123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673 |
- /* StarPU --- Runtime system for heterogeneous multicore architectures.
- *
- * Copyright (C) 2009-2013 Université de Bordeaux 1
- * Copyright (C) 2010 Mehdi Juhoor <mjuhoor@gmail.com>
- * Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
- * Copyright (C) 2011 Télécom-SudParis
- *
- * StarPU is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or (at
- * your option) any later version.
- *
- * StarPU is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- *
- * See the GNU Lesser General Public License in COPYING.LGPL for more details.
- */
- #include <starpu.h>
- #include <starpu_cuda.h>
- #include <starpu_profiling.h>
- #include <common/utils.h>
- #include <common/config.h>
- #include <core/debug.h>
- #include <drivers/driver_common/driver_common.h>
- #include "driver_cuda.h"
- #include <core/sched_policy.h>
- #ifdef HAVE_CUDA_GL_INTEROP_H
- #include <cuda_gl_interop.h>
- #endif
- #include <datawizard/memory_manager.h>
- #ifdef STARPU_SIMGRID
- #include <core/simgrid.h>
- #endif
- /* the number of CUDA devices */
- static int ncudagpus;
- static size_t global_mem[STARPU_NMAXWORKERS];
- #ifdef STARPU_USE_CUDA
- static cudaStream_t streams[STARPU_NMAXWORKERS];
- static cudaStream_t out_transfer_streams[STARPU_NMAXWORKERS];
- static cudaStream_t in_transfer_streams[STARPU_NMAXWORKERS];
- static cudaStream_t peer_transfer_streams[STARPU_NMAXWORKERS];
- static struct cudaDeviceProp props[STARPU_MAXCUDADEVS];
- #endif /* STARPU_USE_CUDA */
- void
- _starpu_cuda_discover_devices (struct _starpu_machine_config *config)
- {
- /* Discover the number of CUDA devices. Fill the result in CONFIG. */
- #ifdef STARPU_SIMGRID
- config->topology.nhwcudagpus = _starpu_simgrid_get_nbhosts("CUDA");
- #else
- int cnt;
- cudaError_t cures;
- cures = cudaGetDeviceCount (&cnt);
- if (STARPU_UNLIKELY(cures != cudaSuccess))
- cnt = 0;
- config->topology.nhwcudagpus = cnt;
- #endif
- }
- /* In case we want to cap the amount of memory available on the GPUs by the
- * mean of the STARPU_LIMIT_CUDA_MEM, we decrease the value of
- * global_mem[devid] which is the value returned by
- * _starpu_cuda_get_global_mem_size() to indicate how much memory can
- * be allocated on the device
- */
- static void _starpu_cuda_limit_gpu_mem_if_needed(unsigned devid)
- {
- starpu_ssize_t limit;
- size_t STARPU_ATTRIBUTE_UNUSED totalGlobalMem = 0;
- size_t STARPU_ATTRIBUTE_UNUSED to_waste = 0;
- char name[30];
- #ifdef STARPU_USE_CUDA
- global_mem[devid] = props[devid].totalGlobalMem;
- #endif
- limit = starpu_get_env_number("STARPU_LIMIT_CUDA_MEM");
- if (limit == -1)
- {
- sprintf(name, "STARPU_LIMIT_CUDA_%u_MEM", devid);
- limit = starpu_get_env_number(name);
- }
- if (limit == -1)
- {
- return;
- }
- global_mem[devid] = limit * 1024*1024;
- #ifdef STARPU_USE_CUDA
- /* Find the size of the memory on the device */
- totalGlobalMem = props[devid].totalGlobalMem;
- /* How much memory to waste ? */
- to_waste = totalGlobalMem - global_mem[devid];
- props[devid].totalGlobalMem -= to_waste;
- #endif /* STARPU_USE_CUDA */
- _STARPU_DEBUG("CUDA device %u: Wasting %ld MB / Limit %ld MB / Total %ld MB / Remains %ld MB\n",
- devid, (long) to_waste/(1024*1024), (long) limit, (long) totalGlobalMem/(1024*1024),
- (long) (totalGlobalMem - to_waste)/(1024*1024));
- }
- #ifdef STARPU_USE_CUDA
- cudaStream_t starpu_cuda_get_local_in_transfer_stream(void)
- {
- int worker = starpu_worker_get_id();
- return in_transfer_streams[worker];
- }
- cudaStream_t starpu_cuda_get_local_out_transfer_stream(void)
- {
- int worker = starpu_worker_get_id();
- return out_transfer_streams[worker];
- }
- cudaStream_t starpu_cuda_get_local_peer_transfer_stream(void)
- {
- int worker = starpu_worker_get_id();
- return peer_transfer_streams[worker];
- }
- cudaStream_t starpu_cuda_get_local_stream(void)
- {
- int worker = starpu_worker_get_id();
- return streams[worker];
- }
- const struct cudaDeviceProp *starpu_cuda_get_device_properties(unsigned workerid)
- {
- struct _starpu_machine_config *config = _starpu_get_machine_config();
- unsigned devid = config->workers[workerid].devid;
- return &props[devid];
- }
- #endif /* STARPU_USE_CUDA */
- void starpu_cuda_set_device(unsigned devid STARPU_ATTRIBUTE_UNUSED)
- {
- #ifdef STARPU_SIMGRID
- STARPU_ABORT();
- #else
- cudaError_t cures;
- struct starpu_conf *conf = _starpu_get_machine_config()->conf;
- #if !defined(HAVE_CUDA_MEMCPY_PEER) && defined(HAVE_CUDA_GL_INTEROP_H)
- unsigned i;
- #endif
- #ifdef HAVE_CUDA_MEMCPY_PEER
- if (conf->n_cuda_opengl_interoperability)
- {
- fprintf(stderr, "OpenGL interoperability was requested, but StarPU was built with multithread GPU control support, please reconfigure with --disable-cuda-memcpy-peer but that will disable the memcpy-peer optimizations\n");
- STARPU_ABORT();
- }
- #elif !defined(HAVE_CUDA_GL_INTEROP_H)
- if (conf->n_cuda_opengl_interoperability)
- {
- fprintf(stderr,"OpenGL interoperability was requested, but cuda_gl_interop.h could not be compiled, please make sure that OpenGL headers were available before ./configure run.");
- STARPU_ABORT();
- }
- #else
- for (i = 0; i < conf->n_cuda_opengl_interoperability; i++)
- if (conf->cuda_opengl_interoperability[i] == devid)
- {
- cures = cudaGLSetGLDevice(devid);
- goto done;
- }
- #endif
- cures = cudaSetDevice(devid);
- #if !defined(HAVE_CUDA_MEMCPY_PEER) && defined(HAVE_CUDA_GL_INTEROP_H)
- done:
- #endif
- if (STARPU_UNLIKELY(cures))
- STARPU_CUDA_REPORT_ERROR(cures);
- #endif
- }
- #ifndef STARPU_SIMGRID
- static void init_context(unsigned devid)
- {
- cudaError_t cures;
- int workerid;
- /* TODO: cudaSetDeviceFlag(cudaDeviceMapHost) */
- starpu_cuda_set_device(devid);
- #ifdef HAVE_CUDA_MEMCPY_PEER
- if (starpu_get_env_number("STARPU_ENABLE_CUDA_GPU_GPU_DIRECT") > 0)
- {
- int nworkers = starpu_worker_get_count();
- for (workerid = 0; workerid < nworkers; workerid++)
- {
- struct _starpu_worker *worker = _starpu_get_worker_struct(workerid);
- if (worker->arch == STARPU_CUDA_WORKER && worker->devid != devid)
- {
- int can;
- cures = cudaDeviceCanAccessPeer(&can, devid, worker->devid);
- if (!cures && can)
- {
- cures = cudaDeviceEnablePeerAccess(worker->devid, 0);
- if (!cures)
- _STARPU_DEBUG("Enabled GPU-Direct %d -> %d\n", worker->devid, devid);
- }
- }
- }
- }
- #endif
- /* force CUDA to initialize the context for real */
- cures = cudaFree(0);
- if (STARPU_UNLIKELY(cures))
- {
- if (cures == cudaErrorDevicesUnavailable)
- {
- fprintf(stderr,"All CUDA-capable devices are busy or unavailable\n");
- exit(77);
- }
- STARPU_CUDA_REPORT_ERROR(cures);
- }
- cures = cudaGetDeviceProperties(&props[devid], devid);
- if (STARPU_UNLIKELY(cures))
- STARPU_CUDA_REPORT_ERROR(cures);
- #ifdef HAVE_CUDA_MEMCPY_PEER
- if (props[devid].computeMode == cudaComputeModeExclusive)
- {
- fprintf(stderr, "CUDA is in EXCLUSIVE-THREAD mode, but StarPU was built with multithread GPU control support, please either ask your administrator to use EXCLUSIVE-PROCESS mode (which should really be fine), or reconfigure with --disable-cuda-memcpy-peer but that will disable the memcpy-peer optimizations\n");
- STARPU_ABORT();
- }
- #endif
- workerid = starpu_worker_get_id();
- cures = cudaStreamCreate(&streams[workerid]);
- if (STARPU_UNLIKELY(cures))
- STARPU_CUDA_REPORT_ERROR(cures);
- cures = cudaStreamCreate(&in_transfer_streams[workerid]);
- if (STARPU_UNLIKELY(cures))
- STARPU_CUDA_REPORT_ERROR(cures);
- cures = cudaStreamCreate(&out_transfer_streams[workerid]);
- if (STARPU_UNLIKELY(cures))
- STARPU_CUDA_REPORT_ERROR(cures);
- cures = cudaStreamCreate(&peer_transfer_streams[workerid]);
- if (STARPU_UNLIKELY(cures))
- STARPU_CUDA_REPORT_ERROR(cures);
- }
- static void deinit_context(int workerid)
- {
- cudaError_t cures;
- cudaStreamDestroy(streams[workerid]);
- cudaStreamDestroy(in_transfer_streams[workerid]);
- cudaStreamDestroy(out_transfer_streams[workerid]);
- cudaStreamDestroy(peer_transfer_streams[workerid]);
- /* cleanup the runtime API internal stuffs (which CUBLAS is using) */
- cures = cudaThreadExit();
- if (cures)
- STARPU_CUDA_REPORT_ERROR(cures);
- }
- #endif /* !SIMGRID */
- static size_t _starpu_cuda_get_global_mem_size(unsigned devid)
- {
- return global_mem[devid];
- }
- /* Return the number of devices usable in the system.
- * The value returned cannot be greater than MAXCUDADEVS */
- unsigned _starpu_get_cuda_device_count(void)
- {
- #ifdef STARPU_SIMGRID
- return _starpu_simgrid_get_nbhosts("CUDA");
- #else
- int cnt;
- cudaError_t cures;
- cures = cudaGetDeviceCount(&cnt);
- if (STARPU_UNLIKELY(cures))
- return 0;
- if (cnt > STARPU_MAXCUDADEVS)
- {
- fprintf(stderr, "# Warning: %d CUDA devices available. Only %d enabled. Use configure option --enable-maxcudadev=xxx to update the maximum value of supported CUDA devices.\n", cnt, STARPU_MAXCUDADEVS);
- cnt = STARPU_MAXCUDADEVS;
- }
- return (unsigned)cnt;
- #endif
- }
- void _starpu_init_cuda(void)
- {
- ncudagpus = _starpu_get_cuda_device_count();
- STARPU_ASSERT(ncudagpus <= STARPU_MAXCUDADEVS);
- }
- static int execute_job_on_cuda(struct _starpu_job *j, struct _starpu_worker *args)
- {
- int ret;
- uint32_t mask = 0;
- STARPU_ASSERT(j);
- struct starpu_task *task = j->task;
- struct timespec codelet_start, codelet_end;
- int profiling = starpu_profiling_status_get();
- STARPU_ASSERT(task);
- struct starpu_codelet *cl = task->cl;
- STARPU_ASSERT(cl);
- ret = _starpu_fetch_task_input(j, mask);
- if (ret != 0)
- {
- /* there was not enough memory, so the input of
- * the codelet cannot be fetched ... put the
- * codelet back, and try it later */
- return -EAGAIN;
- }
- _starpu_driver_start_job(args, j, &codelet_start, 0, profiling);
- #if defined(HAVE_CUDA_MEMCPY_PEER) && !defined(STARPU_SIMGRID)
- /* We make sure we do manipulate the proper device */
- starpu_cuda_set_device(args->devid);
- #endif
- starpu_cuda_func_t func = _starpu_task_get_cuda_nth_implementation(cl, j->nimpl);
- STARPU_ASSERT(func);
- #ifdef STARPU_SIMGRID
- _starpu_simgrid_execute_job(j, args->perf_arch, NAN);
- #else
- func(_STARPU_TASK_GET_INTERFACES(task), task->cl_arg);
- #endif
- _starpu_driver_end_job(args, j, &args->perf_arch, &codelet_end, 0, profiling);
- _starpu_driver_update_job_feedback(j, args, &args->perf_arch, &codelet_start, &codelet_end, profiling);
- _starpu_push_task_output(j, mask);
- return 0;
- }
- static struct _starpu_worker*
- _starpu_get_worker_from_driver(struct starpu_driver *d)
- {
- unsigned nworkers = starpu_worker_get_count();
- unsigned workerid;
- for (workerid = 0; workerid < nworkers; workerid++)
- {
- if (starpu_worker_get_type(workerid) == d->type)
- {
- struct _starpu_worker *worker;
- worker = _starpu_get_worker_struct(workerid);
- if (worker->devid == d->id.cuda_id)
- return worker;
- }
- }
- return NULL;
- }
- /* XXX Should this be merged with _starpu_init_cuda ? */
- int _starpu_cuda_driver_init(struct starpu_driver *d)
- {
- struct _starpu_worker* args = _starpu_get_worker_from_driver(d);
- STARPU_ASSERT(args);
- unsigned devid = args->devid;
- _starpu_worker_init(args, _STARPU_FUT_CUDA_KEY);
- #ifndef STARPU_SIMGRID
- init_context(devid);
- #endif
- _starpu_cuda_limit_gpu_mem_if_needed(devid);
- _starpu_memory_manager_set_global_memory_size(args->memory_node, _starpu_cuda_get_global_mem_size(devid));
- /* one more time to avoid hacks from third party lib :) */
- _starpu_bind_thread_on_cpu(args->config, args->bindid);
- args->status = STATUS_UNKNOWN;
- float size = (float) global_mem[devid] / (1<<30);
- #ifdef STARPU_SIMGRID
- const char *devname = "Simgrid";
- #else
- /* get the device's name */
- char devname[128];
- strncpy(devname, props[devid].name, 128);
- #endif
- #if defined(STARPU_HAVE_BUSID) && !defined(STARPU_SIMGRID)
- #if defined(STARPU_HAVE_DOMAINID) && !defined(STARPU_SIMGRID)
- if (props[devid].pciDomainID)
- snprintf(args->name, sizeof(args->name), "CUDA %u (%s %.1f GiB %04x:%02x:%02x.0)", devid, devname, size, props[devid].pciDomainID, props[devid].pciBusID, props[devid].pciDeviceID);
- else
- #endif
- snprintf(args->name, sizeof(args->name), "CUDA %u (%s %.1f GiB %02x:%02x.0)", devid, devname, size, props[devid].pciBusID, props[devid].pciDeviceID);
- #else
- snprintf(args->name, sizeof(args->name), "CUDA %u (%s %.1f GiB)", devid, devname, size);
- #endif
- snprintf(args->short_name, sizeof(args->short_name), "CUDA %u", devid);
- _STARPU_DEBUG("cuda (%s) dev id %u thread is ready to run on CPU %d !\n", devname, devid, args->bindid);
- _STARPU_TRACE_WORKER_INIT_END;
- /* tell the main thread that this one is ready */
- STARPU_PTHREAD_MUTEX_LOCK(&args->mutex);
- args->worker_is_initialized = 1;
- STARPU_PTHREAD_COND_SIGNAL(&args->ready_cond);
- STARPU_PTHREAD_MUTEX_UNLOCK(&args->mutex);
- return 0;
- }
- int _starpu_cuda_driver_run_once(struct starpu_driver *d)
- {
- struct _starpu_worker* args = _starpu_get_worker_from_driver(d);
- STARPU_ASSERT(args);
- unsigned memnode = args->memory_node;
- int workerid = args->workerid;
- _STARPU_TRACE_START_PROGRESS(memnode);
- _starpu_datawizard_progress(memnode, 1);
- _STARPU_TRACE_END_PROGRESS(memnode);
- struct starpu_task *task;
- struct _starpu_job *j = NULL;
- task = _starpu_get_worker_task(args, workerid, memnode);
- if (!task)
- return 0;
- j = _starpu_get_job_associated_to_task(task);
- /* can CUDA do that task ? */
- if (!_STARPU_CUDA_MAY_PERFORM(j))
- {
- /* this is neither a cuda or a cublas task */
- _starpu_push_task_to_workers(task);
- return 0;
- }
- _starpu_set_current_task(task);
- args->current_task = j->task;
- int res = execute_job_on_cuda(j, args);
- _starpu_set_current_task(NULL);
- args->current_task = NULL;
- if (res)
- {
- switch (res)
- {
- case -EAGAIN:
- _STARPU_DISP("ouch, CUDA could not actually run task %p, putting it back...\n", task);
- _starpu_push_task_to_workers(task);
- STARPU_ABORT();
- default:
- STARPU_ABORT();
- }
- }
- _starpu_handle_job_termination(j);
- return 0;
- }
- int _starpu_cuda_driver_deinit(struct starpu_driver *d)
- {
- struct _starpu_worker* args = _starpu_get_worker_from_driver(d);
- STARPU_ASSERT(args);
- unsigned memnode = args->memory_node;
- _STARPU_TRACE_WORKER_DEINIT_START;
- _starpu_handle_all_pending_node_data_requests(memnode);
- /* In case there remains some memory that was automatically
- * allocated by StarPU, we release it now. Note that data
- * coherency is not maintained anymore at that point ! */
- _starpu_free_all_automatically_allocated_buffers(memnode);
- #ifndef STARPU_SIMGRID
- deinit_context(args->workerid);
- #endif
- _STARPU_TRACE_WORKER_DEINIT_END(_STARPU_FUT_CUDA_KEY);
- return 0;
- }
- void *_starpu_cuda_worker(void *arg)
- {
- struct _starpu_worker* args = arg;
- struct starpu_driver d =
- {
- .type = STARPU_CUDA_WORKER,
- .id.cuda_id = args->devid
- };
- _starpu_cuda_driver_init(&d);
- while (_starpu_machine_is_running())
- _starpu_cuda_driver_run_once(&d);
- _starpu_cuda_driver_deinit(&d);
- return NULL;
- }
- #ifdef STARPU_USE_CUDA
- void starpu_cublas_report_error(const char *func, const char *file, int line, cublasStatus status)
- {
- char *errormsg;
- switch (status)
- {
- case CUBLAS_STATUS_SUCCESS:
- errormsg = "success";
- break;
- case CUBLAS_STATUS_NOT_INITIALIZED:
- errormsg = "not initialized";
- break;
- case CUBLAS_STATUS_ALLOC_FAILED:
- errormsg = "alloc failed";
- break;
- case CUBLAS_STATUS_INVALID_VALUE:
- errormsg = "invalid value";
- break;
- case CUBLAS_STATUS_ARCH_MISMATCH:
- errormsg = "arch mismatch";
- break;
- case CUBLAS_STATUS_EXECUTION_FAILED:
- errormsg = "execution failed";
- break;
- case CUBLAS_STATUS_INTERNAL_ERROR:
- errormsg = "internal error";
- break;
- default:
- errormsg = "unknown error";
- break;
- }
- fprintf(stderr, "oops in %s (%s:%d)... %d: %s \n", func, file, line, status, errormsg);
- STARPU_ABORT();
- }
- void starpu_cuda_report_error(const char *func, const char *file, int line, cudaError_t status)
- {
- const char *errormsg = cudaGetErrorString(status);
- printf("oops in %s (%s:%d)... %d: %s \n", func, file, line, status, errormsg);
- STARPU_ABORT();
- }
- #endif /* STARPU_USE_CUDA */
- #ifdef STARPU_USE_CUDA
- int
- starpu_cuda_copy_async_sync(void *src_ptr, unsigned src_node,
- void *dst_ptr, unsigned dst_node,
- size_t ssize, cudaStream_t stream,
- enum cudaMemcpyKind kind)
- {
- #ifdef HAVE_CUDA_MEMCPY_PEER
- int peer_copy = 0;
- int src_dev = -1, dst_dev = -1;
- #endif
- cudaError_t cures = 0;
- if (kind == cudaMemcpyDeviceToDevice && src_node != dst_node)
- {
- #ifdef HAVE_CUDA_MEMCPY_PEER
- peer_copy = 1;
- src_dev = _starpu_memory_node_get_devid(src_node);
- dst_dev = _starpu_memory_node_get_devid(dst_node);
- #else
- STARPU_ABORT();
- #endif
- }
- if (stream)
- {
- _STARPU_TRACE_START_DRIVER_COPY_ASYNC(src_node, dst_node);
- #ifdef HAVE_CUDA_MEMCPY_PEER
- if (peer_copy)
- {
- cures = cudaMemcpyPeerAsync((char *) dst_ptr, dst_dev,
- (char *) src_ptr, src_dev,
- ssize, stream);
- }
- else
- #endif
- {
- cures = cudaMemcpyAsync((char *)dst_ptr, (char *)src_ptr, ssize, kind, stream);
- }
- _STARPU_TRACE_END_DRIVER_COPY_ASYNC(src_node, dst_node);
- }
- /* Test if the asynchronous copy has failed or if the caller only asked for a synchronous copy */
- if (stream == NULL || cures)
- {
- /* do it in a synchronous fashion */
- #ifdef HAVE_CUDA_MEMCPY_PEER
- if (peer_copy)
- {
- cures = cudaMemcpyPeer((char *) dst_ptr, dst_dev,
- (char *) src_ptr, src_dev,
- ssize);
- }
- else
- #endif
- {
- cures = cudaMemcpy((char *)dst_ptr, (char *)src_ptr, ssize, kind);
- }
- if (STARPU_UNLIKELY(cures))
- STARPU_CUDA_REPORT_ERROR(cures);
- return 0;
- }
- return -EAGAIN;
- }
- #endif /* STARPU_USE_CUDA */
- int _starpu_run_cuda(struct starpu_driver *d)
- {
- STARPU_ASSERT(d && d->type == STARPU_CUDA_WORKER);
- int workerid = starpu_worker_get_by_devid(STARPU_CUDA_WORKER, d->id.cuda_id);
- _STARPU_DEBUG("Running cuda %u from the application\n", d->id.cuda_id);
- struct _starpu_worker *workerarg = _starpu_get_worker_struct(workerid);
- workerarg->set = NULL;
- workerarg->worker_is_initialized = 0;
- /* Let's go ! */
- _starpu_cuda_worker(workerarg);
- /* XXX: Should we wait for the driver to be ready, as it is done when
- * launching it the usual way ? Cf. the end of _starpu_launch_drivers()
- */
- return 0;
- }
|