performance_feedback.doxy 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581
  1. /*
  2. * This file is part of the StarPU Handbook.
  3. * Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. * Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. * Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. * See the file version.doxy for copying conditions.
  7. */
  8. /*! \page PerformanceFeedback Performance Feedback
  9. \section UsingTheTemanejoTaskDebugger Using The Temanejo Task Debugger
  10. StarPU can connect to Temanejo (see
  11. http://www.hlrs.de/temanejo), to permit
  12. nice visual task debugging. To do so, build Temanejo's <c>libayudame.so</c>,
  13. install <c>Ayudame.h</c> to e.g. <c>/usr/local/include</c>, apply the
  14. <c>tools/patch-ayudame</c> to it to fix C build, re-<c>./configure</c>, make
  15. sure that it found it, rebuild StarPU. Run the Temanejo GUI, give it the path
  16. to your application, any options you want to pass it, the path to libayudame.so.
  17. Make sure to specify at least the same number of CPUs in the dialog box as your
  18. machine has, otherwise an error will happen during execution. Future versions
  19. of Temanejo should be able to tell StarPU the number of CPUs to use.
  20. Tag numbers have to be below <c>4000000000000000000ULL</c> to be usable for
  21. Temanejo (so as to distinguish them from tasks).
  22. \section On-linePerformanceFeedback On-line Performance Feedback
  23. \subsection EnablingOn-linePerformanceMonitoring Enabling On-line Performance Monitoring
  24. In order to enable online performance monitoring, the application can
  25. call starpu_profiling_status_set() with the parameter
  26. ::STARPU_PROFILING_ENABLE. It is possible to detect whether monitoring
  27. is already enabled or not by calling starpu_profiling_status_get().
  28. Enabling monitoring also reinitialize all previously collected
  29. feedback. The <c>STARPU_PROFILING</c> environment variable can also be
  30. set to 1 to achieve the same effect.
  31. Likewise, performance monitoring is stopped by calling
  32. starpu_profiling_status_set() with the parameter
  33. ::STARPU_PROFILING_DISABLE. Note that this does not reset the
  34. performance counters so that the application may consult them later
  35. on.
  36. More details about the performance monitoring API are available in \ref API_Profiling.
  37. \subsection Per-taskFeedback Per-task Feedback
  38. If profiling is enabled, a pointer to a structure
  39. starpu_profiling_task_info is put in the field
  40. starpu_task::profiling_info when a task terminates. This structure is
  41. automatically destroyed when the task structure is destroyed, either
  42. automatically or by calling starpu_task_destroy().
  43. The structure starpu_profiling_task_info indicates the date when the
  44. task was submitted (starpu_profiling_task_info::submit_time), started
  45. (starpu_profiling_task_info::start_time), and terminated
  46. (starpu_profiling_task_info::end_time), relative to the initialization
  47. of StarPU with starpu_init(). It also specifies the identifier of the worker
  48. that has executed the task (starpu_profiling_task_info::workerid).
  49. These date are stored as <c>timespec</c> structures which the user may convert
  50. into micro-seconds using the helper function
  51. starpu_timing_timespec_to_us().
  52. It it worth noting that the application may directly access this structure from
  53. the callback executed at the end of the task. The structure starpu_task
  54. associated to the callback currently being executed is indeed accessible with
  55. the function starpu_task_get_current().
  56. \subsection Per-codeletFeedback Per-codelet Feedback
  57. The field starpu_codelet::per_worker_stats is
  58. an array of counters. The i-th entry of the array is incremented every time a
  59. task implementing the codelet is executed on the i-th worker.
  60. This array is not reinitialized when profiling is enabled or disabled.
  61. \subsection Per-workerFeedback Per-worker Feedback
  62. The second argument returned by the function
  63. starpu_profiling_worker_get_info() is a structure
  64. starpu_profiling_worker_info that gives statistics about the specified
  65. worker. This structure specifies when StarPU started collecting
  66. profiling information for that worker
  67. (starpu_profiling_worker_info::start_time), the
  68. duration of the profiling measurement interval
  69. (starpu_profiling_worker_info::total_time), the time spent executing
  70. kernels (starpu_profiling_worker_info::executing_time), the time
  71. spent sleeping because there is no task to execute at all
  72. (starpu_profiling_worker_info::sleeping_time), and the number of tasks that were executed
  73. while profiling was enabled. These values give an estimation of the
  74. proportion of time spent do real work, and the time spent either
  75. sleeping because there are not enough executable tasks or simply
  76. wasted in pure StarPU overhead.
  77. Calling starpu_profiling_worker_get_info() resets the profiling
  78. information associated to a worker.
  79. When an FxT trace is generated (see \ref GeneratingTracesWithFxT), it is also
  80. possible to use the tool <c>starpu_workers_activity</c> (see \ref
  81. MonitoringActivity) to generate a graphic showing the evolution of
  82. these values during the time, for the different workers.
  83. \subsection Bus-relatedFeedback Bus-related Feedback
  84. TODO: ajouter \ref STARPU_BUS_STATS
  85. \internal
  86. how to enable/disable performance monitoring
  87. what kind of information do we get ?
  88. \endinternal
  89. The bus speed measured by StarPU can be displayed by using the tool
  90. <c>starpu_machine_display</c>, for instance:
  91. \verbatim
  92. StarPU has found:
  93. 3 CUDA devices
  94. CUDA 0 (Tesla C2050 02:00.0)
  95. CUDA 1 (Tesla C2050 03:00.0)
  96. CUDA 2 (Tesla C2050 84:00.0)
  97. from to RAM to CUDA 0 to CUDA 1 to CUDA 2
  98. RAM 0.000000 5176.530428 5176.492994 5191.710722
  99. CUDA 0 4523.732446 0.000000 2414.074751 2417.379201
  100. CUDA 1 4523.718152 2414.078822 0.000000 2417.375119
  101. CUDA 2 4534.229519 2417.069025 2417.060863 0.000000
  102. \endverbatim
  103. \subsection StarPU-TopInterface StarPU-Top Interface
  104. StarPU-Top is an interface which remotely displays the on-line state of a StarPU
  105. application and permits the user to change parameters on the fly.
  106. Variables to be monitored can be registered by calling the functions
  107. starpu_top_add_data_boolean(), starpu_top_add_data_integer(),
  108. starpu_top_add_data_float(), e.g.:
  109. \code{.c}
  110. starpu_top_data *data = starpu_top_add_data_integer("mynum", 0, 100, 1);
  111. \endcode
  112. The application should then call starpu_top_init_and_wait() to give its name
  113. and wait for StarPU-Top to get a start request from the user. The name is used
  114. by StarPU-Top to quickly reload a previously-saved layout of parameter display.
  115. \code{.c}
  116. starpu_top_init_and_wait("the application");
  117. \endcode
  118. The new values can then be provided thanks to
  119. starpu_top_update_data_boolean(), starpu_top_update_data_integer(),
  120. starpu_top_update_data_float(), e.g.:
  121. \code{.c}
  122. starpu_top_update_data_integer(data, mynum);
  123. \endcode
  124. Updateable parameters can be registered thanks to starpu_top_register_parameter_boolean(), starpu_top_register_parameter_integer(), starpu_top_register_parameter_float(), e.g.:
  125. \code{.c}
  126. float alpha;
  127. starpu_top_register_parameter_float("alpha", &alpha, 0, 10, modif_hook);
  128. \endcode
  129. <c>modif_hook</c> is a function which will be called when the parameter is being modified, it can for instance print the new value:
  130. \code{.c}
  131. void modif_hook(struct starpu_top_param *d) {
  132. fprintf(stderr,"%s has been modified: %f\n", d->name, alpha);
  133. }
  134. \endcode
  135. Task schedulers should notify StarPU-Top when it has decided when a task will be
  136. scheduled, so that it can show it in its Gantt chart, for instance:
  137. \code{.c}
  138. starpu_top_task_prevision(task, workerid, begin, end);
  139. \endcode
  140. Starting StarPU-Top (StarPU-Top is started via the binary
  141. <c>starpu_top</c>.) and the application can be done two ways:
  142. <ul>
  143. <li> The application is started by hand on some machine (and thus already
  144. waiting for the start event). In the Preference dialog of StarPU-Top, the SSH
  145. checkbox should be unchecked, and the hostname and port (default is 2011) on
  146. which the application is already running should be specified. Clicking on the
  147. connection button will thus connect to the already-running application.
  148. </li>
  149. <li> StarPU-Top is started first, and clicking on the connection button will
  150. start the application itself (possibly on a remote machine). The SSH checkbox
  151. should be checked, and a command line provided, e.g.:
  152. \verbatim
  153. $ ssh myserver STARPU_SCHED=dmda ./application
  154. \endverbatim
  155. If port 2011 of the remote machine can not be accessed directly, an ssh port bridge should be added:
  156. \verbatim
  157. $ ssh -L 2011:localhost:2011 myserver STARPU_SCHED=dmda ./application
  158. \endverbatim
  159. and "localhost" should be used as IP Address to connect to.
  160. </li>
  161. </ul>
  162. \section Off-linePerformanceFeedback Off-line Performance Feedback
  163. \subsection GeneratingTracesWithFxT Generating Traces With FxT
  164. StarPU can use the FxT library (see
  165. https://savannah.nongnu.org/projects/fkt/) to generate traces
  166. with a limited runtime overhead.
  167. You can either get a tarball:
  168. \verbatim
  169. $ wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.11.tar.gz
  170. \endverbatim
  171. or use the FxT library from CVS (autotools are required):
  172. \verbatim
  173. $ cvs -d :pserver:anonymous\@cvs.sv.gnu.org:/sources/fkt co FxT
  174. $ ./bootstrap
  175. \endverbatim
  176. Compiling and installing the FxT library in the <c>$FXTDIR</c> path is
  177. done following the standard procedure:
  178. \verbatim
  179. $ ./configure --prefix=$FXTDIR
  180. $ make
  181. $ make install
  182. \endverbatim
  183. In order to have StarPU to generate traces, StarPU should be configured with
  184. the option \ref with-fxt :
  185. \verbatim
  186. $ ./configure --with-fxt=$FXTDIR
  187. \endverbatim
  188. Or you can simply point the <c>PKG_CONFIG_PATH</c> to
  189. <c>$FXTDIR/lib/pkgconfig</c> and pass \ref with-fxt to
  190. <c>./configure</c>
  191. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  192. starpu_shutdown()). The trace is a binary file whose name has the form
  193. <c>prof_file_XXX_YYY</c> where <c>XXX</c> is the user name, and
  194. <c>YYY</c> is the pid of the process that used StarPU. This file is saved in the
  195. <c>/tmp/</c> directory by default, or by the directory specified by
  196. the environment variable \ref STARPU_FXT_PREFIX.
  197. \subsection CreatingAGanttDiagram Creating a Gantt Diagram
  198. When the FxT trace file <c>filename</c> has been generated, it is possible to
  199. generate a trace in the Paje format by calling:
  200. \verbatim
  201. $ starpu_fxt_tool -i filename
  202. \endverbatim
  203. Or alternatively, setting the environment variable \ref STARPU_GENERATE_TRACE
  204. to <c>1</c> before application execution will make StarPU do it automatically at
  205. application shutdown.
  206. This will create a file <c>paje.trace</c> in the current directory that
  207. can be inspected with the <a href="http://vite.gforge.inria.fr/">ViTE trace
  208. visualizing open-source tool</a>. It is possible to open the
  209. <c>paje.trace</c> file with ViTE by using the following command:
  210. \verbatim
  211. $ vite paje.trace
  212. \endverbatim
  213. To get names of tasks instead of "unknown", fill the optional
  214. starpu_codelet::name, or use a performance model for them.
  215. In the MPI execution case, collect the trace files from the MPI nodes, and
  216. specify them all on the command <c>starpu_fxt_tool</c>, for instance:
  217. \verbatim
  218. $ starpu_fxt_tool -i filename1 -i filename2
  219. \endverbatim
  220. By default, all tasks are displayed using a green color. To display tasks with
  221. varying colors, pass option <c>-c</c> to <c>starpu_fxt_tool</c>.
  222. Traces can also be inspected by hand by using the tool <c>fxt_print</c>, for instance:
  223. \verbatim
  224. $ fxt_print -o -f filename
  225. \endverbatim
  226. Timings are in nanoseconds (while timings as seen in <c>vite</c> are in milliseconds).
  227. \subsection CreatingADAGWithGraphviz Creating a DAG With Graphviz
  228. When the FxT trace file <c>filename</c> has been generated, it is possible to
  229. generate a task graph in the DOT format by calling:
  230. \verbatim
  231. $ starpu_fxt_tool -i filename
  232. \endverbatim
  233. This will create a <c>dag.dot</c> file in the current directory. This file is a
  234. task graph described using the DOT language. It is possible to get a
  235. graphical output of the graph by using the graphviz library:
  236. \verbatim
  237. $ dot -Tpdf dag.dot -o output.pdf
  238. \endverbatim
  239. \subsection MonitoringActivity Monitoring Activity
  240. When the FxT trace file <c>filename</c> has been generated, it is possible to
  241. generate an activity trace by calling:
  242. \verbatim
  243. $ starpu_fxt_tool -i filename
  244. \endverbatim
  245. This will create an <c>activity.data</c> file in the current
  246. directory. A profile of the application showing the activity of StarPU
  247. during the execution of the program can be generated:
  248. \verbatim
  249. $ starpu_workers_activity activity.data
  250. \endverbatim
  251. This will create a file named <c>activity.eps</c> in the current directory.
  252. This picture is composed of two parts.
  253. The first part shows the activity of the different workers. The green sections
  254. indicate which proportion of the time was spent executed kernels on the
  255. processing unit. The red sections indicate the proportion of time spent in
  256. StartPU: an important overhead may indicate that the granularity may be too
  257. low, and that bigger tasks may be appropriate to use the processing unit more
  258. efficiently. The black sections indicate that the processing unit was blocked
  259. because there was no task to process: this may indicate a lack of parallelism
  260. which may be alleviated by creating more tasks when it is possible.
  261. The second part of the <c>activity.eps</c> picture is a graph showing the
  262. evolution of the number of tasks available in the system during the execution.
  263. Ready tasks are shown in black, and tasks that are submitted but not
  264. schedulable yet are shown in grey.
  265. \section PerformanceOfCodelets Performance Of Codelets
  266. The performance model of codelets (see \ref PerformanceModelExample)
  267. can be examined by using the tool <c>starpu_perfmodel_display</c>:
  268. \verbatim
  269. $ starpu_perfmodel_display -l
  270. file: <malloc_pinned.hannibal>
  271. file: <starpu_slu_lu_model_21.hannibal>
  272. file: <starpu_slu_lu_model_11.hannibal>
  273. file: <starpu_slu_lu_model_22.hannibal>
  274. file: <starpu_slu_lu_model_12.hannibal>
  275. \endverbatim
  276. Here, the codelets of the lu example are available. We can examine the
  277. performance of the 22 kernel (in micro-seconds), which is history-based:
  278. \verbatim
  279. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  280. performance model for cpu
  281. # hash size mean dev n
  282. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  283. performance model for cuda_0
  284. # hash size mean dev n
  285. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  286. performance model for cuda_1
  287. # hash size mean dev n
  288. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  289. performance model for cuda_2
  290. # hash size mean dev n
  291. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  292. \endverbatim
  293. We can see that for the given size, over a sample of a few hundreds of
  294. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  295. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  296. CPUs.
  297. This tool can also be used for regression-based performance models. It will then
  298. display the regression formula, and in the case of non-linear regression, the
  299. same performance log as for history-based performance models:
  300. \verbatim
  301. $ starpu_perfmodel_display -s non_linear_memset_regression_based
  302. performance model for cpu_impl_0
  303. Regression : #sample = 1400
  304. Linear: y = alpha size ^ beta
  305. alpha = 1.335973e-03
  306. beta = 8.024020e-01
  307. Non-Linear: y = a size ^b + c
  308. a = 5.429195e-04
  309. b = 8.654899e-01
  310. c = 9.009313e-01
  311. # hash size mean stddev n
  312. a3d3725e 4096 4.763200e+00 7.650928e-01 100
  313. 870a30aa 8192 1.827970e+00 2.037181e-01 100
  314. 48e988e9 16384 2.652800e+00 1.876459e-01 100
  315. 961e65d2 32768 4.255530e+00 3.518025e-01 100
  316. ...
  317. \endverbatim
  318. The same can also be achieved by using StarPU's library API, see
  319. \ref API_Performance_Model and notably the function
  320. starpu_perfmodel_load_symbol(). The source code of the tool
  321. <c>starpu_perfmodel_display</c> can be a useful example.
  322. The tool <c>starpu_perfmodel_plot</c> can be used to draw performance
  323. models. It writes a <c>.gp</c> file in the current directory, to be
  324. run in the <c>gnuplot</c> tool, which shows the corresponding curve.
  325. When the field starpu_task::flops is set, <c>starpu_perfmodel_plot</c> can
  326. directly draw a GFlops curve, by simply adding the <c>-f</c> option:
  327. \verbatim
  328. $ starpu_perfmodel_display -f -s chol_model_11
  329. \endverbatim
  330. This will however disable displaying the regression model, for which we can not
  331. compute GFlops.
  332. When the FxT trace file <c>filename</c> has been generated, it is possible to
  333. get a profiling of each codelet by calling:
  334. \verbatim
  335. $ starpu_fxt_tool -i filename
  336. $ starpu_codelet_profile distrib.data codelet_name
  337. \endverbatim
  338. This will create profiling data files, and a <c>.gp</c> file in the current
  339. directory, which draws the distribution of codelet time over the application
  340. execution, according to data input size.
  341. This is also available in the tool <c>starpu_perfmodel_plot</c>, by passing it
  342. the fxt trace:
  343. \verbatim
  344. $ starpu_perfmodel_plot -s non_linear_memset_regression_based -i /tmp/prof_file_foo_0
  345. \endverbatim
  346. It will produce a <c>.gp</c> file which contains both the performance model
  347. curves, and the profiling measurements.
  348. If you have the <c>R</c> statistical tool installed, you can additionally use
  349. \verbatim
  350. $ starpu_codelet_histo_profile distrib.data
  351. \endverbatim
  352. Which will create one pdf file per codelet and per input size, showing a
  353. histogram of the codelet execution time distribution.
  354. \section TheoreticalLowerBoundOnExecutionTime Theoretical Lower Bound On Execution Time
  355. StarPU can record a trace of what tasks are needed to complete the
  356. application, and then, by using a linear system, provide a theoretical lower
  357. bound of the execution time (i.e. with an ideal scheduling).
  358. The computed bound is not really correct when not taking into account
  359. dependencies, but for an application which have enough parallelism, it is very
  360. near to the bound computed with dependencies enabled (which takes a huge lot
  361. more time to compute), and thus provides a good-enough estimation of the ideal
  362. execution time.
  363. \ref TheoreticalLowerBoundOnExecutionTimeExample provides an example on how to
  364. use this.
  365. \section MemoryFeedback Memory Feedback
  366. It is possible to enable memory statistics. To do so, you need to pass
  367. the option \ref enable-memory-stats when running configure. It is then
  368. possible to call the function starpu_display_memory_stats() to
  369. display statistics about the current data handles registered within StarPU.
  370. Moreover, statistics will be displayed at the end of the execution on
  371. data handles which have not been cleared out. This can be disabled by
  372. setting the environment variable \ref STARPU_MEMORY_STATS to 0.
  373. For example, if you do not unregister data at the end of the complex
  374. example, you will get something similar to:
  375. \verbatim
  376. $ STARPU_MEMORY_STATS=0 ./examples/interface/complex
  377. Complex[0] = 45.00 + 12.00 i
  378. Complex[0] = 78.00 + 78.00 i
  379. Complex[0] = 45.00 + 12.00 i
  380. Complex[0] = 45.00 + 12.00 i
  381. \endverbatim
  382. \verbatim
  383. $ STARPU_MEMORY_STATS=1 ./examples/interface/complex
  384. Complex[0] = 45.00 + 12.00 i
  385. Complex[0] = 78.00 + 78.00 i
  386. Complex[0] = 45.00 + 12.00 i
  387. Complex[0] = 45.00 + 12.00 i
  388. #---------------------
  389. Memory stats:
  390. #-------
  391. Data on Node #3
  392. #-----
  393. Data : 0x553ff40
  394. Size : 16
  395. #--
  396. Data access stats
  397. /!\ Work Underway
  398. Node #0
  399. Direct access : 4
  400. Loaded (Owner) : 0
  401. Loaded (Shared) : 0
  402. Invalidated (was Owner) : 0
  403. Node #3
  404. Direct access : 0
  405. Loaded (Owner) : 0
  406. Loaded (Shared) : 1
  407. Invalidated (was Owner) : 0
  408. #-----
  409. Data : 0x5544710
  410. Size : 16
  411. #--
  412. Data access stats
  413. /!\ Work Underway
  414. Node #0
  415. Direct access : 2
  416. Loaded (Owner) : 0
  417. Loaded (Shared) : 1
  418. Invalidated (was Owner) : 1
  419. Node #3
  420. Direct access : 0
  421. Loaded (Owner) : 1
  422. Loaded (Shared) : 0
  423. Invalidated (was Owner) : 0
  424. \endverbatim
  425. \section DataStatistics Data Statistics
  426. Different data statistics can be displayed at the end of the execution
  427. of the application. To enable them, you need to pass the option \ref
  428. enable-stats when calling <c>configure</c>. When calling
  429. starpu_shutdown() various statistics will be displayed,
  430. execution, MSI cache statistics, allocation cache statistics, and data
  431. transfer statistics. The display can be disabled by setting the
  432. environment variable \ref STARPU_STATS to 0.
  433. \verbatim
  434. $ ./examples/cholesky/cholesky_tag
  435. Computation took (in ms)
  436. 518.16
  437. Synthetic GFlops : 44.21
  438. #---------------------
  439. MSI cache stats :
  440. TOTAL MSI stats hit 1622 (66.23 %) miss 827 (33.77 %)
  441. ...
  442. \endverbatim
  443. \verbatim
  444. $ STARPU_STATS=0 ./examples/cholesky/cholesky_tag
  445. Computation took (in ms)
  446. 518.16
  447. Synthetic GFlops : 44.21
  448. \endverbatim
  449. \internal
  450. TODO: data transfer stats are similar to the ones displayed when
  451. setting STARPU_BUS_STATS
  452. \endinternal
  453. */