cholesky_implicit.c 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009-2012 Université de Bordeaux 1
  4. * Copyright (C) 2010 Mehdi Juhoor <mjuhoor@gmail.com>
  5. * Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. #include "cholesky.h"
  19. #include "../sched_ctx_utils/sched_ctx_utils.h"
  20. /*
  21. * Create the codelets
  22. */
  23. static struct starpu_codelet cl11 =
  24. {
  25. .where = STARPU_CPU|STARPU_CUDA,
  26. .type = STARPU_SEQ,
  27. .cpu_funcs = {chol_cpu_codelet_update_u11, NULL},
  28. #ifdef STARPU_USE_CUDA
  29. .cuda_funcs = {chol_cublas_codelet_update_u11, NULL},
  30. #endif
  31. .nbuffers = 1,
  32. .modes = {STARPU_RW},
  33. .model = &chol_model_11
  34. };
  35. static struct starpu_codelet cl21 =
  36. {
  37. .where = STARPU_CPU|STARPU_CUDA,
  38. .type = STARPU_SEQ,
  39. .cpu_funcs = {chol_cpu_codelet_update_u21, NULL},
  40. #ifdef STARPU_USE_CUDA
  41. .cuda_funcs = {chol_cublas_codelet_update_u21, NULL},
  42. #endif
  43. .nbuffers = 2,
  44. .modes = {STARPU_R, STARPU_RW},
  45. .model = &chol_model_21
  46. };
  47. static struct starpu_codelet cl22 =
  48. {
  49. .where = STARPU_CPU|STARPU_CUDA,
  50. .type = STARPU_SEQ,
  51. .max_parallelism = INT_MAX,
  52. .cpu_funcs = {chol_cpu_codelet_update_u22, NULL},
  53. #ifdef STARPU_USE_CUDA
  54. .cuda_funcs = {chol_cublas_codelet_update_u22, NULL},
  55. #endif
  56. .nbuffers = 3,
  57. .modes = {STARPU_R, STARPU_R, STARPU_RW},
  58. .model = &chol_model_22
  59. };
  60. /*
  61. * code to bootstrap the factorization
  62. * and construct the DAG
  63. */
  64. static void callback_turn_spmd_on(void *arg __attribute__ ((unused)))
  65. {
  66. cl22.type = STARPU_SPMD;
  67. }
  68. static int _cholesky(starpu_data_handle_t dataA, unsigned nblocks)
  69. {
  70. int ret;
  71. double start;
  72. double end;
  73. unsigned i,j,k;
  74. int prio_level = noprio?STARPU_DEFAULT_PRIO:STARPU_MAX_PRIO;
  75. start = starpu_timing_now();
  76. if (bound)
  77. starpu_bound_start(bound_deps, 0);
  78. /* create all the DAG nodes */
  79. for (k = 0; k < nblocks; k++)
  80. {
  81. starpu_data_handle_t sdatakk = starpu_data_get_sub_data(dataA, 2, k, k);
  82. ret = starpu_insert_task(&cl11,
  83. STARPU_PRIORITY, prio_level,
  84. STARPU_RW, sdatakk,
  85. STARPU_CALLBACK, (k == 3*nblocks/4)?callback_turn_spmd_on:NULL,
  86. 0);
  87. if (ret == -ENODEV) return 77;
  88. STARPU_CHECK_RETURN_VALUE(ret, "starpu_insert_task");
  89. for (j = k+1; j<nblocks; j++)
  90. {
  91. starpu_data_handle_t sdatakj = starpu_data_get_sub_data(dataA, 2, k, j);
  92. ret = starpu_insert_task(&cl21,
  93. STARPU_PRIORITY, (j == k+1)?prio_level:STARPU_DEFAULT_PRIO,
  94. STARPU_R, sdatakk,
  95. STARPU_RW, sdatakj,
  96. 0);
  97. if (ret == -ENODEV) return 77;
  98. STARPU_CHECK_RETURN_VALUE(ret, "starpu_insert_task");
  99. for (i = k+1; i<nblocks; i++)
  100. {
  101. if (i <= j)
  102. {
  103. starpu_data_handle_t sdataki = starpu_data_get_sub_data(dataA, 2, k, i);
  104. starpu_data_handle_t sdataij = starpu_data_get_sub_data(dataA, 2, i, j);
  105. ret = starpu_insert_task(&cl22,
  106. STARPU_PRIORITY, ((i == k+1) && (j == k+1))?prio_level:STARPU_DEFAULT_PRIO,
  107. STARPU_R, sdataki,
  108. STARPU_R, sdatakj,
  109. STARPU_RW, sdataij,
  110. 0);
  111. if (ret == -ENODEV) return 77;
  112. STARPU_CHECK_RETURN_VALUE(ret, "starpu_insert_task");
  113. }
  114. }
  115. }
  116. }
  117. starpu_task_wait_for_all();
  118. if (bound)
  119. starpu_bound_stop();
  120. end = starpu_timing_now();
  121. double timing = end - start;
  122. unsigned long n = starpu_matrix_get_nx(dataA);
  123. double flop = (1.0f*n*n*n)/3.0f;
  124. if(with_ctxs || with_noctxs || chole1 || chole2)
  125. update_sched_ctx_timing_results((flop/timing/1000.0f), (timing/1000000.0f));
  126. else
  127. {
  128. FPRINTF(stderr, "Computation took (in ms)\n");
  129. FPRINTF(stdout, "%2.2f\n", timing/1000);
  130. FPRINTF(stderr, "Synthetic GFlops : %2.2f\n", (flop/timing/1000.0f));
  131. if (bound_lp)
  132. {
  133. FILE *f = fopen("cholesky.lp", "w");
  134. starpu_bound_print_lp(f);
  135. }
  136. if (bound)
  137. {
  138. double res;
  139. starpu_bound_compute(&res, NULL, 0);
  140. FPRINTF(stderr, "Theoretical GFlops: %2.2f\n", (flop/res/1000000.0f));
  141. }
  142. }
  143. return 0;
  144. }
  145. static int cholesky(float *matA, unsigned size, unsigned ld, unsigned nblocks)
  146. {
  147. starpu_data_handle_t dataA;
  148. /* monitor and partition the A matrix into blocks :
  149. * one block is now determined by 2 unsigned (i,j) */
  150. starpu_matrix_data_register(&dataA, 0, (uintptr_t)matA, ld, size, size, sizeof(float));
  151. struct starpu_data_filter f =
  152. {
  153. .filter_func = starpu_vertical_block_filter_func,
  154. .nchildren = nblocks
  155. };
  156. struct starpu_data_filter f2 =
  157. {
  158. .filter_func = starpu_block_filter_func,
  159. .nchildren = nblocks
  160. };
  161. starpu_data_map_filters(dataA, 2, &f, &f2);
  162. int ret = _cholesky(dataA, nblocks);
  163. starpu_data_unpartition(dataA, 0);
  164. starpu_data_unregister(dataA);
  165. return ret;
  166. }
  167. static void execute_cholesky(unsigned size, unsigned nblocks)
  168. {
  169. int ret;
  170. float *mat = NULL;
  171. unsigned i,j;
  172. #ifndef STARPU_SIMGRID
  173. starpu_malloc((void **)&mat, (size_t)size*size*sizeof(float));
  174. for (i = 0; i < size; i++)
  175. {
  176. for (j = 0; j < size; j++)
  177. {
  178. mat[j +i*size] = (1.0f/(1.0f+i+j)) + ((i == j)?1.0f*size:0.0f);
  179. /* mat[j +i*size] = ((i == j)?1.0f*size:0.0f); */
  180. }
  181. }
  182. #endif
  183. /* #define PRINT_OUTPUT */
  184. #ifdef PRINT_OUTPUT
  185. FPRINTF(stdout, "Input :\n");
  186. for (j = 0; j < size; j++)
  187. {
  188. for (i = 0; i < size; i++)
  189. {
  190. if (i <= j)
  191. {
  192. FPRINTF(stdout, "%2.2f\t", mat[j +i*size]);
  193. }
  194. else
  195. {
  196. FPRINTF(stdout, ".\t");
  197. }
  198. }
  199. FPRINTF(stdout, "\n");
  200. }
  201. #endif
  202. ret = cholesky(mat, size, size, nblocks);
  203. #ifdef PRINT_OUTPUT
  204. FPRINTF(stdout, "Results :\n");
  205. for (j = 0; j < size; j++)
  206. {
  207. for (i = 0; i < size; i++)
  208. {
  209. if (i <= j)
  210. {
  211. FPRINTF(stdout, "%2.2f\t", mat[j +i*size]);
  212. }
  213. else
  214. {
  215. FPRINTF(stdout, ".\t");
  216. mat[j+i*size] = 0.0f; /* debug */
  217. }
  218. }
  219. FPRINTF(stdout, "\n");
  220. }
  221. #endif
  222. if (check)
  223. {
  224. FPRINTF(stderr, "compute explicit LLt ...\n");
  225. for (j = 0; j < size; j++)
  226. {
  227. for (i = 0; i < size; i++)
  228. {
  229. if (i > j)
  230. {
  231. mat[j+i*size] = 0.0f; /* debug */
  232. }
  233. }
  234. }
  235. float *test_mat = malloc(size*size*sizeof(float));
  236. STARPU_ASSERT(test_mat);
  237. SSYRK("L", "N", size, size, 1.0f,
  238. mat, size, 0.0f, test_mat, size);
  239. FPRINTF(stderr, "comparing results ...\n");
  240. #ifdef PRINT_OUTPUT
  241. for (j = 0; j < size; j++)
  242. {
  243. for (i = 0; i < size; i++)
  244. {
  245. if (i <= j)
  246. {
  247. FPRINTF(stdout, "%2.2f\t", test_mat[j +i*size]);
  248. }
  249. else
  250. {
  251. FPRINTF(stdout, ".\t");
  252. }
  253. }
  254. FPRINTF(stdout, "\n");
  255. }
  256. #endif
  257. for (j = 0; j < size; j++)
  258. {
  259. for (i = 0; i < size; i++)
  260. {
  261. if (i <= j)
  262. {
  263. float orig = (1.0f/(1.0f+i+j)) + ((i == j)?1.0f*size:0.0f);
  264. float err = abs(test_mat[j +i*size] - orig);
  265. if (err > 0.00001)
  266. {
  267. FPRINTF(stderr, "Error[%u, %u] --> %2.2f != %2.2f (err %2.2f)\n", i, j, test_mat[j +i*size], orig, err);
  268. assert(0);
  269. }
  270. }
  271. }
  272. }
  273. free(test_mat);
  274. }
  275. starpu_free(mat);
  276. }
  277. int main(int argc, char **argv)
  278. {
  279. /* create a simple definite positive symetric matrix example
  280. *
  281. * Hilbert matrix : h(i,j) = 1/(i+j+1)
  282. * */
  283. parse_args(argc, argv);
  284. if(with_ctxs || with_noctxs || chole1 || chole2)
  285. parse_args_ctx(argc, argv);
  286. int ret;
  287. ret = starpu_init(NULL);
  288. if (ret == -ENODEV)
  289. return 77;
  290. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  291. starpu_helper_cublas_init();
  292. if(with_ctxs)
  293. {
  294. construct_contexts(execute_cholesky);
  295. start_2benchs(execute_cholesky);
  296. }
  297. else if(with_noctxs)
  298. start_2benchs(execute_cholesky);
  299. else if(chole1)
  300. start_1stbench(execute_cholesky);
  301. else if(chole2)
  302. start_2ndbench(execute_cholesky);
  303. else
  304. execute_cholesky(size, nblocks);
  305. starpu_helper_cublas_shutdown();
  306. starpu_shutdown();
  307. return ret;
  308. }