cg_kernels.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010, 2012 Université de Bordeaux 1
  4. *
  5. * StarPU is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * StarPU is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. #include "cg.h"
  17. #include <math.h>
  18. #include <limits.h>
  19. #if 0
  20. static void print_vector_from_descr(unsigned nx, TYPE *v)
  21. {
  22. unsigned i;
  23. for (i = 0; i < nx; i++)
  24. {
  25. fprintf(stderr, "%2.2e ", v[i]);
  26. }
  27. fprintf(stderr, "\n");
  28. }
  29. static void print_matrix_from_descr(unsigned nx, unsigned ny, unsigned ld, TYPE *mat)
  30. {
  31. unsigned i, j;
  32. for (j = 0; j < nx; j++)
  33. {
  34. for (i = 0; i < ny; i++)
  35. {
  36. fprintf(stderr, "%2.2e ", mat[j+i*ld]);
  37. }
  38. fprintf(stderr, "\n");
  39. }
  40. }
  41. #endif
  42. /*
  43. * Reduction accumulation methods
  44. */
  45. #ifdef STARPU_USE_CUDA
  46. static void accumulate_variable_cuda(void *descr[], void *cl_arg)
  47. {
  48. TYPE *v_dst = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  49. TYPE *v_src = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[1]);
  50. cublasaxpy(1, (TYPE)1.0, v_src, 1, v_dst, 1);
  51. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  52. }
  53. #endif
  54. static void accumulate_variable_cpu(void *descr[], void *cl_arg)
  55. {
  56. TYPE *v_dst = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  57. TYPE *v_src = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[1]);
  58. *v_dst = *v_dst + *v_src;
  59. }
  60. static struct starpu_perfmodel accumulate_variable_model =
  61. {
  62. .type = STARPU_HISTORY_BASED,
  63. .symbol = "accumulate_variable"
  64. };
  65. struct starpu_codelet accumulate_variable_cl =
  66. {
  67. .where = STARPU_CPU|STARPU_CUDA,
  68. .cpu_funcs = {accumulate_variable_cpu, NULL},
  69. #ifdef STARPU_USE_CUDA
  70. .cuda_funcs = {accumulate_variable_cuda, NULL},
  71. #endif
  72. .nbuffers = 2,
  73. .model = &accumulate_variable_model
  74. };
  75. #ifdef STARPU_USE_CUDA
  76. static void accumulate_vector_cuda(void *descr[], void *cl_arg)
  77. {
  78. TYPE *v_dst = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  79. TYPE *v_src = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  80. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  81. cublasaxpy(n, (TYPE)1.0, v_src, 1, v_dst, 1);
  82. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  83. }
  84. #endif
  85. static void accumulate_vector_cpu(void *descr[], void *cl_arg)
  86. {
  87. TYPE *v_dst = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  88. TYPE *v_src = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  89. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  90. AXPY(n, (TYPE)1.0, v_src, 1, v_dst, 1);
  91. }
  92. static struct starpu_perfmodel accumulate_vector_model =
  93. {
  94. .type = STARPU_HISTORY_BASED,
  95. .symbol = "accumulate_vector"
  96. };
  97. struct starpu_codelet accumulate_vector_cl =
  98. {
  99. .where = STARPU_CPU|STARPU_CUDA,
  100. .cpu_funcs = {accumulate_vector_cpu, NULL},
  101. #ifdef STARPU_USE_CUDA
  102. .cuda_funcs = {accumulate_vector_cuda, NULL},
  103. #endif
  104. .nbuffers = 2,
  105. .model = &accumulate_vector_model
  106. };
  107. /*
  108. * Reduction initialization methods
  109. */
  110. #ifdef STARPU_USE_CUDA
  111. extern void zero_vector(TYPE *x, unsigned nelems);
  112. static void bzero_variable_cuda(void *descr[], void *cl_arg)
  113. {
  114. TYPE *v = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  115. zero_vector(v, 1);
  116. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  117. }
  118. #endif
  119. static void bzero_variable_cpu(void *descr[], void *cl_arg)
  120. {
  121. TYPE *v = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  122. *v = (TYPE)0.0;
  123. }
  124. static struct starpu_perfmodel bzero_variable_model =
  125. {
  126. .type = STARPU_HISTORY_BASED,
  127. .symbol = "bzero_variable"
  128. };
  129. struct starpu_codelet bzero_variable_cl =
  130. {
  131. .where = STARPU_CPU|STARPU_CUDA,
  132. .cpu_funcs = {bzero_variable_cpu, NULL},
  133. #ifdef STARPU_USE_CUDA
  134. .cuda_funcs = {bzero_variable_cuda, NULL},
  135. #endif
  136. .nbuffers = 1,
  137. .model = &bzero_variable_model
  138. };
  139. #ifdef STARPU_USE_CUDA
  140. static void bzero_vector_cuda(void *descr[], void *cl_arg)
  141. {
  142. TYPE *v = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  143. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  144. zero_vector(v, n);
  145. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  146. }
  147. #endif
  148. static void bzero_vector_cpu(void *descr[], void *cl_arg)
  149. {
  150. TYPE *v = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  151. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  152. memset(v, 0, n*sizeof(TYPE));
  153. }
  154. static struct starpu_perfmodel bzero_vector_model =
  155. {
  156. .type = STARPU_HISTORY_BASED,
  157. .symbol = "bzero_vector"
  158. };
  159. struct starpu_codelet bzero_vector_cl =
  160. {
  161. .where = STARPU_CPU|STARPU_CUDA,
  162. .cpu_funcs = {bzero_vector_cpu, NULL},
  163. #ifdef STARPU_USE_CUDA
  164. .cuda_funcs = {bzero_vector_cuda, NULL},
  165. #endif
  166. .nbuffers = 1,
  167. .model = &bzero_vector_model
  168. };
  169. /*
  170. * DOT kernel : s = dot(v1, v2)
  171. */
  172. #ifdef STARPU_USE_CUDA
  173. extern void dot_host(TYPE *x, TYPE *y, unsigned nelems, TYPE *dot);
  174. static void dot_kernel_cuda(void *descr[], void *cl_arg)
  175. {
  176. TYPE *dot = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  177. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  178. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);
  179. unsigned n = STARPU_VECTOR_GET_NX(descr[1]);
  180. /* Contrary to cublasSdot, this function puts its result directly in
  181. * device memory, so that we don't have to transfer that value back and
  182. * forth. */
  183. dot_host(v1, v2, n, dot);
  184. }
  185. #endif
  186. static void dot_kernel_cpu(void *descr[], void *cl_arg)
  187. {
  188. TYPE *dot = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  189. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  190. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);
  191. unsigned n = STARPU_VECTOR_GET_NX(descr[1]);
  192. TYPE local_dot = 0.0;
  193. /* Note that we explicitely cast the result of the DOT kernel because
  194. * some BLAS library will return a double for sdot for instance. */
  195. local_dot = (TYPE)DOT(n, v1, 1, v2, 1);
  196. *dot = *dot + local_dot;
  197. }
  198. static struct starpu_perfmodel dot_kernel_model =
  199. {
  200. .type = STARPU_HISTORY_BASED,
  201. .symbol = "dot_kernel"
  202. };
  203. static struct starpu_codelet dot_kernel_cl =
  204. {
  205. .where = STARPU_CPU|STARPU_CUDA,
  206. .cpu_funcs = {dot_kernel_cpu, NULL},
  207. #ifdef STARPU_USE_CUDA
  208. .cuda_funcs = {dot_kernel_cuda, NULL},
  209. #endif
  210. .nbuffers = 3,
  211. .model = &dot_kernel_model
  212. };
  213. int dot_kernel(starpu_data_handle_t v1,
  214. starpu_data_handle_t v2,
  215. starpu_data_handle_t s,
  216. unsigned nblocks,
  217. int use_reduction)
  218. {
  219. int ret;
  220. /* Blank the accumulation variable */
  221. ret = starpu_insert_task(&bzero_variable_cl, STARPU_W, s, 0);
  222. if (ret == -ENODEV) return ret;
  223. STARPU_CHECK_RETURN_VALUE(ret, "starpu_insert_task");
  224. unsigned b;
  225. for (b = 0; b < nblocks; b++)
  226. {
  227. ret = starpu_insert_task(&dot_kernel_cl,
  228. use_reduction?STARPU_REDUX:STARPU_RW, s,
  229. STARPU_R, starpu_data_get_sub_data(v1, 1, b),
  230. STARPU_R, starpu_data_get_sub_data(v2, 1, b),
  231. 0);
  232. STARPU_CHECK_RETURN_VALUE(ret, "starpu_insert_task");
  233. }
  234. return 0;
  235. }
  236. /*
  237. * SCAL kernel : v1 = p1 v1
  238. */
  239. #ifdef STARPU_USE_CUDA
  240. static void scal_kernel_cuda(void *descr[], void *cl_arg)
  241. {
  242. TYPE p1;
  243. starpu_codelet_unpack_args(cl_arg, &p1);
  244. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  245. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  246. /* v1 = p1 v1 */
  247. TYPE alpha = p1;
  248. cublasscal(n, alpha, v1, 1);
  249. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  250. }
  251. #endif
  252. static void scal_kernel_cpu(void *descr[], void *cl_arg)
  253. {
  254. TYPE alpha;
  255. starpu_codelet_unpack_args(cl_arg, &alpha);
  256. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  257. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  258. /* v1 = alpha v1 */
  259. SCAL(n, alpha, v1, 1);
  260. }
  261. static struct starpu_perfmodel scal_kernel_model =
  262. {
  263. .type = STARPU_HISTORY_BASED,
  264. .symbol = "scal_kernel"
  265. };
  266. static struct starpu_codelet scal_kernel_cl =
  267. {
  268. .where = STARPU_CPU|STARPU_CUDA,
  269. .cpu_funcs = {scal_kernel_cpu, NULL},
  270. #ifdef STARPU_USE_CUDA
  271. .cuda_funcs = {scal_kernel_cuda, NULL},
  272. #endif
  273. .nbuffers = 1,
  274. .model = &scal_kernel_model
  275. };
  276. /*
  277. * GEMV kernel : v1 = p1 * v1 + p2 * M v2
  278. */
  279. #ifdef STARPU_USE_CUDA
  280. static void gemv_kernel_cuda(void *descr[], void *cl_arg)
  281. {
  282. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  283. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);
  284. TYPE *M = (TYPE *)STARPU_MATRIX_GET_PTR(descr[1]);
  285. unsigned ld = STARPU_MATRIX_GET_LD(descr[1]);
  286. unsigned nx = STARPU_MATRIX_GET_NX(descr[1]);
  287. unsigned ny = STARPU_MATRIX_GET_NY(descr[1]);
  288. TYPE alpha, beta;
  289. starpu_codelet_unpack_args(cl_arg, &beta, &alpha);
  290. /* Compute v1 = alpha M v2 + beta v1 */
  291. cublasgemv('N', nx, ny, alpha, M, ld, v2, 1, beta, v1, 1);
  292. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  293. }
  294. #endif
  295. static void gemv_kernel_cpu(void *descr[], void *cl_arg)
  296. {
  297. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  298. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);
  299. TYPE *M = (TYPE *)STARPU_MATRIX_GET_PTR(descr[1]);
  300. unsigned ld = STARPU_MATRIX_GET_LD(descr[1]);
  301. unsigned nx = STARPU_MATRIX_GET_NX(descr[1]);
  302. unsigned ny = STARPU_MATRIX_GET_NY(descr[1]);
  303. TYPE alpha, beta;
  304. starpu_codelet_unpack_args(cl_arg, &beta, &alpha);
  305. int worker_size = starpu_combined_worker_get_size();
  306. if (worker_size > 1)
  307. {
  308. /* Parallel CPU task */
  309. int rank = starpu_combined_worker_get_rank();
  310. int block_size = (ny + worker_size - 1)/worker_size;
  311. int new_nx = STARPU_MIN(nx, block_size*(rank+1)) - block_size*rank;
  312. nx = new_nx;
  313. v1 = &v1[block_size*rank];
  314. M = &M[block_size*rank];
  315. }
  316. /* Compute v1 = alpha M v2 + beta v1 */
  317. GEMV("N", nx, ny, alpha, M, ld, v2, 1, beta, v1, 1);
  318. }
  319. static struct starpu_perfmodel gemv_kernel_model =
  320. {
  321. .type = STARPU_HISTORY_BASED,
  322. .symbol = "gemv_kernel"
  323. };
  324. static struct starpu_codelet gemv_kernel_cl =
  325. {
  326. .where = STARPU_CPU|STARPU_CUDA,
  327. .type = STARPU_SPMD,
  328. .max_parallelism = INT_MAX,
  329. .cpu_funcs = {gemv_kernel_cpu, NULL},
  330. #ifdef STARPU_USE_CUDA
  331. .cuda_funcs = {gemv_kernel_cuda, NULL},
  332. #endif
  333. .nbuffers = 3,
  334. .model = &gemv_kernel_model
  335. };
  336. int gemv_kernel(starpu_data_handle_t v1,
  337. starpu_data_handle_t matrix,
  338. starpu_data_handle_t v2,
  339. TYPE p1, TYPE p2,
  340. unsigned nblocks,
  341. int use_reduction)
  342. {
  343. unsigned b1, b2;
  344. int ret;
  345. for (b2 = 0; b2 < nblocks; b2++)
  346. {
  347. ret = starpu_insert_task(&scal_kernel_cl,
  348. STARPU_RW, starpu_data_get_sub_data(v1, 1, b2),
  349. STARPU_VALUE, &p1, sizeof(p1),
  350. 0);
  351. if (ret == -ENODEV) return ret;
  352. STARPU_CHECK_RETURN_VALUE(ret, "starpu_insert_task");
  353. }
  354. for (b2 = 0; b2 < nblocks; b2++)
  355. {
  356. for (b1 = 0; b1 < nblocks; b1++)
  357. {
  358. TYPE one = 1.0;
  359. ret = starpu_insert_task(&gemv_kernel_cl,
  360. use_reduction?STARPU_REDUX:STARPU_RW, starpu_data_get_sub_data(v1, 1, b2),
  361. STARPU_R, starpu_data_get_sub_data(matrix, 2, b2, b1),
  362. STARPU_R, starpu_data_get_sub_data(v2, 1, b1),
  363. STARPU_VALUE, &one, sizeof(one),
  364. STARPU_VALUE, &p2, sizeof(p2),
  365. 0);
  366. STARPU_CHECK_RETURN_VALUE(ret, "starpu_insert_task");
  367. }
  368. }
  369. return 0;
  370. }
  371. /*
  372. * AXPY + SCAL kernel : v1 = p1 * v1 + p2 * v2
  373. */
  374. #ifdef STARPU_USE_CUDA
  375. static void scal_axpy_kernel_cuda(void *descr[], void *cl_arg)
  376. {
  377. TYPE p1, p2;
  378. starpu_codelet_unpack_args(cl_arg, &p1, &p2);
  379. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  380. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  381. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  382. /* Compute v1 = p1 * v1 + p2 * v2.
  383. * v1 = p1 v1
  384. * v1 = v1 + p2 v2
  385. */
  386. cublasscal(n, p1, v1, 1);
  387. cublasaxpy(n, p2, v2, 1, v1, 1);
  388. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  389. }
  390. #endif
  391. static void scal_axpy_kernel_cpu(void *descr[], void *cl_arg)
  392. {
  393. TYPE p1, p2;
  394. starpu_codelet_unpack_args(cl_arg, &p1, &p2);
  395. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  396. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  397. unsigned nx = STARPU_VECTOR_GET_NX(descr[0]);
  398. /* Compute v1 = p1 * v1 + p2 * v2.
  399. * v1 = p1 v1
  400. * v1 = v1 + p2 v2
  401. */
  402. SCAL(nx, p1, v1, 1);
  403. AXPY(nx, p2, v2, 1, v1, 1);
  404. }
  405. static struct starpu_perfmodel scal_axpy_kernel_model =
  406. {
  407. .type = STARPU_HISTORY_BASED,
  408. .symbol = "scal_axpy_kernel"
  409. };
  410. static struct starpu_codelet scal_axpy_kernel_cl =
  411. {
  412. .where = STARPU_CPU|STARPU_CUDA,
  413. .cpu_funcs = {scal_axpy_kernel_cpu, NULL},
  414. #ifdef STARPU_USE_CUDA
  415. .cuda_funcs = {scal_axpy_kernel_cuda, NULL},
  416. #endif
  417. .nbuffers = 2,
  418. .model = &scal_axpy_kernel_model
  419. };
  420. int scal_axpy_kernel(starpu_data_handle_t v1, TYPE p1,
  421. starpu_data_handle_t v2, TYPE p2,
  422. unsigned nblocks)
  423. {
  424. int ret;
  425. unsigned b;
  426. for (b = 0; b < nblocks; b++)
  427. {
  428. ret = starpu_insert_task(&scal_axpy_kernel_cl,
  429. STARPU_RW, starpu_data_get_sub_data(v1, 1, b),
  430. STARPU_R, starpu_data_get_sub_data(v2, 1, b),
  431. STARPU_VALUE, &p1, sizeof(p1),
  432. STARPU_VALUE, &p2, sizeof(p2),
  433. 0);
  434. if (ret == -ENODEV) return ret;
  435. STARPU_CHECK_RETURN_VALUE(ret, "starpu_insert_task");
  436. }
  437. return 0;
  438. }
  439. /*
  440. * AXPY kernel : v1 = v1 + p1 * v2
  441. */
  442. #ifdef STARPU_USE_CUDA
  443. static void axpy_kernel_cuda(void *descr[], void *cl_arg)
  444. {
  445. TYPE p1;
  446. starpu_codelet_unpack_args(cl_arg, &p1);
  447. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  448. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  449. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  450. /* Compute v1 = v1 + p1 * v2.
  451. */
  452. cublasaxpy(n, p1, v2, 1, v1, 1);
  453. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  454. }
  455. #endif
  456. static void axpy_kernel_cpu(void *descr[], void *cl_arg)
  457. {
  458. TYPE p1;
  459. starpu_codelet_unpack_args(cl_arg, &p1);
  460. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  461. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  462. unsigned nx = STARPU_VECTOR_GET_NX(descr[0]);
  463. /* Compute v1 = p1 * v1 + p2 * v2.
  464. */
  465. AXPY(nx, p1, v2, 1, v1, 1);
  466. }
  467. static struct starpu_perfmodel axpy_kernel_model =
  468. {
  469. .type = STARPU_HISTORY_BASED,
  470. .symbol = "axpy_kernel"
  471. };
  472. static struct starpu_codelet axpy_kernel_cl =
  473. {
  474. .where = STARPU_CPU|STARPU_CUDA,
  475. .cpu_funcs = {axpy_kernel_cpu, NULL},
  476. #ifdef STARPU_USE_CUDA
  477. .cuda_funcs = {axpy_kernel_cuda, NULL},
  478. #endif
  479. .nbuffers = 2,
  480. .model = &axpy_kernel_model
  481. };
  482. int axpy_kernel(starpu_data_handle_t v1,
  483. starpu_data_handle_t v2, TYPE p1,
  484. unsigned nblocks)
  485. {
  486. int ret;
  487. unsigned b;
  488. for (b = 0; b < nblocks; b++)
  489. {
  490. ret = starpu_insert_task(&axpy_kernel_cl,
  491. STARPU_RW, starpu_data_get_sub_data(v1, 1, b),
  492. STARPU_R, starpu_data_get_sub_data(v2, 1, b),
  493. STARPU_VALUE, &p1, sizeof(p1),
  494. 0);
  495. if (ret == -ENODEV) return ret;
  496. STARPU_CHECK_RETURN_VALUE(ret, "starpu_insert_task");
  497. }
  498. return 0;
  499. }
  500. int copy_handle(starpu_data_handle_t dst, starpu_data_handle_t src, unsigned nblocks)
  501. {
  502. unsigned b;
  503. for (b = 0; b < nblocks; b++)
  504. starpu_data_cpy(starpu_data_get_sub_data(dst, 1, b), starpu_data_get_sub_data(src, 1, b), 1, NULL, NULL);
  505. return 0;
  506. }