subsubsection @code{--enable-nmaxcpus=<number>}
  1956. @table @asis
  1957. @item @emph{Description}:
  1958. Defines the maximum number of CPU cores that StarPU will support, then
  1959. available as the @code{STARPU_NMAXCPUS} macro.
  1960. @end table
  1961. @node --disable-cpu
  1962. @subsubsection @code{--disable-cpu}
  1963. @table @asis
  1964. @item @emph{Description}:
  1965. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1966. @end table
  1967. @node --enable-maxcudadev
  1968. @subsubsection @code{--enable-maxcudadev=<number>}
  1969. @table @asis
  1970. @item @emph{Description}:
  1971. Defines the maximum number of CUDA devices that StarPU will support, then
  1972. available as the @code{STARPU_MAXCUDADEVS} macro.
  1973. @end table
  1974. @node --disable-cuda
  1975. @subsubsection @code{--disable-cuda}
  1976. @table @asis
  1977. @item @emph{Description}:
  1978. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1979. @end table
  1980. @node --with-cuda-dir
  1981. @subsubsection @code{--with-cuda-dir=<path>}
  1982. @table @asis
  1983. @item @emph{Description}:
  1984. Specify the directory where CUDA is installed. This directory should notably contain
  1985. @code{include/cuda.h}.
  1986. @end table
  1987. @node --with-cuda-include-dir
  1988. @subsubsection @code{--with-cuda-include-dir=<path>}
  1989. @table @asis
  1990. @item @emph{Description}:
  1991. Specify the directory where CUDA headers are installed. This directory should
  1992. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1993. value given to @code{--with-cuda-dir}.
  1994. @end table
  1995. @node --with-cuda-lib-dir
  1996. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1997. @table @asis
  1998. @item @emph{Description}:
  1999. Specify the directory where the CUDA library is installed. This directory should
  2000. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  2001. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  2002. @end table
  2003. @node --enable-maxopencldev
  2004. @subsubsection @code{--enable-maxopencldev=<number>}
  2005. @table @asis
  2006. @item @emph{Description}:
  2007. Defines the maximum number of OpenCL devices that StarPU will support, then
  2008. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  2009. @end table
  2010. @node --disable-opencl
  2011. @subsubsection @code{--disable-opencl}
  2012. @table @asis
  2013. @item @emph{Description}:
  2014. Disable the use of OpenCL, even if the SDK is detected.
  2015. @end table
  2016. @node --with-opencl-dir
  2017. @subsubsection @code{--with-opencl-dir=<path>}
  2018. @table @asis
  2019. @item @emph{Description}:
  2020. Specify the location of the OpenCL SDK. This directory should notably contain
  2021. @code{include/CL/cl.h} (or @code{include/OpenCL/cl.h} on Mac OS).
  2022. @end table
  2023. @node --with-opencl-include-dir
  2024. @subsubsection @code{--with-opencl-include-dir=<path>}
  2025. @table @asis
  2026. @item @emph{Description}:
  2027. Specify the location of OpenCL headers. This directory should notably contain
  2028. @code{CL/cl.h} (or @code{OpenCL/cl.h} on Mac OS). This defaults to
  2029. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  2030. @end table
  2031. @node --with-opencl-lib-dir
  2032. @subsubsection @code{--with-opencl-lib-dir=<path>}
  2033. @table @asis
  2034. @item @emph{Description}:
  2035. Specify the location of the OpenCL library. This directory should notably
  2036. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  2037. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  2038. @end table
  2039. @node --enable-gordon
  2040. @subsubsection @code{--enable-gordon}
  2041. @table @asis
  2042. @item @emph{Description}:
  2043. Enable the use of the Gordon runtime for Cell SPUs.
  2044. @c TODO: rather default to enabled when detected
  2045. @end table
  2046. @node --with-gordon-dir
  2047. @subsubsection @code{--with-gordon-dir=<path>}
  2048. @table @asis
  2049. @item @emph{Description}:
  2050. Specify the location of the Gordon SDK.
  2051. @end table
  2052. @node Advanced configuration
  2053. @subsection Advanced configuration
  2054. @menu
  2055. * --enable-perf-debug::
  2056. * --enable-model-debug::
  2057. * --enable-stats::
  2058. * --enable-maxbuffers::
  2059. * --enable-allocation-cache::
  2060. * --enable-opengl-render::
  2061. * --enable-blas-lib::
  2062. * --with-magma::
  2063. * --with-fxt::
  2064. * --with-perf-model-dir::
  2065. * --with-mpicc::
  2066. * --with-goto-dir::
  2067. * --with-atlas-dir::
  2068. * --with-mkl-cflags::
  2069. * --with-mkl-ldflags::
  2070. @end menu
  2071. @node --enable-perf-debug
  2072. @subsubsection @code{--enable-perf-debug}
  2073. @table @asis
  2074. @item @emph{Description}:
  2075. Enable performance debugging through gprof.
  2076. @end table
  2077. @node --enable-model-debug
  2078. @subsubsection @code{--enable-model-debug}
  2079. @table @asis
  2080. @item @emph{Description}:
  2081. Enable performance model debugging.
  2082. @end table
  2083. @node --enable-stats
  2084. @subsubsection @code{--enable-stats}
  2085. @table @asis
  2086. @item @emph{Description}:
  2087. Enable statistics.
  2088. @end table
  2089. @node --enable-maxbuffers
  2090. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  2091. @table @asis
  2092. @item @emph{Description}:
  2093. Define the maximum number of buffers that tasks will be able to take
  2094. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  2095. @end table
  2096. @node --enable-allocation-cache
  2097. @subsubsection @code{--enable-allocation-cache}
  2098. @table @asis
  2099. @item @emph{Description}:
  2100. Enable the use of a data allocation cache to avoid the cost of it with
  2101. CUDA. Still experimental.
  2102. @end table
  2103. @node --enable-opengl-render
  2104. @subsubsection @code{--enable-opengl-render}
  2105. @table @asis
  2106. @item @emph{Description}:
  2107. Enable the use of OpenGL for the rendering of some examples.
  2108. @c TODO: rather default to enabled when detected
  2109. @end table
  2110. @node --enable-blas-lib
  2111. @subsubsection @code{--enable-blas-lib=<name>}
  2112. @table @asis
  2113. @item @emph{Description}:
  2114. Specify the blas library to be used by some of the examples. The
  2115. library has to be 'atlas' or 'goto'.
  2116. @end table
  2117. @node --with-magma
  2118. @subsubsection @code{--with-magma=<path>}
  2119. @table @asis
  2120. @item @emph{Description}:
  2121. Specify where magma is installed. This directory should notably contain
  2122. @code{include/magmablas.h}.
  2123. @end table
  2124. @node --with-fxt
  2125. @subsubsection @code{--with-fxt=<path>}
  2126. @table @asis
  2127. @item @emph{Description}:
  2128. Specify the location of FxT (for generating traces and rendering them
  2129. using ViTE). This directory should notably contain
  2130. @code{include/fxt/fxt.h}.
  2131. @c TODO add ref to other section
  2132. @end table
  2133. @node --with-perf-model-dir
  2134. @subsubsection @code{--with-perf-model-dir=<dir>}
  2135. @table @asis
  2136. @item @emph{Description}:
  2137. Specify where performance models should be stored (instead of defaulting to the
  2138. current user's home).
  2139. @end table
  2140. @node --with-mpicc
  2141. @subsubsection @code{--with-mpicc=<path to mpicc>}
  2142. @table @asis
  2143. @item @emph{Description}:
  2144. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  2145. @end table
  2146. @node --with-goto-dir
  2147. @subsubsection @code{--with-goto-dir=<dir>}
  2148. @table @asis
  2149. @item @emph{Description}:
  2150. Specify the location of GotoBLAS.
  2151. @end table
  2152. @node --with-atlas-dir
  2153. @subsubsection @code{--with-atlas-dir=<dir>}
  2154. @table @asis
  2155. @item @emph{Description}:
  2156. Specify the location of ATLAS. This directory should notably contain
  2157. @code{include/cblas.h}.
  2158. @end table
  2159. @node --with-mkl-cflags
  2160. @subsubsection @code{--with-mkl-cflags=<cflags>}
  2161. @table @asis
  2162. @item @emph{Description}:
  2163. Specify the compilation flags for the MKL Library.
  2164. @end table
  2165. @node --with-mkl-ldflags
  2166. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  2167. @table @asis
  2168. @item @emph{Description}:
  2169. Specify the linking flags for the MKL Library. Note that the
  2170. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  2171. website provides a script to determine the linking flags.
  2172. @end table
  2173. @c ---------------------------------------------------------------------
  2174. @c Environment variables
  2175. @c ---------------------------------------------------------------------
  2176. @node Execution configuration through environment variables
  2177. @section Execution configuration through environment variables
  2178. @menu
  2179. * Workers:: Configuring workers
  2180. * Scheduling:: Configuring the Scheduling engine
  2181. * Misc:: Miscellaneous and debug
  2182. @end menu
  2183. Note: the values given in @code{starpu_conf} structure passed when
  2184. calling @code{starpu_init} will override the values of the environment
  2185. variables.
  2186. @node Workers
  2187. @subsection Configuring workers
  2188. @menu
  2189. * STARPU_NCPUS:: Number of CPU workers
  2190. * STARPU_NCUDA:: Number of CUDA workers
  2191. * STARPU_NOPENCL:: Number of OpenCL workers
  2192. * STARPU_NGORDON:: Number of SPU workers (Cell)
  2193. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  2194. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  2195. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  2196. @end menu
  2197. @node STARPU_NCPUS
  2198. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  2199. @table @asis
  2200. @item @emph{Description}:
  2201. Specify the number of CPU workers (thus not including workers dedicated to control acceleratores). Note that by default, StarPU will not allocate
  2202. more CPU workers than there are physical CPUs, and that some CPUs are used to control
  2203. the accelerators.
  2204. @end table
  2205. @node STARPU_NCUDA
  2206. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  2207. @table @asis
  2208. @item @emph{Description}:
  2209. Specify the number of CUDA devices that StarPU can use. If
  2210. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  2211. possible to select which CUDA devices should be used by the means of the
  2212. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  2213. create as many CUDA workers as there are CUDA devices.
  2214. @end table
  2215. @node STARPU_NOPENCL
  2216. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  2217. @table @asis
  2218. @item @emph{Description}:
  2219. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  2220. @end table
  2221. @node STARPU_NGORDON
  2222. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  2223. @table @asis
  2224. @item @emph{Description}:
  2225. Specify the number of SPUs that StarPU can use.
  2226. @end table
  2227. @node STARPU_WORKERS_CPUID
  2228. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  2229. @table @asis
  2230. @item @emph{Description}:
  2231. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  2232. specifies on which logical CPU the different workers should be
  2233. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  2234. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  2235. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  2236. determined by the OS, or provided by the @code{hwloc} library in case it is
  2237. available.
  2238. Note that the first workers correspond to the CUDA workers, then come the
  2239. OpenCL and the SPU, and finally the CPU workers. For example if
  2240. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  2241. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  2242. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  2243. the logical CPUs #1 and #3 will be used by the CPU workers.
  2244. If the number of workers is larger than the array given in
  2245. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  2246. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  2247. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  2248. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  2249. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2250. @end table
  2251. @node STARPU_WORKERS_CUDAID
  2252. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  2253. @table @asis
  2254. @item @emph{Description}:
  2255. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  2256. possible to select which CUDA devices should be used by StarPU. On a machine
  2257. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  2258. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  2259. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  2260. the one reported by CUDA).
  2261. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  2262. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2263. @end table
  2264. @node STARPU_WORKERS_OPENCLID
  2265. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  2266. @table @asis
  2267. @item @emph{Description}:
  2268. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  2269. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  2270. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2271. @end table
  2272. @node Scheduling
  2273. @subsection Configuring the Scheduling engine
  2274. @menu
  2275. * STARPU_SCHED:: Scheduling policy
  2276. * STARPU_CALIBRATE:: Calibrate performance models
  2277. * STARPU_PREFETCH:: Use data prefetch
  2278. * STARPU_SCHED_ALPHA:: Computation factor
  2279. * STARPU_SCHED_BETA:: Communication factor
  2280. @end menu
  2281. @node STARPU_SCHED
  2282. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  2283. @table @asis
  2284. @item @emph{Description}:
  2285. This chooses between the different scheduling policies proposed by StarPU: work
  2286. random, stealing, greedy, with performance models, etc.
  2287. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  2288. @end table
  2289. @node STARPU_CALIBRATE
  2290. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  2291. @table @asis
  2292. @item @emph{Description}:
  2293. If this variable is set to 1, the performance models are calibrated during
  2294. the execution. If it is set to 2, the previous values are dropped to restart
  2295. calibration from scratch. Setting this variable to 0 disable calibration, this
  2296. is the default behaviour.
  2297. Note: this currently only applies to @code{dm}, @code{dmda} and @code{heft} scheduling policies.
  2298. @end table
  2299. @node STARPU_PREFETCH
  2300. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  2301. @table @asis
  2302. @item @emph{Description}:
  2303. This variable indicates whether data prefetching should be enabled (0 means
  2304. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  2305. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  2306. advance, so that data is already present on the GPU when the task starts. As a
  2307. result, computation and data transfers are overlapped.
  2308. Note that prefetching is enabled by default in StarPU.
  2309. @end table
  2310. @node STARPU_SCHED_ALPHA
  2311. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  2312. @table @asis
  2313. @item @emph{Description}:
  2314. To estimate the cost of a task StarPU takes into account the estimated
  2315. computation time (obtained thanks to performance models). The alpha factor is
  2316. the coefficient to be applied to it before adding it to the communication part.
  2317. @end table
  2318. @node STARPU_SCHED_BETA
  2319. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  2320. @table @asis
  2321. @item @emph{Description}:
  2322. To estimate the cost of a task StarPU takes into account the estimated
  2323. data transfer time (obtained thanks to performance models). The beta factor is
  2324. the coefficient to be applied to it before adding it to the computation part.
  2325. @end table
  2326. @node Misc
  2327. @subsection Miscellaneous and debug
  2328. @menu
  2329. * STARPU_SILENT:: Disable verbose mode
  2330. * STARPU_LOGFILENAME:: Select debug file name
  2331. * STARPU_FXT_PREFIX:: FxT trace location
  2332. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  2333. * STARPU_GENERATE_TRACE:: Generate a Paje trace when StarPU is shut down
  2334. @end menu
  2335. @node STARPU_SILENT
  2336. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  2337. @table @asis
  2338. @item @emph{Description}:
  2339. This variable allows to disable verbose mode at runtime when StarPU
  2340. has been configured with the option @code{--enable-verbose}.
  2341. @end table
  2342. @node STARPU_LOGFILENAME
  2343. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  2344. @table @asis
  2345. @item @emph{Description}:
  2346. This variable specifies in which file the debugging output should be saved to.
  2347. @end table
  2348. @node STARPU_FXT_PREFIX
  2349. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  2350. @table @asis
  2351. @item @emph{Description}
  2352. This variable specifies in which directory to save the trace generated if FxT is enabled. It needs to have a trailing '/' character.
  2353. @end table
  2354. @node STARPU_LIMIT_GPU_MEM
  2355. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  2356. @table @asis
  2357. @item @emph{Description}
  2358. This variable specifies the maximum number of megabytes that should be
  2359. available to the application on each GPUs. In case this value is smaller than
  2360. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  2361. on the device. This variable is intended to be used for experimental purposes
  2362. as it emulates devices that have a limited amount of memory.
  2363. @end table
  2364. @node STARPU_GENERATE_TRACE
  2365. @subsubsection @code{STARPU_GENERATE_TRACE} -- Generate a Paje trace when StarPU is shut down
  2366. @table @asis
  2367. @item @emph{Description}
  2368. When set to 1, this variable indicates that StarPU should automatically
  2369. generate a Paje trace when starpu_shutdown is called.
  2370. @end table
  2371. @c ---------------------------------------------------------------------
  2372. @c StarPU API
  2373. @c ---------------------------------------------------------------------
  2374. @node StarPU API
  2375. @chapter StarPU API
  2376. @menu
  2377. * Initialization and Termination:: Initialization and Termination methods
  2378. * Workers' Properties:: Methods to enumerate workers' properties
  2379. * Data Library:: Methods to manipulate data
  2380. * Data Interfaces::
  2381. * Data Partition::
  2382. * Codelets and Tasks:: Methods to construct tasks
  2383. * Explicit Dependencies:: Explicit Dependencies
  2384. * Implicit Data Dependencies:: Implicit Data Dependencies
  2385. * Performance Model API::
  2386. * Profiling API:: Profiling API
  2387. * CUDA extensions:: CUDA extensions
  2388. * OpenCL extensions:: OpenCL extensions
  2389. * Cell extensions:: Cell extensions
  2390. * Miscellaneous helpers::
  2391. @end menu
  2392. @node Initialization and Termination
  2393. @section Initialization and Termination
  2394. @menu
  2395. * starpu_init:: Initialize StarPU
  2396. * struct starpu_conf:: StarPU runtime configuration
  2397. * starpu_conf_init:: Initialize starpu_conf structure
  2398. * starpu_shutdown:: Terminate StarPU
  2399. @end menu
  2400. @node starpu_init
  2401. @subsection @code{starpu_init} -- Initialize StarPU
  2402. @table @asis
  2403. @item @emph{Description}:
  2404. This is StarPU initialization method, which must be called prior to any other
  2405. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  2406. policy, number of cores, ...) by passing a non-null argument. Default
  2407. configuration is used if the passed argument is @code{NULL}.
  2408. @item @emph{Return value}:
  2409. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  2410. indicates that no worker was available (so that StarPU was not initialized).
  2411. @item @emph{Prototype}:
  2412. @code{int starpu_init(struct starpu_conf *conf);}
  2413. @end table
  2414. @node struct starpu_conf
  2415. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  2416. @table @asis
  2417. @item @emph{Description}:
  2418. This structure is passed to the @code{starpu_init} function in order
  2419. to configure StarPU.
  2420. When the default value is used, StarPU automatically selects the number
  2421. of processing units and takes the default scheduling policy. This parameter
  2422. overwrites the equivalent environment variables.
  2423. @item @emph{Fields}:
  2424. @table @asis
  2425. @item @code{sched_policy_name} (default = NULL):
  2426. This is the name of the scheduling policy. This can also be specified with the
  2427. @code{STARPU_SCHED} environment variable.
  2428. @item @code{sched_policy} (default = NULL):
  2429. This is the definition of the scheduling policy. This field is ignored
  2430. if @code{sched_policy_name} is set.
  2431. @item @code{ncpus} (default = -1):
  2432. This is the number of CPU cores that StarPU can use. This can also be
  2433. specified with the @code{STARPU_NCPUS} environment variable.
  2434. @item @code{ncuda} (default = -1):
  2435. This is the number of CUDA devices that StarPU can use. This can also be
  2436. specified with the @code{STARPU_NCUDA} environment variable.
  2437. @item @code{nopencl} (default = -1):
  2438. This is the number of OpenCL devices that StarPU can use. This can also be
  2439. specified with the @code{STARPU_NOPENCL} environment variable.
  2440. @item @code{nspus} (default = -1):
  2441. This is the number of Cell SPUs that StarPU can use. This can also be
  2442. specified with the @code{STARPU_NGORDON} environment variable.
  2443. @item @code{use_explicit_workers_bindid} (default = 0)
  2444. If this flag is set, the @code{workers_bindid} array indicates where the
  2445. different workers are bound, otherwise StarPU automatically selects where to
  2446. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  2447. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  2448. ignored if the @code{use_explicit_workers_bindid} flag is set.
  2449. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  2450. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  2451. where to bind the different workers. The i-th entry of the
  2452. @code{workers_bindid} indicates the logical identifier of the processor which
  2453. should execute the i-th worker. Note that the logical ordering of the CPUs is
  2454. either determined by the OS, or provided by the @code{hwloc} library in case it
  2455. is available.
  2456. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  2457. ignored.
  2458. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  2459. If this flag is set, the CUDA workers will be attached to the CUDA devices
  2460. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  2461. CUDA devices in a round-robin fashion.
  2462. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  2463. ignored.
  2464. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  2465. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  2466. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  2467. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  2468. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  2469. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  2470. OpenCL devices in a round-robin fashion.
  2471. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  2472. @item @code{calibrate} (default = 0):
  2473. If this flag is set, StarPU will calibrate the performance models when
  2474. executing tasks. If this value is equal to -1, the default value is used. The
  2475. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  2476. variable when it is set.
  2477. @end table
  2478. @end table
  2479. @node starpu_conf_init
  2480. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  2481. @table @asis
  2482. This function initializes the @code{starpu_conf} structure passed as argument
  2483. with the default values. In case some configuration parameters are already
  2484. specified through environment variables, @code{starpu_conf_init} initializes
  2485. the fields of the structure according to the environment variables. For
  2486. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2487. @code{.ncuda} field of the structure passed as argument.
  2488. @item @emph{Return value}:
  2489. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2490. indicates that the argument was NULL.
  2491. @item @emph{Prototype}:
  2492. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2493. @end table
  2494. @node starpu_shutdown
  2495. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2496. @deftypefun void starpu_shutdown (void)
  2497. This is StarPU termination method. It must be called at the end of the
  2498. application: statistics and other post-mortem debugging information are not
  2499. guaranteed to be available until this method has been called.
  2500. @end deftypefun
  2501. @node Workers' Properties
  2502. @section Workers' Properties
  2503. @menu
  2504. * starpu_worker_get_count:: Get the number of processing units
  2505. * starpu_worker_get_count_by_type:: Get the number of processing units of a given type
  2506. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2507. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2508. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2509. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2510. * starpu_worker_get_id:: Get the identifier of the current worker
  2511. * starpu_worker_get_ids_by_type:: Get the list of identifiers of workers with a given type
  2512. * starpu_worker_get_devid:: Get the device identifier of a worker
  2513. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2514. * starpu_worker_get_name:: Get the name of a worker
  2515. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2516. @end menu
  2517. @node starpu_worker_get_count
  2518. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2519. @deftypefun unsigned starpu_worker_get_count (void)
  2520. This function returns the number of workers (i.e. processing units executing
  2521. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2522. @end deftypefun
  2523. @node starpu_worker_get_count_by_type
  2524. @subsection @code{starpu_worker_get_count_by_type} -- Get the number of processing units of a given type
  2525. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  2526. Returns the number of workers of the type indicated by the argument. A positive
  2527. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  2528. the type is not valid otherwise.
  2529. @end deftypefun
  2530. @node starpu_cpu_worker_get_count
  2531. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2532. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  2533. This function returns the number of CPUs controlled by StarPU. The returned
  2534. value should be at most @code{STARPU_NMAXCPUS}.
  2535. @end deftypefun
  2536. @node starpu_cuda_worker_get_count
  2537. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2538. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  2539. This function returns the number of CUDA devices controlled by StarPU. The returned
  2540. value should be at most @code{STARPU_MAXCUDADEVS}.
  2541. @end deftypefun
  2542. @node starpu_opencl_worker_get_count
  2543. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2544. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  2545. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2546. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2547. @end deftypefun
  2548. @node starpu_spu_worker_get_count
  2549. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2550. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  2551. This function returns the number of Cell SPUs controlled by StarPU.
  2552. @end deftypefun
  2553. @node starpu_worker_get_id
  2554. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2555. @deftypefun int starpu_worker_get_id (void)
  2556. This function returns the identifier of the worker associated to the calling
  2557. thread. The returned value is either -1 if the current context is not a StarPU
  2558. worker (i.e. when called from the application outside a task or a callback), or
  2559. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2560. @end deftypefun
  2561. @node starpu_worker_get_ids_by_type
  2562. @subsection @code{starpu_worker_get_ids_by_type} -- Get the list of identifiers of workers with a given type
  2563. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  2564. Fill the workerids array with the identifiers of the workers that have the type
  2565. indicated in the first argument. The maxsize argument indicates the size of the
  2566. workids array. The returned value gives the number of identifiers that were put
  2567. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  2568. workers with the appropriate type: in that case, the array is filled with the
  2569. maxsize first elements. To avoid such overflows, the value of maxsize can be
  2570. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  2571. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  2572. @end deftypefun
  2573. @node starpu_worker_get_devid
  2574. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2575. @deftypefun int starpu_worker_get_devid (int @var{id})
  2576. This functions returns the device id of the worker associated to an identifier
  2577. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2578. CUDA worker, this device identifier is the logical device identifier exposed by
  2579. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2580. identifier of a CPU worker is the logical identifier of the core on which the
  2581. worker was bound; this identifier is either provided by the OS or by the
  2582. @code{hwloc} library in case it is available.
  2583. @end deftypefun
  2584. @node starpu_worker_get_type
  2585. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2586. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  2587. This function returns the type of worker associated to an identifier (as
  2588. returned by the @code{starpu_worker_get_id} function). The returned value
  2589. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2590. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2591. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2592. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2593. identifier is unspecified.
  2594. @end deftypefun
  2595. @node starpu_worker_get_name
  2596. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2597. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  2598. StarPU associates a unique human readable string to each processing unit. This
  2599. function copies at most the @var{maxlen} first bytes of the unique string
  2600. associated to a worker identified by its identifier @var{id} into the
  2601. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  2602. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  2603. function on an invalid identifier results in an unspecified behaviour.
  2604. @end deftypefun
  2605. @node starpu_worker_get_memory_node
  2606. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2607. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  2608. This function returns the identifier of the memory node associated to the
  2609. worker identified by @var{workerid}.
  2610. @end deftypefun
  2611. @node Data Library
  2612. @section Data Library
  2613. This section describes the data management facilities provided by StarPU.
  2614. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2615. design their own data interfaces if required.
  2616. @menu
  2617. * starpu_malloc:: Allocate data and pin it
  2618. * starpu_access_mode:: Data access mode
  2619. * unsigned memory_node:: Memory node
  2620. * starpu_data_handle:: StarPU opaque data handle
  2621. * void *interface:: StarPU data interface
  2622. * starpu_data_register:: Register a piece of data to StarPU
  2623. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2624. * starpu_data_invalidate:: Invalidate all data replicates
  2625. * starpu_data_acquire:: Access registered data from the application
  2626. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2627. * starpu_data_release:: Release registered data from the application
  2628. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2629. * starpu_data_prefetch_on_node:: Prefetch data to a given node
  2630. @end menu
  2631. @node starpu_malloc
  2632. @subsection @code{starpu_malloc} -- Allocate data and pin it
  2633. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  2634. This function allocates data of the given size in main memory. It will also try to pin it in
  2635. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  2636. thus permit data transfer and computation overlapping. The allocated buffer must
  2637. be freed thanks to the @code{starpu_free} function.
  2638. @end deftypefun
  2639. @node starpu_access_mode
  2640. @subsection @code{starpu_access_mode} -- Data access mode
  2641. This datatype describes a data access mode. The different available modes are:
  2642. @table @asis
  2643. @table @asis
  2644. @item @code{STARPU_R} read-only mode.
  2645. @item @code{STARPU_W} write-only mode.
  2646. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2647. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2648. @item @code{STARPU_REDUX} reduction mode. TODO: document, as well as @code{starpu_data_set_reduction_methods}
  2649. @end table
  2650. @end table
  2651. @node unsigned memory_node
  2652. @subsection @code{unsigned memory_node} -- Memory node
  2653. @table @asis
  2654. @item @emph{Description}:
  2655. Every worker is associated to a memory node which is a logical abstraction of
  2656. the address space from which the processing unit gets its data. For instance,
  2657. the memory node associated to the different CPU workers represents main memory
  2658. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2659. Every memory node is identified by a logical index which is accessible from the
  2660. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2661. to StarPU, the specified memory node indicates where the piece of data
  2662. initially resides (we also call this memory node the home node of a piece of
  2663. data).
  2664. @end table
  2665. @node starpu_data_handle
  2666. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2667. @table @asis
  2668. @item @emph{Description}:
  2669. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2670. data. Once a piece of data has been registered to StarPU, it is associated to a
  2671. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2672. over the entire machine, so that we can maintain data consistency and locate
  2673. data replicates for instance.
  2674. @end table
  2675. @node void *interface
  2676. @subsection @code{void *interface} -- StarPU data interface
  2677. @table @asis
  2678. @item @emph{Description}:
  2679. Data management is done at a high-level in StarPU: rather than accessing a mere
  2680. list of contiguous buffers, the tasks may manipulate data that are described by
  2681. a high-level construct which we call data interface.
  2682. An example of data interface is the "vector" interface which describes a
  2683. contiguous data array on a spefic memory node. This interface is a simple
  2684. structure containing the number of elements in the array, the size of the
  2685. elements, and the address of the array in the appropriate address space (this
  2686. address may be invalid if there is no valid copy of the array in the memory
  2687. node). More informations on the data interfaces provided by StarPU are
  2688. given in @ref{Data Interfaces}.
  2689. When a piece of data managed by StarPU is used by a task, the task
  2690. implementation is given a pointer to an interface describing a valid copy of
  2691. the data that is accessible from the current processing unit.
  2692. @end table
  2693. @node starpu_data_register
  2694. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2695. @deftypefun void starpu_data_register (starpu_data_handle *@var{handleptr}, uint32_t @var{home_node}, void *@var{interface}, {struct starpu_data_interface_ops_t} *@var{ops})
  2696. Register a piece of data into the handle located at the @var{handleptr}
  2697. address. The @var{interface} buffer contains the initial description of the
  2698. data in the home node. The @var{ops} argument is a pointer to a structure
  2699. describing the different methods used to manipulate this type of interface. See
  2700. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2701. If @code{home_node} is -1, StarPU will automatically
  2702. allocate the memory when it is used for the
  2703. first time in write-only mode. Once such data handle has been automatically
  2704. allocated, it is possible to access it using any access mode.
  2705. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2706. matrix) which can be registered by the means of helper functions (e.g.
  2707. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2708. @end deftypefun
  2709. @node starpu_data_unregister
  2710. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2711. @deftypefun void starpu_data_unregister (starpu_data_handle @var{handle})
  2712. This function unregisters a data handle from StarPU. If the data was
  2713. automatically allocated by StarPU because the home node was -1, all
  2714. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2715. is put back into the home node in the buffer that was initially registered.
  2716. Using a data handle that has been unregistered from StarPU results in an
  2717. undefined behaviour.
  2718. @end deftypefun
  2719. @node starpu_data_invalidate
  2720. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2721. @deftypefun void starpu_data_invalidate (starpu_data_handle @var{handle})
  2722. Destroy all replicates of the data handle. After data invalidation, the first
  2723. access to the handle must be performed in write-only mode. Accessing an
  2724. invalidated data in read-mode results in undefined behaviour.
  2725. @end deftypefun
  2726. @c TODO create a specific sections about user interaction with the DSM ?
  2727. @node starpu_data_acquire
  2728. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2729. @deftypefun int starpu_data_acquire (starpu_data_handle @var{handle}, starpu_access_mode @var{mode})
  2730. The application must call this function prior to accessing registered data from
  2731. main memory outside tasks. StarPU ensures that the application will get an
  2732. up-to-date copy of the data in main memory located where the data was
  2733. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2734. be consistent with the access mode specified in the @var{mode} argument.
  2735. @code{starpu_data_release} must be called once the application does not need to
  2736. access the piece of data anymore. Note that implicit data
  2737. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  2738. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  2739. the data, unless that they have not been disabled explictly by calling
  2740. @code{starpu_data_set_default_sequential_consistency_flag} or
  2741. @code{starpu_data_set_sequential_consistency_flag}.
  2742. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2743. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2744. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2745. @end deftypefun
  2746. @node starpu_data_acquire_cb
  2747. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2748. @deftypefun int starpu_data_acquire_cb (starpu_data_handle @var{handle}, starpu_access_mode @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  2749. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2750. @code{starpu_data_release}. When the data specified in the first argument is
  2751. available in the appropriate access mode, the callback function is executed.
  2752. The application may access the requested data during the execution of this
  2753. callback. The callback function must call @code{starpu_data_release} once the
  2754. application does not need to access the piece of data anymore.
  2755. Note that implicit data dependencies are also enforced by
  2756. @code{starpu_data_acquire_cb} in case they are enabled.
  2757. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2758. be called from task callbacks. Upon successful completion, this function
  2759. returns 0.
  2760. @end deftypefun
  2761. @node starpu_data_release
  2762. @subsection @code{starpu_data_release} -- Release registered data from the application
  2763. @deftypefun void starpu_data_release (starpu_data_handle @var{handle})
  2764. This function releases the piece of data acquired by the application either by
  2765. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2766. @end deftypefun
  2767. @node starpu_data_set_wt_mask
  2768. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2769. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle @var{handle}, uint32_t @var{wt_mask})
  2770. This function sets the write-through mask of a given data, i.e. a bitmask of
  2771. nodes where the data should be always replicated after modification.
  2772. @end deftypefun
  2773. @node starpu_data_prefetch_on_node
  2774. @subsection @code{starpu_data_prefetch_on_node} -- Prefetch data to a given node
  2775. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle @var{handle}, unsigned @var{node}, unsigned @var{async})
  2776. Issue a prefetch request for a given data to a given node, i.e.
  2777. requests that the data be replicated to the given node, so that it is available
  2778. there for tasks. If the @var{async} parameter is 0, the call will block until
  2779. the transfer is achieved, else the call will return as soon as the request is
  2780. scheduled (which may however have to wait for a task completion).
  2781. @end deftypefun
  2782. @node Data Interfaces
  2783. @section Data Interfaces
  2784. @menu
  2785. * Variable Interface::
  2786. * Vector Interface::
  2787. * Matrix Interface::
  2788. * 3D Matrix Interface::
  2789. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2790. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2791. @end menu
  2792. @node Variable Interface
  2793. @subsection Variable Interface
  2794. @table @asis
  2795. @item @emph{Description}:
  2796. This variant of @code{starpu_data_register} uses the variable interface,
  2797. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2798. and @code{elemsize} is the size of the variable.
  2799. @item @emph{Prototype}:
  2800. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2801. uint32_t home_node,
  2802. uintptr_t ptr, size_t elemsize);}
  2803. @item @emph{Example}:
  2804. @cartouche
  2805. @smallexample
  2806. float var;
  2807. starpu_data_handle var_handle;
  2808. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2809. @end smallexample
  2810. @end cartouche
  2811. @end table
  2812. @node Vector Interface
  2813. @subsection Vector Interface
  2814. @table @asis
  2815. @item @emph{Description}:
  2816. This variant of @code{starpu_data_register} uses the vector interface,
  2817. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2818. element in the home node. @code{nx} is the number of elements in the vector.
  2819. @code{elemsize} is the size of each element.
  2820. @item @emph{Prototype}:
  2821. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2822. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2823. @item @emph{Example}:
  2824. @cartouche
  2825. @smallexample
  2826. float vector[NX];
  2827. starpu_data_handle vector_handle;
  2828. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2829. sizeof(vector[0]));
  2830. @end smallexample
  2831. @end cartouche
  2832. @end table
  2833. @node Matrix Interface
  2834. @subsection Matrix Interface
  2835. @table @asis
  2836. @item @emph{Description}:
  2837. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2838. matrices of elements. @code{ptr} is the address of the first element in the home
  2839. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2840. of elements in a row (this can be different from @code{ld} if there are extra
  2841. elements for alignment for instance). @code{ny} is the number of rows.
  2842. @code{elemsize} is the size of each element.
  2843. @item @emph{Prototype}:
  2844. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2845. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2846. uint32_t ny, size_t elemsize);}
  2847. @item @emph{Example}:
  2848. @cartouche
  2849. @smallexample
  2850. float *matrix;
  2851. starpu_data_handle matrix_handle;
  2852. matrix = (float*)malloc(width * height * sizeof(float));
  2853. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2854. width, width, height, sizeof(float));
  2855. @end smallexample
  2856. @end cartouche
  2857. @end table
  2858. @node 3D Matrix Interface
  2859. @subsection 3D Matrix Interface
  2860. @table @asis
  2861. @item @emph{Description}:
  2862. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2863. @code{ptr} is the address of the array of first element in the home node.
  2864. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2865. of rows between z planes. @code{nx} is the number of elements in a row (this
  2866. can be different from @code{ldy} if there are extra elements for alignment
  2867. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2868. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2869. each element.
  2870. @item @emph{Prototype}:
  2871. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2872. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2873. uint32_t ny, uint32_t nz, size_t elemsize);}
  2874. @item @emph{Example}:
  2875. @cartouche
  2876. @smallexample
  2877. float *block;
  2878. starpu_data_handle block_handle;
  2879. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2880. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2881. nx, nx*ny, nx, ny, nz, sizeof(float));
  2882. @end smallexample
  2883. @end cartouche
  2884. @end table
  2885. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2886. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2887. @deftypefun void starpu_bcsr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  2888. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2889. TODO
  2890. @end deftypefun
  2891. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2892. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2893. @deftypefun void starpu_csr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  2894. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2895. TODO
  2896. @end deftypefun
  2897. @node Data Partition
  2898. @section Data Partition
  2899. @menu
  2900. * struct starpu_data_filter:: StarPU filter structure
  2901. * starpu_data_partition:: Partition Data
  2902. * starpu_data_unpartition:: Unpartition Data
  2903. * starpu_data_get_nb_children::
  2904. * starpu_data_get_sub_data::
  2905. * Predefined filter functions::
  2906. @end menu
  2907. @node struct starpu_data_filter
  2908. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2909. @table @asis
  2910. @item @emph{Description}:
  2911. The filter structure describes a data partitioning operation, to be given to the
  2912. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2913. @item @emph{Fields}:
  2914. @table @asis
  2915. @item @code{filter_func}:
  2916. This function fills the @code{child_interface} structure with interface
  2917. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2918. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2919. @item @code{nchildren}:
  2920. This is the number of parts to partition the data into.
  2921. @item @code{get_nchildren}:
  2922. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2923. children depends on the actual data (e.g. the number of blocks in a sparse
  2924. matrix).
  2925. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2926. @item @code{get_child_ops}:
  2927. In case the resulting children use a different data interface, this function
  2928. returns which interface is used by child number @code{id}.
  2929. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2930. @item @code{filter_arg}:
  2931. Some filters take an addition parameter, but this is usually unused.
  2932. @item @code{filter_arg_ptr}:
  2933. Some filters take an additional array parameter like the sizes of the parts, but
  2934. this is usually unused.
  2935. @end table
  2936. @end table
  2937. @node starpu_data_partition
  2938. @subsection starpu_data_partition -- Partition Data
  2939. @table @asis
  2940. @item @emph{Description}:
  2941. This requests partitioning one StarPU data @code{initial_handle} into several
  2942. subdata according to the filter @code{f}
  2943. @item @emph{Prototype}:
  2944. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2945. @item @emph{Example}:
  2946. @cartouche
  2947. @smallexample
  2948. struct starpu_data_filter f = @{
  2949. .filter_func = starpu_vertical_block_filter_func,
  2950. .nchildren = nslicesx,
  2951. .get_nchildren = NULL,
  2952. .get_child_ops = NULL
  2953. @};
  2954. starpu_data_partition(A_handle, &f);
  2955. @end smallexample
  2956. @end cartouche
  2957. @end table
  2958. @node starpu_data_unpartition
  2959. @subsection starpu_data_unpartition -- Unpartition data
  2960. @table @asis
  2961. @item @emph{Description}:
  2962. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2963. collected back into one big piece in the @code{gathering_node} (usually 0).
  2964. @item @emph{Prototype}:
  2965. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2966. @item @emph{Example}:
  2967. @cartouche
  2968. @smallexample
  2969. starpu_data_unpartition(A_handle, 0);
  2970. @end smallexample
  2971. @end cartouche
  2972. @end table
  2973. @node starpu_data_get_nb_children
  2974. @subsection starpu_data_get_nb_children
  2975. @table @asis
  2976. @item @emph{Description}:
  2977. This function returns the number of children.
  2978. @item @emph{Return value}:
  2979. The number of children.
  2980. @item @emph{Prototype}:
  2981. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2982. @end table
  2983. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2984. @node starpu_data_get_sub_data
  2985. @subsection starpu_data_get_sub_data
  2986. @table @asis
  2987. @item @emph{Description}:
  2988. After partitioning a StarPU data by applying a filter,
  2989. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2990. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2991. is the number of filters to traverse (in case several filters have been applied,
  2992. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2993. parameters are the indexes.
  2994. @item @emph{Return value}:
  2995. A handle to the subdata.
  2996. @item @emph{Prototype}:
  2997. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2998. @item @emph{Example}:
  2999. @cartouche
  3000. @smallexample
  3001. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  3002. @end smallexample
  3003. @end cartouche
  3004. @end table
  3005. @node Predefined filter functions
  3006. @subsection Predefined filter functions
  3007. @menu
  3008. * Partitioning BCSR Data::
  3009. * Partitioning BLAS interface::
  3010. * Partitioning Vector Data::
  3011. * Partitioning Block Data::
  3012. @end menu
  3013. This section gives a partial list of the predefined partitioning functions.
  3014. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  3015. list can be found in @code{starpu_data_filters.h} .
  3016. @node Partitioning BCSR Data
  3017. @subsubsection Partitioning BCSR Data
  3018. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3019. TODO
  3020. @end deftypefun
  3021. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3022. TODO
  3023. @end deftypefun
  3024. @node Partitioning BLAS interface
  3025. @subsubsection Partitioning BLAS interface
  3026. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3027. This partitions a dense Matrix into horizontal blocks.
  3028. @end deftypefun
  3029. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3030. This partitions a dense Matrix into vertical blocks.
  3031. @end deftypefun
  3032. @node Partitioning Vector Data
  3033. @subsubsection Partitioning Vector Data
  3034. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3035. This partitions a vector into blocks of the same size.
  3036. @end deftypefun
  3037. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3038. This partitions a vector into blocks of sizes given in @var{filter_arg_ptr}.
  3039. @end deftypefun
  3040. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3041. This partitions a vector into two blocks, the first block size being given in @var{filter_arg}.
  3042. @end deftypefun
  3043. @node Partitioning Block Data
  3044. @subsubsection Partitioning Block Data
  3045. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3046. This partitions a 3D matrix along the X axis.
  3047. @end deftypefun
  3048. @node Codelets and Tasks
  3049. @section Codelets and Tasks
  3050. This section describes the interface to manipulate codelets and tasks.
  3051. @deftp {Data Type} {struct starpu_codelet}
  3052. The codelet structure describes a kernel that is possibly implemented on various
  3053. targets. For compatibility, make sure to initialize the whole structure to zero.
  3054. @table @asis
  3055. @item @code{where}
  3056. Indicates which types of processing units are able to execute the codelet.
  3057. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  3058. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  3059. indicates that it is only available on Cell SPUs.
  3060. @item @code{cpu_func} (optional)
  3061. Is a function pointer to the CPU implementation of the codelet. Its prototype
  3062. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  3063. argument being the array of data managed by the data management library, and
  3064. the second argument is a pointer to the argument passed from the @code{cl_arg}
  3065. field of the @code{starpu_task} structure.
  3066. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  3067. the @code{where} field, it must be non-null otherwise.
  3068. @item @code{cuda_func} (optional)
  3069. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  3070. must be a host-function written in the CUDA runtime API}. Its prototype must
  3071. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  3072. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  3073. field, it must be non-null otherwise.
  3074. @item @code{opencl_func} (optional)
  3075. Is a function pointer to the OpenCL implementation of the codelet. Its
  3076. prototype must be:
  3077. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  3078. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  3079. @code{where} field, it must be non-null otherwise.
  3080. @item @code{gordon_func} (optional)
  3081. This is the index of the Cell SPU implementation within the Gordon library.
  3082. See Gordon documentation for more details on how to register a kernel and
  3083. retrieve its index.
  3084. @item @code{nbuffers}
  3085. Specifies the number of arguments taken by the codelet. These arguments are
  3086. managed by the DSM and are accessed from the @code{void *buffers[]}
  3087. array. The constant argument passed with the @code{cl_arg} field of the
  3088. @code{starpu_task} structure is not counted in this number. This value should
  3089. not be above @code{STARPU_NMAXBUFS}.
  3090. @item @code{model} (optional)
  3091. This is a pointer to the task duration performance model associated to this
  3092. codelet. This optional field is ignored when set to @code{NULL}.
  3093. TODO
  3094. @item @code{power_model} (optional)
  3095. This is a pointer to the task power consumption performance model associated
  3096. to this codelet. This optional field is ignored when set to @code{NULL}.
  3097. In the case of parallel codelets, this has to account for all processing units
  3098. involved in the parallel execution.
  3099. TODO
  3100. @end table
  3101. @end deftp
  3102. @deftp {Data Type} {struct starpu_task}
  3103. The @code{starpu_task} structure describes a task that can be offloaded on the various
  3104. processing units managed by StarPU. It instantiates a codelet. It can either be
  3105. allocated dynamically with the @code{starpu_task_create} method, or declared
  3106. statically. In the latter case, the programmer has to zero the
  3107. @code{starpu_task} structure and to fill the different fields properly. The
  3108. indicated default values correspond to the configuration of a task allocated
  3109. with @code{starpu_task_create}.
  3110. @table @asis
  3111. @item @code{cl}
  3112. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  3113. describes where the kernel should be executed, and supplies the appropriate
  3114. implementations. When set to @code{NULL}, no code is executed during the tasks,
  3115. such empty tasks can be useful for synchronization purposes.
  3116. @item @code{buffers}
  3117. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  3118. different pieces of data accessed by the task, and how they should be accessed.
  3119. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  3120. @code{handle} field specifies the handle of the piece of data, and the
  3121. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  3122. of entries in this array must be specified in the @code{nbuffers} field of the
  3123. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  3124. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  3125. option when configuring StarPU.
  3126. @item @code{cl_arg} (optional; default: @code{NULL})
  3127. This pointer is passed to the codelet through the second argument
  3128. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  3129. In the specific case of the Cell processor, see the @code{cl_arg_size}
  3130. argument.
  3131. @item @code{cl_arg_size} (optional, Cell-specific)
  3132. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  3133. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  3134. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  3135. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  3136. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  3137. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  3138. codelets, where the @code{cl_arg} pointer is given as such.
  3139. @item @code{callback_func} (optional) (default: @code{NULL})
  3140. This is a function pointer of prototype @code{void (*f)(void *)} which
  3141. specifies a possible callback. If this pointer is non-null, the callback
  3142. function is executed @emph{on the host} after the execution of the task. The
  3143. callback is passed the value contained in the @code{callback_arg} field. No
  3144. callback is executed if the field is set to @code{NULL}.
  3145. @item @code{callback_arg} (optional) (default: @code{NULL})
  3146. This is the pointer passed to the callback function. This field is ignored if
  3147. the @code{callback_func} is set to @code{NULL}.
  3148. @item @code{use_tag} (optional) (default: @code{0})
  3149. If set, this flag indicates that the task should be associated with the tag
  3150. contained in the @code{tag_id} field. Tag allow the application to synchronize
  3151. with the task and to express task dependencies easily.
  3152. @item @code{tag_id}
  3153. This fields contains the tag associated to the task if the @code{use_tag} field
  3154. was set, it is ignored otherwise.
  3155. @item @code{synchronous}
  3156. If this flag is set, the @code{starpu_task_submit} function is blocking and
  3157. returns only when the task has been executed (or if no worker is able to
  3158. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  3159. @item @code{priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  3160. This field indicates a level of priority for the task. This is an integer value
  3161. that must be set between the return values of the
  3162. @code{starpu_sched_get_min_priority} function for the least important tasks,
  3163. and that of the @code{starpu_sched_get_max_priority} for the most important
  3164. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  3165. are provided for convenience and respectively returns value of
  3166. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  3167. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  3168. order to allow static task initialization. Scheduling strategies that take
  3169. priorities into account can use this parameter to take better scheduling
  3170. decisions, but the scheduling policy may also ignore it.
  3171. @item @code{execute_on_a_specific_worker} (default: @code{0})
  3172. If this flag is set, StarPU will bypass the scheduler and directly affect this
  3173. task to the worker specified by the @code{workerid} field.
  3174. @item @code{workerid} (optional)
  3175. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  3176. which is the identifier of the worker that should process this task (as
  3177. returned by @code{starpu_worker_get_id}). This field is ignored if
  3178. @code{execute_on_a_specific_worker} field is set to 0.
  3179. @item @code{detach} (optional) (default: @code{1})
  3180. If this flag is set, it is not possible to synchronize with the task
  3181. by the means of @code{starpu_task_wait} later on. Internal data structures
  3182. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  3183. flag is not set.
  3184. @item @code{destroy} (optional) (default: @code{1})
  3185. If this flag is set, the task structure will automatically be freed, either
  3186. after the execution of the callback if the task is detached, or during
  3187. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  3188. allocated data structures will not be freed until @code{starpu_task_destroy} is
  3189. called explicitly. Setting this flag for a statically allocated task structure
  3190. will result in undefined behaviour.
  3191. @item @code{predicted} (output field)
  3192. Predicted duration of the task. This field is only set if the scheduling
  3193. strategy used performance models.
  3194. @end table
  3195. @end deftp
  3196. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  3197. Initialize @var{task} with default values. This function is implicitly
  3198. called by @code{starpu_task_create}. By default, tasks initialized with
  3199. @code{starpu_task_init} must be deinitialized explicitly with
  3200. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  3201. constant @code{STARPU_TASK_INITIALIZER}.
  3202. @end deftypefun
  3203. @deftypefun {struct starpu_task *} starpu_task_create (void)
  3204. Allocate a task structure and initialize it with default values. Tasks
  3205. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  3206. task is terminated. If the destroy flag is explicitly unset, the resources used
  3207. by the task are freed by calling
  3208. @code{starpu_task_destroy}.
  3209. @end deftypefun
  3210. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  3211. Release all the structures automatically allocated to execute @var{task}. This is
  3212. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  3213. freed. This should be used for statically allocated tasks for instance.
  3214. @end deftypefun
  3215. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  3216. Free the resource allocated during @code{starpu_task_create} and
  3217. associated with @var{task}. This function can be called automatically
  3218. after the execution of a task by setting the @code{destroy} flag of the
  3219. @code{starpu_task} structure (default behaviour). Calling this function
  3220. on a statically allocated task results in an undefined behaviour.
  3221. @end deftypefun
  3222. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  3223. This function blocks until @var{task} has been executed. It is not possible to
  3224. synchronize with a task more than once. It is not possible to wait for
  3225. synchronous or detached tasks.
  3226. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  3227. indicates that the specified task was either synchronous or detached.
  3228. @end deftypefun
  3229. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  3230. This function submits @var{task} to StarPU. Calling this function does
  3231. not mean that the task will be executed immediately as there can be data or task
  3232. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  3233. scheduling this task with respect to such dependencies.
  3234. This function returns immediately if the @code{synchronous} field of the
  3235. @code{starpu_task} structure was set to 0, and block until the termination of
  3236. the task otherwise. It is also possible to synchronize the application with
  3237. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  3238. function for instance.
  3239. In case of success, this function returns 0, a return value of @code{-ENODEV}
  3240. means that there is no worker able to process this task (e.g. there is no GPU
  3241. available and this task is only implemented for CUDA devices).
  3242. @end deftypefun
  3243. @deftypefun int starpu_task_wait_for_all (void)
  3244. This function blocks until all the tasks that were submitted are terminated.
  3245. @end deftypefun
  3246. @deftypefun {struct starpu_task *} starpu_get_current_task (void)
  3247. This function returns the task currently executed by the worker, or
  3248. NULL if it is called either from a thread that is not a task or simply
  3249. because there is no task being executed at the moment.
  3250. @end deftypefun
  3251. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet_t} *@var{cl})
  3252. Output on @code{stderr} some statistics on the codelet @var{cl}.
  3253. @end deftypefun
  3254. @c Callbacks : what can we put in callbacks ?
  3255. @node Explicit Dependencies
  3256. @section Explicit Dependencies
  3257. @menu
  3258. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  3259. * starpu_tag_t:: Task logical identifier
  3260. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  3261. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  3262. * starpu_tag_wait:: Block until a Tag is terminated
  3263. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  3264. * starpu_tag_remove:: Destroy a Tag
  3265. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  3266. @end menu
  3267. @node starpu_task_declare_deps_array
  3268. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  3269. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  3270. Declare task dependencies between a @var{task} and an array of tasks of length
  3271. @var{ndeps}. This function must be called prior to the submission of the task,
  3272. but it may called after the submission or the execution of the tasks in the
  3273. array provided the tasks are still valid (ie. they were not automatically
  3274. destroyed). Calling this function on a task that was already submitted or with
  3275. an entry of @var{task_array} that is not a valid task anymore results in an
  3276. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  3277. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  3278. same task, in this case, the dependencies are added. It is possible to have
  3279. redundancy in the task dependencies.
  3280. @end deftypefun
  3281. @node starpu_tag_t
  3282. @subsection @code{starpu_tag_t} -- Task logical identifier
  3283. @table @asis
  3284. @item @emph{Description}:
  3285. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  3286. dependencies between tasks by the means of those tags. To do so, fill the
  3287. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  3288. be arbitrary) and set the @code{use_tag} field to 1.
  3289. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  3290. not be started until the tasks which holds the declared dependency tags are
  3291. completed.
  3292. @end table
  3293. @node starpu_tag_declare_deps
  3294. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  3295. @table @asis
  3296. @item @emph{Description}:
  3297. Specify the dependencies of the task identified by tag @code{id}. The first
  3298. argument specifies the tag which is configured, the second argument gives the
  3299. number of tag(s) on which @code{id} depends. The following arguments are the
  3300. tags which have to be terminated to unlock the task.
  3301. This function must be called before the associated task is submitted to StarPU
  3302. with @code{starpu_task_submit}.
  3303. @item @emph{Remark}
  3304. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  3305. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  3306. typically need to be explicitly casted. Using the
  3307. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  3308. @item @emph{Prototype}:
  3309. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  3310. @item @emph{Example}:
  3311. @cartouche
  3312. @example
  3313. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3314. starpu_tag_declare_deps((starpu_tag_t)0x1,
  3315. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  3316. @end example
  3317. @end cartouche
  3318. @end table
  3319. @node starpu_tag_declare_deps_array
  3320. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  3321. @table @asis
  3322. @item @emph{Description}:
  3323. This function is similar to @code{starpu_tag_declare_deps}, except that its
  3324. does not take a variable number of arguments but an array of tags of size
  3325. @code{ndeps}.
  3326. @item @emph{Prototype}:
  3327. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  3328. @item @emph{Example}:
  3329. @cartouche
  3330. @example
  3331. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3332. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  3333. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  3334. @end example
  3335. @end cartouche
  3336. @end table
  3337. @node starpu_tag_wait
  3338. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  3339. @deftypefun void starpu_tag_wait (starpu_tag_t @var{id})
  3340. This function blocks until the task associated to tag @var{id} has been
  3341. executed. This is a blocking call which must therefore not be called within
  3342. tasks or callbacks, but only from the application directly. It is possible to
  3343. synchronize with the same tag multiple times, as long as the
  3344. @code{starpu_tag_remove} function is not called. Note that it is still
  3345. possible to synchronize with a tag associated to a task which @code{starpu_task}
  3346. data structure was freed (e.g. if the @code{destroy} flag of the
  3347. @code{starpu_task} was enabled).
  3348. @end deftypefun
  3349. @node starpu_tag_wait_array
  3350. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3351. @deftypefun void starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  3352. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3353. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  3354. terminated.
  3355. @end deftypefun
  3356. @node starpu_tag_remove
  3357. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3358. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  3359. This function releases the resources associated to tag @var{id}. It can be
  3360. called once the corresponding task has been executed and when there is
  3361. no other tag that depend on this tag anymore.
  3362. @end deftypefun
  3363. @node starpu_tag_notify_from_apps
  3364. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3365. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  3366. This function explicitly unlocks tag @var{id}. It may be useful in the
  3367. case of applications which execute part of their computation outside StarPU
  3368. tasks (e.g. third-party libraries). It is also provided as a
  3369. convenient tool for the programmer, for instance to entirely construct the task
  3370. DAG before actually giving StarPU the opportunity to execute the tasks.
  3371. @end deftypefun
  3372. @node Implicit Data Dependencies
  3373. @section Implicit Data Dependencies
  3374. @menu
  3375. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3376. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3377. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3378. @end menu
  3379. In this section, we describe how StarPU makes it possible to insert implicit
  3380. task dependencies in order to enforce sequential data consistency. When this
  3381. data consistency is enabled on a specific data handle, any data access will
  3382. appear as sequentially consistent from the application. For instance, if the
  3383. application submits two tasks that access the same piece of data in read-only
  3384. mode, and then a third task that access it in write mode, dependencies will be
  3385. added between the two first tasks and the third one. Implicit data dependencies
  3386. are also inserted in the case of data accesses from the application.
  3387. @node starpu_data_set_default_sequential_consistency_flag
  3388. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3389. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  3390. Set the default sequential consistency flag. If a non-zero value is passed, a
  3391. sequential data consistency will be enforced for all handles registered after
  3392. this function call, otherwise it is disabled. By default, StarPU enables
  3393. sequential data consistency. It is also possible to select the data consistency
  3394. mode of a specific data handle with the
  3395. @code{starpu_data_set_sequential_consistency_flag} function.
  3396. @end deftypefun
  3397. @node starpu_data_get_default_sequential_consistency_flag
  3398. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3399. @deftypefun unsigned starpu_data_set_default_sequential_consistency_flag (void)
  3400. This function returns the current default sequential consistency flag.
  3401. @end deftypefun
  3402. @node starpu_data_set_sequential_consistency_flag
  3403. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3404. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle @var{handle}, unsigned @var{flag})
  3405. Select the data consistency mode associated to a data handle. The consistency
  3406. mode set using this function has the priority over the default mode which can
  3407. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3408. @end deftypefun
  3409. @node Performance Model API
  3410. @section Performance Model API
  3411. @menu
  3412. * starpu_load_history_debug::
  3413. * starpu_perfmodel_debugfilepath::
  3414. * starpu_perfmodel_get_arch_name::
  3415. * starpu_force_bus_sampling::
  3416. @end menu
  3417. @node starpu_load_history_debug
  3418. @subsection @code{starpu_load_history_debug}
  3419. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel_t} *@var{model})
  3420. TODO
  3421. @end deftypefun
  3422. @node starpu_perfmodel_debugfilepath
  3423. @subsection @code{starpu_perfmodel_debugfilepath}
  3424. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel_t} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen})
  3425. TODO
  3426. @end deftypefun
  3427. @node starpu_perfmodel_get_arch_name
  3428. @subsection @code{starpu_perfmodel_get_arch_name}
  3429. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen})
  3430. TODO
  3431. @end deftypefun
  3432. @node starpu_force_bus_sampling
  3433. @subsection @code{starpu_force_bus_sampling}
  3434. @deftypefun void starpu_force_bus_sampling (void)
  3435. This forces sampling the bus performance model again.
  3436. @end deftypefun
  3437. @node Profiling API
  3438. @section Profiling API
  3439. @menu
  3440. * starpu_profiling_status_set:: starpu_profiling_status_set
  3441. * starpu_profiling_status_get:: starpu_profiling_status_get
  3442. * struct starpu_task_profiling_info:: task profiling information
  3443. * struct starpu_worker_profiling_info:: worker profiling information
  3444. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3445. * struct starpu_bus_profiling_info:: bus profiling information
  3446. * starpu_bus_get_count::
  3447. * starpu_bus_get_id::
  3448. * starpu_bus_get_src::
  3449. * starpu_bus_get_dst::
  3450. * starpu_timing_timespec_delay_us::
  3451. * starpu_timing_timespec_to_us::
  3452. * starpu_bus_profiling_helper_display_summary::
  3453. * starpu_worker_profiling_helper_display_summary::
  3454. @end menu
  3455. @node starpu_profiling_status_set
  3456. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3457. @table @asis
  3458. @item @emph{Description}:
  3459. Thie function sets the profiling status. Profiling is activated by passing
  3460. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3461. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3462. resets all profiling measurements. When profiling is enabled, the
  3463. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3464. to a valid @code{struct starpu_task_profiling_info} structure containing
  3465. information about the execution of the task.
  3466. @item @emph{Return value}:
  3467. Negative return values indicate an error, otherwise the previous status is
  3468. returned.
  3469. @item @emph{Prototype}:
  3470. @code{int starpu_profiling_status_set(int status);}
  3471. @end table
  3472. @node starpu_profiling_status_get
  3473. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3474. @deftypefun int starpu_profiling_status_get (void)
  3475. Return the current profiling status or a negative value in case there was an error.
  3476. @end deftypefun
  3477. @node struct starpu_task_profiling_info
  3478. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3479. @table @asis
  3480. @item @emph{Description}:
  3481. This structure contains information about the execution of a task. It is
  3482. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3483. structure if profiling was enabled.
  3484. @item @emph{Fields}:
  3485. @table @asis
  3486. @item @code{submit_time}:
  3487. Date of task submission (relative to the initialization of StarPU).
  3488. @item @code{start_time}:
  3489. Date of task execution beginning (relative to the initialization of StarPU).
  3490. @item @code{end_time}:
  3491. Date of task execution termination (relative to the initialization of StarPU).
  3492. @item @code{workerid}:
  3493. Identifier of the worker which has executed the task.
  3494. @end table
  3495. @end table
  3496. @node struct starpu_worker_profiling_info
  3497. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3498. @table @asis
  3499. @item @emph{Description}:
  3500. This structure contains the profiling information associated to a worker.
  3501. @item @emph{Fields}:
  3502. @table @asis
  3503. @item @code{start_time}:
  3504. Starting date for the reported profiling measurements.
  3505. @item @code{total_time}:
  3506. Duration of the profiling measurement interval.
  3507. @item @code{executing_time}:
  3508. Time spent by the worker to execute tasks during the profiling measurement interval.
  3509. @item @code{sleeping_time}:
  3510. Time spent idling by the worker during the profiling measurement interval.
  3511. @item @code{executed_tasks}:
  3512. Number of tasks executed by the worker during the profiling measurement interval.
  3513. @end table
  3514. @end table
  3515. @node starpu_worker_get_profiling_info
  3516. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3517. @table @asis
  3518. @item @emph{Description}:
  3519. Get the profiling info associated to the worker identified by @code{workerid},
  3520. and reset the profiling measurements. If the @code{worker_info} argument is
  3521. NULL, only reset the counters associated to worker @code{workerid}.
  3522. @item @emph{Return value}:
  3523. Upon successful completion, this function returns 0. Otherwise, a negative
  3524. value is returned.
  3525. @item @emph{Prototype}:
  3526. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3527. @end table
  3528. @node struct starpu_bus_profiling_info
  3529. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3530. @table @asis
  3531. @item @emph{Description}:
  3532. TODO
  3533. @item @emph{Fields}:
  3534. @table @asis
  3535. @item @code{start_time}:
  3536. TODO
  3537. @item @code{total_time}:
  3538. TODO
  3539. @item @code{transferred_bytes}:
  3540. TODO
  3541. @item @code{transfer_count}:
  3542. TODO
  3543. @end table
  3544. @end table
  3545. @node starpu_bus_get_count
  3546. @subsection @code{starpu_bus_get_count}
  3547. @deftypefun int starpu_bus_get_count (void)
  3548. TODO
  3549. @end deftypefun
  3550. @node starpu_bus_get_id
  3551. @subsection @code{starpu_bus_get_id}
  3552. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  3553. TODO
  3554. @end deftypefun
  3555. @node starpu_bus_get_src
  3556. @subsection @code{starpu_bus_get_src}
  3557. @deftypefun int starpu_bus_get_src (int @var{busid})
  3558. TODO
  3559. @end deftypefun
  3560. @node starpu_bus_get_dst
  3561. @subsection @code{starpu_bus_get_dst}
  3562. @deftypefun int starpu_bus_get_dst (int @var{busid})
  3563. TODO
  3564. @end deftypefun
  3565. @node starpu_timing_timespec_delay_us
  3566. @subsection @code{starpu_timing_timespec_delay_us}
  3567. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  3568. TODO
  3569. @end deftypefun
  3570. @node starpu_timing_timespec_to_us
  3571. @subsection @code{starpu_timing_timespec_to_us}
  3572. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  3573. TODO
  3574. @end deftypefun
  3575. @node starpu_bus_profiling_helper_display_summary
  3576. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3577. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  3578. TODO
  3579. @end deftypefun
  3580. @node starpu_worker_profiling_helper_display_summary
  3581. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3582. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  3583. TODO
  3584. @end deftypefun
  3585. @node CUDA extensions
  3586. @section CUDA extensions
  3587. @c void starpu_malloc(float **A, size_t dim);
  3588. @menu
  3589. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3590. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3591. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3592. @end menu
  3593. @node starpu_cuda_get_local_stream
  3594. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3595. @deftypefun {cudaStream_t *} starpu_cuda_get_local_stream (void)
  3596. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3597. function is only provided for convenience so that programmers can easily use
  3598. asynchronous operations within codelets without having to create a stream by
  3599. hand. Note that the application is not forced to use the stream provided by
  3600. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3601. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3602. the likelihood of having all transfers overlapped.
  3603. @end deftypefun
  3604. @node starpu_helper_cublas_init
  3605. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3606. @deftypefun void starpu_helper_cublas_init (void)
  3607. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3608. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3609. controlled by StarPU. This call blocks until CUBLAS has been properly
  3610. initialized on every device.
  3611. @end deftypefun
  3612. @node starpu_helper_cublas_shutdown
  3613. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3614. @deftypefun void starpu_helper_cublas_shutdown (void)
  3615. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3616. @end deftypefun
  3617. @node OpenCL extensions
  3618. @section OpenCL extensions
  3619. @menu
  3620. * Enabling OpenCL:: Enabling OpenCL
  3621. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3622. * Loading OpenCL kernels:: Loading OpenCL kernels
  3623. * OpenCL statistics:: Collecting statistics from OpenCL
  3624. @end menu
  3625. @node Enabling OpenCL
  3626. @subsection Enabling OpenCL
  3627. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3628. enabled by default. To enable OpenCL, you need either to disable CUDA
  3629. when configuring StarPU:
  3630. @example
  3631. % ./configure --disable-cuda
  3632. @end example
  3633. or when running applications:
  3634. @example
  3635. % STARPU_NCUDA=0 ./application
  3636. @end example
  3637. OpenCL will automatically be started on any device not yet used by
  3638. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3639. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3640. so:
  3641. @example
  3642. % STARPU_NCUDA=2 ./application
  3643. @end example
  3644. @node Compiling OpenCL kernels
  3645. @subsection Compiling OpenCL kernels
  3646. Source codes for OpenCL kernels can be stored in a file or in a
  3647. string. StarPU provides functions to build the program executable for
  3648. each available OpenCL device as a @code{cl_program} object. This
  3649. program executable can then be loaded within a specific queue as
  3650. explained in the next section. These are only helpers, Applications
  3651. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3652. use (e.g. different programs on the different OpenCL devices, for
  3653. relocation purpose for instance).
  3654. @menu
  3655. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3656. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3657. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3658. @end menu
  3659. @node starpu_opencl_load_opencl_from_file
  3660. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3661. @deftypefun int starpu_opencl_load_opencl_from_file (char *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  3662. TODO
  3663. @end deftypefun
  3664. @node starpu_opencl_load_opencl_from_string
  3665. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3666. @deftypefun int starpu_opencl_load_opencl_from_string (char *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  3667. TODO
  3668. @end deftypefun
  3669. @node starpu_opencl_unload_opencl
  3670. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3671. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  3672. TODO
  3673. @end deftypefun
  3674. @node Loading OpenCL kernels
  3675. @subsection Loading OpenCL kernels
  3676. @menu
  3677. * starpu_opencl_load_kernel:: Loading a kernel
  3678. * starpu_opencl_relase_kernel:: Releasing a kernel
  3679. @end menu
  3680. @node starpu_opencl_load_kernel
  3681. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3682. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, char *@var{kernel_name}, int @var{devid})
  3683. TODO
  3684. @end deftypefun
  3685. @node starpu_opencl_relase_kernel
  3686. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3687. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  3688. TODO
  3689. @end deftypefun
  3690. @node OpenCL statistics
  3691. @subsection OpenCL statistics
  3692. @menu
  3693. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3694. @end menu
  3695. @node starpu_opencl_collect_stats
  3696. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3697. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  3698. After termination of the kernels, the OpenCL codelet should call this function
  3699. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3700. collect statistics about the kernel execution (used cycles, consumed power).
  3701. @end deftypefun
  3702. @node Cell extensions
  3703. @section Cell extensions
  3704. nothing yet.
  3705. @node Miscellaneous helpers
  3706. @section Miscellaneous helpers
  3707. @menu
  3708. * starpu_data_cpy:: Copy a data handle into another data handle
  3709. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3710. @end menu
  3711. @node starpu_data_cpy
  3712. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3713. @deftypefun int starpu_data_cpy (starpu_data_handle @var{dst_handle}, starpu_data_handle @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  3714. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  3715. The @var{asynchronous} parameter indicates whether the function should
  3716. block or not. In the case of an asynchronous call, it is possible to
  3717. synchronize with the termination of this operation either by the means of
  3718. implicit dependencies (if enabled) or by calling
  3719. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  3720. this callback function is executed after the handle has been copied, and it is
  3721. given the @var{callback_arg} pointer as argument.
  3722. @end deftypefun
  3723. @node starpu_execute_on_each_worker
  3724. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3725. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  3726. When calling this method, the offloaded function specified by the first argument is
  3727. executed by every StarPU worker that may execute the function.
  3728. The second argument is passed to the offloaded function.
  3729. The last argument specifies on which types of processing units the function
  3730. should be executed. Similarly to the @var{where} field of the
  3731. @code{starpu_codelet} structure, it is possible to specify that the function
  3732. should be executed on every CUDA device and every CPU by passing
  3733. @code{STARPU_CPU|STARPU_CUDA}.
  3734. This function blocks until the function has been executed on every appropriate
  3735. processing units, so that it may not be called from a callback function for
  3736. instance.
  3737. @end deftypefun
  3738. @c ---------------------------------------------------------------------
  3739. @c Advanced Topics
  3740. @c ---------------------------------------------------------------------
  3741. @node Advanced Topics
  3742. @chapter Advanced Topics
  3743. @menu
  3744. * Defining a new data interface::
  3745. * Defining a new scheduling policy::
  3746. @end menu
  3747. @node Defining a new data interface
  3748. @section Defining a new data interface
  3749. @menu
  3750. * struct starpu_data_interface_ops_t:: Per-interface methods
  3751. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3752. * An example of data interface:: An example of data interface
  3753. @end menu
  3754. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3755. @node struct starpu_data_interface_ops_t
  3756. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3757. @table @asis
  3758. @item @emph{Description}:
  3759. TODO describe all the different fields
  3760. @end table
  3761. @node struct starpu_data_copy_methods
  3762. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3763. @table @asis
  3764. @item @emph{Description}:
  3765. TODO describe all the different fields
  3766. @end table
  3767. @node An example of data interface
  3768. @subsection An example of data interface
  3769. @table @asis
  3770. TODO
  3771. See @code{src/datawizard/interfaces/vector_interface.c} for now.
  3772. @end table
  3773. @node Defining a new scheduling policy
  3774. @section Defining a new scheduling policy
  3775. TODO
  3776. A full example showing how to define a new scheduling policy is available in
  3777. the StarPU sources in the directory @code{examples/scheduler/}.
  3778. @menu
  3779. * struct starpu_sched_policy_s::
  3780. * starpu_worker_set_sched_condition::
  3781. * starpu_sched_set_min_priority:: Set the minimum priority level
  3782. * starpu_sched_set_max_priority:: Set the maximum priority level
  3783. * starpu_push_local_task:: Assign a task to a worker
  3784. * Source code::
  3785. @end menu
  3786. @node struct starpu_sched_policy_s
  3787. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3788. @table @asis
  3789. @item @emph{Description}:
  3790. This structure contains all the methods that implement a scheduling policy. An
  3791. application may specify which scheduling strategy in the @code{sched_policy}
  3792. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3793. function.
  3794. @item @emph{Fields}:
  3795. @table @asis
  3796. @item @code{init_sched}:
  3797. Initialize the scheduling policy.
  3798. @item @code{deinit_sched}:
  3799. Cleanup the scheduling policy.
  3800. @item @code{push_task}:
  3801. Insert a task into the scheduler.
  3802. @item @code{push_prio_task}:
  3803. Insert a priority task into the scheduler.
  3804. @item @code{push_prio_notify}:
  3805. Notify the scheduler that a task was pushed on the worker. This method is
  3806. called when a task that was explicitely assigned to a worker is scheduled. This
  3807. method therefore permits to keep the state of of the scheduler coherent even
  3808. when StarPU bypasses the scheduling strategy.
  3809. @item @code{pop_task}:
  3810. Get a task from the scheduler. The mutex associated to the worker is already
  3811. taken when this method is called. If this method is defined as @code{NULL}, the
  3812. worker will only execute tasks from its local queue. In this case, the
  3813. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3814. assign tasks to the different workers.
  3815. @item @code{pop_every_task}:
  3816. Remove all available tasks from the scheduler (tasks are chained by the means
  3817. of the prev and next fields of the starpu_task structure). The mutex associated
  3818. to the worker is already taken when this method is called.
  3819. @item @code{post_exec_hook} (optionnal):
  3820. This method is called every time a task has been executed.
  3821. @item @code{policy_name}:
  3822. Name of the policy (optionnal).
  3823. @item @code{policy_description}:
  3824. Description of the policy (optionnal).
  3825. @end table
  3826. @end table
  3827. @node starpu_worker_set_sched_condition
  3828. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3829. @deftypefun void starpu_worker_set_sched_condition (int @var{workerid}, pthread_cond_t *@var{sched_cond}, pthread_mutex_t *@var{sched_mutex})
  3830. When there is no available task for a worker, StarPU blocks this worker on a
  3831. condition variable. This function specifies which condition variable (and the
  3832. associated mutex) should be used to block (and to wake up) a worker. Note that
  3833. multiple workers may use the same condition variable. For instance, in the case
  3834. of a scheduling strategy with a single task queue, the same condition variable
  3835. would be used to block and wake up all workers.
  3836. The initialization method of a scheduling strategy (@code{init_sched}) must
  3837. call this function once per worker.
  3838. @end deftypefun
  3839. @node starpu_sched_set_min_priority
  3840. @subsection @code{starpu_sched_set_min_priority}
  3841. @deftypefun void starpu_sched_set_min_priority (int @var{min_prio})
  3842. Defines the minimum priority level supported by the scheduling policy. The
  3843. default minimum priority level is the same as the default priority level which
  3844. is 0 by convention. The application may access that value by calling the
  3845. @code{starpu_sched_get_min_priority} function. This function should only be
  3846. called from the initialization method of the scheduling policy, and should not
  3847. be used directly from the application.
  3848. @end deftypefun
  3849. @node starpu_sched_set_max_priority
  3850. @subsection @code{starpu_sched_set_max_priority}
  3851. @deftypefun void starpu_sched_set_min_priority (int @var{max_prio})
  3852. Defines the maximum priority level supported by the scheduling policy. The
  3853. default maximum priority level is 1. The application may access that value by
  3854. calling the @code{starpu_sched_get_max_priority} function. This function should
  3855. only be called from the initialization method of the scheduling policy, and
  3856. should not be used directly from the application.
  3857. @end deftypefun
  3858. @node starpu_push_local_task
  3859. @subsection @code{starpu_push_local_task}
  3860. @deftypefun int starpu_push_local_task (int @var{workerid}, {struct starpu_task} *@var{task}, int @var{back})
  3861. The scheduling policy may put tasks directly into a worker's local queue so
  3862. that it is not always necessary to create its own queue when the local queue
  3863. is sufficient. If "back" not null, the task is put at the back of the queue
  3864. where the worker will pop tasks first. Setting "back" to 0 therefore ensures
  3865. a FIFO ordering.
  3866. @end deftypefun
  3867. @node Source code
  3868. @subsection Source code
  3869. @cartouche
  3870. @smallexample
  3871. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3872. .init_sched = init_dummy_sched,
  3873. .deinit_sched = deinit_dummy_sched,
  3874. .push_task = push_task_dummy,
  3875. .push_prio_task = NULL,
  3876. .pop_task = pop_task_dummy,
  3877. .post_exec_hook = NULL,
  3878. .pop_every_task = NULL,
  3879. .policy_name = "dummy",
  3880. .policy_description = "dummy scheduling strategy"
  3881. @};
  3882. @end smallexample
  3883. @end cartouche
  3884. @c ---------------------------------------------------------------------
  3885. @c Appendices
  3886. @c ---------------------------------------------------------------------
  3887. @c ---------------------------------------------------------------------
  3888. @c Full source code for the 'Scaling a Vector' example
  3889. @c ---------------------------------------------------------------------
  3890. @node Full source code for the 'Scaling a Vector' example
  3891. @appendix Full source code for the 'Scaling a Vector' example
  3892. @menu
  3893. * Main application::
  3894. * CPU Kernel::
  3895. * CUDA Kernel::
  3896. * OpenCL Kernel::
  3897. @end menu
  3898. @node Main application
  3899. @section Main application
  3900. @smallexample
  3901. @include vector_scal_c.texi
  3902. @end smallexample
  3903. @node CPU Kernel
  3904. @section CPU Kernel
  3905. @smallexample
  3906. @include vector_scal_cpu.texi
  3907. @end smallexample
  3908. @node CUDA Kernel
  3909. @section CUDA Kernel
  3910. @smallexample
  3911. @include vector_scal_cuda.texi
  3912. @end smallexample
  3913. @node OpenCL Kernel
  3914. @section OpenCL Kernel
  3915. @menu
  3916. * Invoking the kernel::
  3917. * Source of the kernel::
  3918. @end menu
  3919. @node Invoking the kernel
  3920. @subsection Invoking the kernel
  3921. @smallexample
  3922. @include vector_scal_opencl.texi
  3923. @end smallexample
  3924. @node Source of the kernel
  3925. @subsection Source of the kernel
  3926. @smallexample
  3927. @include vector_scal_opencl_codelet.texi
  3928. @end smallexample
  3929. @c
  3930. @c Indices.
  3931. @c
  3932. @node Function Index
  3933. @unnumbered Function Index
  3934. @printindex fn
  3935. @bye