| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361 | /* dormbr.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static integer c__2 = 2;/* Subroutine */ int _starpu_dormbr_(char *vect, char *side, char *trans, integer *m, 	integer *n, integer *k, doublereal *a, integer *lda, doublereal *tau, 	doublereal *c__, integer *ldc, doublereal *work, integer *lwork, 	integer *info){    /* System generated locals */    address a__1[2];    integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2];    char ch__1[2];    /* Builtin functions */    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);    /* Local variables */    integer i1, i2, nb, mi, ni, nq, nw;    logical left;    extern logical _starpu_lsame_(char *, char *);    integer iinfo;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    extern /* Subroutine */ int _starpu_dormlq_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *, integer *);    logical notran;    extern /* Subroutine */ int _starpu_dormqr_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *, integer *);    logical applyq;    char transt[1];    integer lwkopt;    logical lquery;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C *//*  with *//*                  SIDE = 'L'     SIDE = 'R' *//*  TRANS = 'N':      Q * C          C * Q *//*  TRANS = 'T':      Q**T * C       C * Q**T *//*  If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C *//*  with *//*                  SIDE = 'L'     SIDE = 'R' *//*  TRANS = 'N':      P * C          C * P *//*  TRANS = 'T':      P**T * C       C * P**T *//*  Here Q and P**T are the orthogonal matrices determined by DGEBRD when *//*  reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and *//*  P**T are defined as products of elementary reflectors H(i) and G(i) *//*  respectively. *//*  Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the *//*  order of the orthogonal matrix Q or P**T that is applied. *//*  If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: *//*  if nq >= k, Q = H(1) H(2) . . . H(k); *//*  if nq < k, Q = H(1) H(2) . . . H(nq-1). *//*  If VECT = 'P', A is assumed to have been a K-by-NQ matrix: *//*  if k < nq, P = G(1) G(2) . . . G(k); *//*  if k >= nq, P = G(1) G(2) . . . G(nq-1). *//*  Arguments *//*  ========= *//*  VECT    (input) CHARACTER*1 *//*          = 'Q': apply Q or Q**T; *//*          = 'P': apply P or P**T. *//*  SIDE    (input) CHARACTER*1 *//*          = 'L': apply Q, Q**T, P or P**T from the Left; *//*          = 'R': apply Q, Q**T, P or P**T from the Right. *//*  TRANS   (input) CHARACTER*1 *//*          = 'N':  No transpose, apply Q  or P; *//*          = 'T':  Transpose, apply Q**T or P**T. *//*  M       (input) INTEGER *//*          The number of rows of the matrix C. M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix C. N >= 0. *//*  K       (input) INTEGER *//*          If VECT = 'Q', the number of columns in the original *//*          matrix reduced by DGEBRD. *//*          If VECT = 'P', the number of rows in the original *//*          matrix reduced by DGEBRD. *//*          K >= 0. *//*  A       (input) DOUBLE PRECISION array, dimension *//*                                (LDA,min(nq,K)) if VECT = 'Q' *//*                                (LDA,nq)        if VECT = 'P' *//*          The vectors which define the elementary reflectors H(i) and *//*          G(i), whose products determine the matrices Q and P, as *//*          returned by DGEBRD. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A. *//*          If VECT = 'Q', LDA >= max(1,nq); *//*          if VECT = 'P', LDA >= max(1,min(nq,K)). *//*  TAU     (input) DOUBLE PRECISION array, dimension (min(nq,K)) *//*          TAU(i) must contain the scalar factor of the elementary *//*          reflector H(i) or G(i) which determines Q or P, as returned *//*          by DGEBRD in the array argument TAUQ or TAUP. *//*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N) *//*          On entry, the M-by-N matrix C. *//*          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q *//*          or P*C or P**T*C or C*P or C*P**T. *//*  LDC     (input) INTEGER *//*          The leading dimension of the array C. LDC >= max(1,M). *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. *//*          If SIDE = 'L', LWORK >= max(1,N); *//*          if SIDE = 'R', LWORK >= max(1,M). *//*          For optimum performance LWORK >= N*NB if SIDE = 'L', and *//*          LWORK >= M*NB if SIDE = 'R', where NB is the optimal *//*          blocksize. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --tau;    c_dim1 = *ldc;    c_offset = 1 + c_dim1;    c__ -= c_offset;    --work;    /* Function Body */    *info = 0;    applyq = _starpu_lsame_(vect, "Q");    left = _starpu_lsame_(side, "L");    notran = _starpu_lsame_(trans, "N");    lquery = *lwork == -1;/*     NQ is the order of Q or P and NW is the minimum dimension of WORK */    if (left) {	nq = *m;	nw = *n;    } else {	nq = *n;	nw = *m;    }    if (! applyq && ! _starpu_lsame_(vect, "P")) {	*info = -1;    } else if (! left && ! _starpu_lsame_(side, "R")) {	*info = -2;    } else if (! notran && ! _starpu_lsame_(trans, "T")) {	*info = -3;    } else if (*m < 0) {	*info = -4;    } else if (*n < 0) {	*info = -5;    } else if (*k < 0) {	*info = -6;    } else /* if(complicated condition) */ {/* Computing MAX */	i__1 = 1, i__2 = min(nq,*k);	if (applyq && *lda < max(1,nq) || ! applyq && *lda < max(i__1,i__2)) {	    *info = -8;	} else if (*ldc < max(1,*m)) {	    *info = -11;	} else if (*lwork < max(1,nw) && ! lquery) {	    *info = -13;	}    }    if (*info == 0) {	if (applyq) {	    if (left) {/* Writing concatenation */		i__3[0] = 1, a__1[0] = side;		i__3[1] = 1, a__1[1] = trans;		s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);		i__1 = *m - 1;		i__2 = *m - 1;		nb = _starpu_ilaenv_(&c__1, "DORMQR", ch__1, &i__1, n, &i__2, &c_n1);	    } else {/* Writing concatenation */		i__3[0] = 1, a__1[0] = side;		i__3[1] = 1, a__1[1] = trans;		s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);		i__1 = *n - 1;		i__2 = *n - 1;		nb = _starpu_ilaenv_(&c__1, "DORMQR", ch__1, m, &i__1, &i__2, &c_n1);	    }	} else {	    if (left) {/* Writing concatenation */		i__3[0] = 1, a__1[0] = side;		i__3[1] = 1, a__1[1] = trans;		s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);		i__1 = *m - 1;		i__2 = *m - 1;		nb = _starpu_ilaenv_(&c__1, "DORMLQ", ch__1, &i__1, n, &i__2, &c_n1);	    } else {/* Writing concatenation */		i__3[0] = 1, a__1[0] = side;		i__3[1] = 1, a__1[1] = trans;		s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);		i__1 = *n - 1;		i__2 = *n - 1;		nb = _starpu_ilaenv_(&c__1, "DORMLQ", ch__1, m, &i__1, &i__2, &c_n1);	    }	}	lwkopt = max(1,nw) * nb;	work[1] = (doublereal) lwkopt;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DORMBR", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    work[1] = 1.;    if (*m == 0 || *n == 0) {	return 0;    }    if (applyq) {/*        Apply Q */	if (nq >= *k) {/*           Q was determined by a call to DGEBRD with nq >= k */	    _starpu_dormqr_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[		    c_offset], ldc, &work[1], lwork, &iinfo);	} else if (nq > 1) {/*           Q was determined by a call to DGEBRD with nq < k */	    if (left) {		mi = *m - 1;		ni = *n;		i1 = 2;		i2 = 1;	    } else {		mi = *m;		ni = *n - 1;		i1 = 1;		i2 = 2;	    }	    i__1 = nq - 1;	    _starpu_dormqr_(side, trans, &mi, &ni, &i__1, &a[a_dim1 + 2], lda, &tau[1], &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo);	}    } else {/*        Apply P */	if (notran) {	    *(unsigned char *)transt = 'T';	} else {	    *(unsigned char *)transt = 'N';	}	if (nq > *k) {/*           P was determined by a call to DGEBRD with nq > k */	    _starpu_dormlq_(side, transt, m, n, k, &a[a_offset], lda, &tau[1], &c__[		    c_offset], ldc, &work[1], lwork, &iinfo);	} else if (nq > 1) {/*           P was determined by a call to DGEBRD with nq <= k */	    if (left) {		mi = *m - 1;		ni = *n;		i1 = 2;		i2 = 1;	    } else {		mi = *m;		ni = *n - 1;		i1 = 1;		i2 = 2;	    }	    i__1 = nq - 1;	    _starpu_dormlq_(side, transt, &mi, &ni, &i__1, &a[(a_dim1 << 1) + 1], lda, 		     &tau[1], &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &		    iinfo);	}    }    work[1] = (doublereal) lwkopt;    return 0;/*     End of DORMBR */} /* _starpu_dormbr_ */
 |