| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 | # StarPU --- Runtime system for heterogeneous multicore architectures.## Copyright (C) 2010  Université de Bordeaux 1# Copyright (C) 2010, 2011  Centre National de la Recherche Scientifique## StarPU is free software; you can redistribute it and/or modify# it under the terms of the GNU Lesser General Public License as published by# the Free Software Foundation; either version 2.1 of the License, or (at# your option) any later version.## StarPU is distributed in the hope that it will be useful, but# WITHOUT ANY WARRANTY; without even the implied warranty of# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.## See the GNU Lesser General Public License in COPYING.LGPL for more details.max <- 30sizelist <- seq(64, max*1024, 64);#schedlist <- c("greedy", "prio", "dm", "random", "no-prio", "ws");#schedlist <- c("greedy", "prio", "dm", "random");#grainlist <- c(256, 512, 1024)grainlist <- c(512, 1024)gflops <- function (x, size){	2*size*size*size/(3000000*x);}parse <- function (size, grain){	filename = paste("timing/granularity", grain, size, sep=".");	if (file.exists(filename))	{		ret <- scan(filename);		return(ret);	}	return (NA);}handle_size <- function (size, grain){	parsed <- parse(size, grain);	if (is.na(parsed))	{		return (NA);	}	gflops <- gflops(parsed, size);	return(gflops);}handle_grain <- function(grain){	gflopstab <- NULL;	sizetab <- NULL;	for (size in sizelist)	{		list <- handle_size(size, grain);		if (!is.na(list))		{			gflopstab <- c(gflopstab, list);			sizetab <- c(sizetab, array(size, c(length(list))));		}	}	return(		data.frame(gflops=gflopstab, size=sizetab, grain=array(grain, c(length(gflopstab)) ))	);}handle_grain_mean <- function(grain){	meantab <- NULL;	sizetab <- NULL;	for (size in sizelist)	{		list <- mean(handle_size(size, grain));		if (!is.na(list))		{			meantab <- c(meantab, list);			sizetab <- c(sizetab, array(size, c(length(list))));		}	}	return(		data.frame(gflops=meantab, size=sizetab, grain=array(grain, c(length(meantab)) ))#		meantab	);}parse_nm <- function (size, grain){	filename = paste("timing/granularity.nomodel", grain, size, sep=".");	if (file.exists(filename))	{		ret <- scan(filename);		return(ret);	}	return (NA);}handle_size_nm <- function (size, grain){	parsed <- parse_nm(size, grain);	if (is.na(parsed))	{		return (NA);	}	gflops <- gflops(parsed, size);	return(gflops);}handle_grain_nm <- function(grain){	gflopstab <- NULL;	sizetab <- NULL;	for (size in sizelist)	{		list <- handle_size_nm(size, grain);		if (!is.na(list))		{			gflopstab <- c(gflopstab, list);			sizetab <- c(sizetab, array(size, c(length(list))));		}	}	return(		data.frame(gflops=gflopstab, size=sizetab, grain=array(grain, c(length(gflopstab)) ))	);}handle_grain_mean_nm <- function(grain){	meantab <- NULL;	sizetab <- NULL;	for (size in sizelist)	{		list <- mean(handle_size_nm(size, grain));		if (!is.na(list))		{			meantab <- c(meantab, list);			sizetab <- c(sizetab, array(size, c(length(list))));		}	}	return(		data.frame(gflops=meantab, size=sizetab, grain=array(grain, c(length(meantab)) ))#		meantab	);}handle_grain_mean <- function(grain){	meantab <- NULL;	sizetab <- NULL;	for (size in sizelist)	{		list <- mean(handle_size(size, grain));		if (!is.na(list))		{			meantab <- c(meantab, list);			sizetab <- c(sizetab, array(size, c(length(list))));		}	}	return(		data.frame(gflops=meantab, size=sizetab, grain=array(grain, c(length(meantab)) ))#		meantab	);}trace_grain <- function(grain, color, style){#	points(handle_grain(grain)$size, handle_grain(grain)$gflops, col=color);	pouet <- handle_grain_mean(grain);	pouetgflops <- pouet$gflops;	pouetsize <- pouet$size;	lines(pouetsize, pouetgflops, col=color, legend.text=TRUE, type = "o", pch = style, lwd=2);	pouet <- handle_grain_mean_nm(grain);	pouetgflops <- pouet$gflops;	pouetsize <- pouet$size;	lines(pouetsize, pouetgflops, col=color, legend.text=TRUE, type = "o", pch = style, lwd=1);}display_grain <- function(){	xlist <- range(sizelist);	ylist <- range(c(0,100));	plot.new();	plot.window(xlist, ylist, log="");	i <- 0;	colarray <- c("magenta", "blue", "peru", "green3", "navy", "red", "green2", "black", "orange");	for (grain in grainlist)	{		trace_grain(grain, colarray[i+1], -1);		i <- i + 1;	}	#axis(1, at=seq(0, max*1024, 1024), log="x")	axis(1)	axis(2, at=seq(0, 100, 10), tck=1)#	axis(4, at=seq(0, 100, 10))	box(bty="u")	labels <- c("256", "256 no model", "512", "512 no model", "1024", "1024 no model");	legend("bottomright", inset=.05, title="Tile size", labels, lwd=2, lty=c(1, 1, 1, 1, 1, 1), pch=-1, col=c("magenta", "magenta", "blue", "blue", "peru", "peru"), bty="y", bg="white")	mtext("matrix size", side=1, line=2, cex=1.6)	mtext("GFlops", side=2, line=2, las=0, cex=1.6)	title("Effect of granularity on the impact of scheduling");}display_grain()# boxplot(result, col=c("yellow", "red", "green"), xlab=sizelist);# plot(c(sizelist,sizelist,sizelist), c(result_greedy, result_prio, result_dm));# plot(sizelist, result_dm);# plot.new()# plot.window(range(c(sizelist,0) ), c(0, 6))
 |