starpu.texi 162 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU Handbook
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @c @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance optimization:: How to optimize performance with StarPU
  31. * Performance feedback:: Performance debugging tools
  32. * StarPU MPI support:: How to combine StarPU with MPI
  33. * Configuring StarPU:: How to configure StarPU
  34. * StarPU API:: The API to use StarPU
  35. * Advanced Topics:: Advanced use of StarPU
  36. * Full source code for the 'Scaling a Vector' example::
  37. @end menu
  38. @c ---------------------------------------------------------------------
  39. @c Introduction to StarPU
  40. @c ---------------------------------------------------------------------
  41. @node Introduction
  42. @chapter Introduction to StarPU
  43. @menu
  44. * Motivation:: Why StarPU ?
  45. * StarPU in a Nutshell:: The Fundamentals of StarPU
  46. @end menu
  47. @node Motivation
  48. @section Motivation
  49. @c complex machines with heterogeneous cores/devices
  50. The use of specialized hardware such as accelerators or coprocessors offers an
  51. interesting approach to overcome the physical limits encountered by processor
  52. architects. As a result, many machines are now equipped with one or several
  53. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  54. efforts have been devoted to offload computation onto such accelerators, very
  55. little attention as been paid to portability concerns on the one hand, and to the
  56. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  57. StarPU is a runtime system that offers support for heterogeneous multicore
  58. architectures, it not only offers a unified view of the computational resources
  59. (i.e. CPUs and accelerators at the same time), but it also takes care of
  60. efficiently mapping and executing tasks onto an heterogeneous machine while
  61. transparently handling low-level issues such as data transfers in a portable
  62. fashion.
  63. @c this leads to a complicated distributed memory design
  64. @c which is not (easily) manageable by hand
  65. @c added value/benefits of StarPU
  66. @c - portability
  67. @c - scheduling, perf. portability
  68. @node StarPU in a Nutshell
  69. @section StarPU in a Nutshell
  70. @menu
  71. * Codelet and Tasks::
  72. * StarPU Data Management Library::
  73. * Research Papers::
  74. @end menu
  75. From a programming point of view, StarPU is not a new language but a library
  76. that executes tasks explicitly submitted by the application. The data that a
  77. task manipulates are automatically transferred onto the accelerator so that the
  78. programmer does not have to take care of complex data movements. StarPU also
  79. takes particular care of scheduling those tasks efficiently and allows
  80. scheduling experts to implement custom scheduling policies in a portable
  81. fashion.
  82. @c explain the notion of codelet and task (i.e. g(A, B)
  83. @node Codelet and Tasks
  84. @subsection Codelet and Tasks
  85. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  86. computational kernel that can possibly be implemented on multiple architectures
  87. such as a CPU, a CUDA device or a Cell's SPU.
  88. @c TODO insert illustration f : f_spu, f_cpu, ...
  89. Another important data structure is the @b{task}. Executing a StarPU task
  90. consists in applying a codelet on a data set, on one of the architectures on
  91. which the codelet is implemented. In addition to the codelet that a task
  92. useuses, it also describes which data are accessed, and how they are
  93. accessed during the computation (read and/or write).
  94. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  95. operation. The task structure can also specify a @b{callback} function that is
  96. called once StarPU has properly executed the task. It also contains optional
  97. fields that the application may use to give hints to the scheduler (such as
  98. priority levels).
  99. A task may be identified by a unique 64-bit number chosen by the application
  100. which we refer as a @b{tag}.
  101. Task dependencies can be enforced either by the means of callback functions, by
  102. expressing dependencies between explicit tasks or by expressing dependencies
  103. between tags (which can thus correspond to tasks that have not been submitted
  104. yet).
  105. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  106. @c DSM
  107. @node StarPU Data Management Library
  108. @subsection StarPU Data Management Library
  109. Because StarPU schedules tasks at runtime, data transfers have to be
  110. done automatically and ``just-in-time'' between processing units,
  111. relieving the application programmer from explicit data transfers.
  112. Moreover, to avoid unnecessary transfers, StarPU keeps data
  113. where it was last needed, even if was modified there, and it
  114. allows multiple copies of the same data to reside at the same time on
  115. several processing units as long as it is not modified.
  116. @node Research Papers
  117. @subsection Research Papers
  118. Research papers about StarPU can be found at
  119. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  120. Notably a good overview in the research report
  121. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  122. @c ---------------------------------------------------------------------
  123. @c Installing StarPU
  124. @c ---------------------------------------------------------------------
  125. @node Installing StarPU
  126. @chapter Installing StarPU
  127. @menu
  128. * Downloading StarPU::
  129. * Configuration of StarPU::
  130. * Building and Installing StarPU::
  131. @end menu
  132. StarPU can be built and installed by the standard means of the GNU
  133. autotools. The following chapter is intended to briefly remind how these tools
  134. can be used to install StarPU.
  135. @node Downloading StarPU
  136. @section Downloading StarPU
  137. @menu
  138. * Getting Sources::
  139. * Optional dependencies::
  140. @end menu
  141. @node Getting Sources
  142. @subsection Getting Sources
  143. The simplest way to get StarPU sources is to download the latest official
  144. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  145. or the latest nightly snapshot from
  146. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  147. how to get the very latest version from the subversion repository itself, it
  148. should be needed only if you need the very latest changes (i.e. less than a
  149. day!)
  150. The source code is managed by a Subversion server hosted by the
  151. InriaGforge. To get the source code, you need:
  152. @itemize
  153. @item
  154. To install the client side of the software Subversion if it is
  155. not already available on your system. The software can be obtained from
  156. @indicateurl{http://subversion.tigris.org} . If you are running
  157. on Windows, you will probably prefer to use TortoiseSVN from
  158. @indicateurl{http://tortoisesvn.tigris.org/} .
  159. @item
  160. You can check out the project's SVN repository through anonymous
  161. access. This will provide you with a read access to the
  162. repository.
  163. If you need to have write access on the StarPU project, you can also choose to
  164. become a member of the project @code{starpu}. For this, you first need to get
  165. an account to the gForge server. You can then send a request to join the project
  166. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  167. @item
  168. More information on how to get a gForge account, to become a member of
  169. a project, or on any other related task can be obtained from the
  170. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  171. thing is to upload your public SSH key on the gForge server (see the
  172. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  173. instructions).
  174. @end itemize
  175. You can now check out the latest version from the Subversion server:
  176. @itemize
  177. @item
  178. using the anonymous access via svn:
  179. @example
  180. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  181. @end example
  182. @item
  183. using the anonymous access via https:
  184. @example
  185. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  186. @end example
  187. The password is @code{anonsvn}.
  188. @item
  189. using your gForge account
  190. @example
  191. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  192. @end example
  193. @end itemize
  194. The following step requires the availability of @code{autoconf} and
  195. @code{automake} to generate the @code{./configure} script. This is
  196. done by calling @code{./autogen.sh}. The required version for
  197. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  198. @example
  199. % ./autogen.sh
  200. @end example
  201. If the autotools are not available on your machine or not recent
  202. enough, you can choose to download the latest nightly tarball, which
  203. is provided with a @code{configure} script.
  204. @example
  205. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  206. @end example
  207. @node Optional dependencies
  208. @subsection Optional dependencies
  209. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  210. but strongly recommended. It allows to increase performance, and to
  211. perform some topology aware scheduling.
  212. @code{hwloc} is available in major distributions and for most OSes and can be
  213. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  214. @node Configuration of StarPU
  215. @section Configuration of StarPU
  216. @menu
  217. * Generating Makefiles and configuration scripts::
  218. * Running the configuration::
  219. @end menu
  220. @node Generating Makefiles and configuration scripts
  221. @subsection Generating Makefiles and configuration scripts
  222. This step is not necessary when using the tarball releases of StarPU. If you
  223. are using the source code from the svn repository, you first need to generate
  224. the configure scripts and the Makefiles.
  225. @example
  226. % ./autogen.sh
  227. @end example
  228. @node Running the configuration
  229. @subsection Running the configuration
  230. @example
  231. % ./configure
  232. @end example
  233. Details about options that are useful to give to @code{./configure} are given in
  234. @ref{Compilation configuration}.
  235. @node Building and Installing StarPU
  236. @section Building and Installing StarPU
  237. @menu
  238. * Building::
  239. * Sanity Checks::
  240. * Installing::
  241. @end menu
  242. @node Building
  243. @subsection Building
  244. @example
  245. % make
  246. @end example
  247. @node Sanity Checks
  248. @subsection Sanity Checks
  249. In order to make sure that StarPU is working properly on the system, it is also
  250. possible to run a test suite.
  251. @example
  252. % make check
  253. @end example
  254. @node Installing
  255. @subsection Installing
  256. In order to install StarPU at the location that was specified during
  257. configuration:
  258. @example
  259. % make install
  260. @end example
  261. @c ---------------------------------------------------------------------
  262. @c Using StarPU
  263. @c ---------------------------------------------------------------------
  264. @node Using StarPU
  265. @chapter Using StarPU
  266. @menu
  267. * Setting flags for compiling and linking applications::
  268. * Running a basic StarPU application::
  269. * Kernel threads started by StarPU::
  270. * Using accelerators::
  271. @end menu
  272. @node Setting flags for compiling and linking applications
  273. @section Setting flags for compiling and linking applications
  274. Compiling and linking an application against StarPU may require to use
  275. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  276. To this end, it is possible to use the @code{pkg-config} tool.
  277. If StarPU was not installed at some standard location, the path of StarPU's
  278. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  279. that @code{pkg-config} can find it. For example if StarPU was installed in
  280. @code{$prefix_dir}:
  281. @example
  282. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  283. @end example
  284. The flags required to compile or link against StarPU are then
  285. accessible with the following commands:
  286. @example
  287. % pkg-config --cflags libstarpu # options for the compiler
  288. % pkg-config --libs libstarpu # options for the linker
  289. @end example
  290. @node Running a basic StarPU application
  291. @section Running a basic StarPU application
  292. Basic examples using StarPU have been built in the directory
  293. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  294. example @code{vector_scal}.
  295. @example
  296. % $prefix_dir/lib/starpu/examples/vector_scal
  297. BEFORE : First element was 1.000000
  298. AFTER First element is 3.140000
  299. %
  300. @end example
  301. When StarPU is used for the first time, the directory
  302. @code{$HOME/.starpu/} is created, performance models will be stored in
  303. that directory.
  304. Please note that buses are benchmarked when StarPU is launched for the
  305. first time. This may take a few minutes, or less if @code{hwloc} is
  306. installed. This step is done only once per user and per machine.
  307. @node Kernel threads started by StarPU
  308. @section Kernel threads started by StarPU
  309. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  310. them per GPU. The application is not supposed to do computations in its own
  311. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  312. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  313. worker).
  314. @node Using accelerators
  315. @section Using accelerators
  316. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  317. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  318. This design choice was necessary as OpenCL and CUDA can not run at the
  319. same time on the same NVIDIA GPU, as there is currently no interoperability
  320. between them.
  321. Details on how to specify devices running OpenCL and the ones running
  322. CUDA are given in @ref{Enabling OpenCL}.
  323. @c ---------------------------------------------------------------------
  324. @c Basic Examples
  325. @c ---------------------------------------------------------------------
  326. @node Basic Examples
  327. @chapter Basic Examples
  328. @menu
  329. * Compiling and linking options::
  330. * Hello World:: Submitting Tasks
  331. * Scaling a Vector:: Manipulating Data
  332. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  333. * Task and Worker Profiling::
  334. * Partitioning Data:: Partitioning Data
  335. * Performance model example::
  336. * Theoretical lower bound on execution time::
  337. * Insert Task Utility::
  338. * More examples:: More examples shipped with StarPU
  339. @end menu
  340. @node Compiling and linking options
  341. @section Compiling and linking options
  342. Let's suppose StarPU has been installed in the directory
  343. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  344. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  345. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  346. libraries at runtime.
  347. @example
  348. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  349. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  350. @end example
  351. The Makefile could for instance contain the following lines to define which
  352. options must be given to the compiler and to the linker:
  353. @cartouche
  354. @example
  355. CFLAGS += $$(pkg-config --cflags libstarpu)
  356. LDFLAGS += $$(pkg-config --libs libstarpu)
  357. @end example
  358. @end cartouche
  359. @node Hello World
  360. @section Hello World
  361. @menu
  362. * Required Headers::
  363. * Defining a Codelet::
  364. * Submitting a Task::
  365. * Execution of Hello World::
  366. @end menu
  367. In this section, we show how to implement a simple program that submits a task to StarPU.
  368. @node Required Headers
  369. @subsection Required Headers
  370. The @code{starpu.h} header should be included in any code using StarPU.
  371. @cartouche
  372. @smallexample
  373. #include <starpu.h>
  374. @end smallexample
  375. @end cartouche
  376. @node Defining a Codelet
  377. @subsection Defining a Codelet
  378. @cartouche
  379. @smallexample
  380. struct params @{
  381. int i;
  382. float f;
  383. @};
  384. void cpu_func(void *buffers[], void *cl_arg)
  385. @{
  386. struct params *params = cl_arg;
  387. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  388. @}
  389. starpu_codelet cl =
  390. @{
  391. .where = STARPU_CPU,
  392. .cpu_func = cpu_func,
  393. .nbuffers = 0
  394. @};
  395. @end smallexample
  396. @end cartouche
  397. A codelet is a structure that represents a computational kernel. Such a codelet
  398. may contain an implementation of the same kernel on different architectures
  399. (e.g. CUDA, Cell's SPU, x86, ...).
  400. The @code{nbuffers} field specifies the number of data buffers that are
  401. manipulated by the codelet: here the codelet does not access or modify any data
  402. that is controlled by our data management library. Note that the argument
  403. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  404. structure) does not count as a buffer since it is not managed by our data
  405. management library, but just contain trivial parameters.
  406. @c TODO need a crossref to the proper description of "where" see bla for more ...
  407. We create a codelet which may only be executed on the CPUs. The @code{where}
  408. field is a bitmask that defines where the codelet may be executed. Here, the
  409. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  410. (@pxref{Codelets and Tasks} for more details on this field).
  411. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  412. which @emph{must} have the following prototype:
  413. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  414. In this example, we can ignore the first argument of this function which gives a
  415. description of the input and output buffers (e.g. the size and the location of
  416. the matrices) since there is none.
  417. The second argument is a pointer to a buffer passed as an
  418. argument to the codelet by the means of the @code{cl_arg} field of the
  419. @code{starpu_task} structure.
  420. @c TODO rewrite so that it is a little clearer ?
  421. Be aware that this may be a pointer to a
  422. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  423. if the codelet modifies this buffer, there is no guarantee that the initial
  424. buffer will be modified as well: this for instance implies that the buffer
  425. cannot be used as a synchronization medium. If synchronization is needed, data
  426. has to be registered to StarPU, see @ref{Scaling a Vector}.
  427. @node Submitting a Task
  428. @subsection Submitting a Task
  429. @cartouche
  430. @smallexample
  431. void callback_func(void *callback_arg)
  432. @{
  433. printf("Callback function (arg %x)\n", callback_arg);
  434. @}
  435. int main(int argc, char **argv)
  436. @{
  437. /* @b{initialize StarPU} */
  438. starpu_init(NULL);
  439. struct starpu_task *task = starpu_task_create();
  440. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  441. struct params params = @{ 1, 2.0f @};
  442. task->cl_arg = &params;
  443. task->cl_arg_size = sizeof(params);
  444. task->callback_func = callback_func;
  445. task->callback_arg = 0x42;
  446. /* @b{starpu_task_submit will be a blocking call} */
  447. task->synchronous = 1;
  448. /* @b{submit the task to StarPU} */
  449. starpu_task_submit(task);
  450. /* @b{terminate StarPU} */
  451. starpu_shutdown();
  452. return 0;
  453. @}
  454. @end smallexample
  455. @end cartouche
  456. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  457. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  458. be submitted after the termination of StarPU by a call to
  459. @code{starpu_shutdown}.
  460. In the example above, a task structure is allocated by a call to
  461. @code{starpu_task_create}. This function only allocates and fills the
  462. corresponding structure with the default settings (@pxref{starpu_task_create}),
  463. but it does not submit the task to StarPU.
  464. @c not really clear ;)
  465. The @code{cl} field is a pointer to the codelet which the task will
  466. execute: in other words, the codelet structure describes which computational
  467. kernel should be offloaded on the different architectures, and the task
  468. structure is a wrapper containing a codelet and the piece of data on which the
  469. codelet should operate.
  470. The optional @code{cl_arg} field is a pointer to a buffer (of size
  471. @code{cl_arg_size}) with some parameters for the kernel
  472. described by the codelet. For instance, if a codelet implements a computational
  473. kernel that multiplies its input vector by a constant, the constant could be
  474. specified by the means of this buffer, instead of registering it as a StarPU
  475. data.
  476. Once a task has been executed, an optional callback function is be called.
  477. While the computational kernel could be offloaded on various architectures, the
  478. callback function is always executed on a CPU. The @code{callback_arg}
  479. pointer is passed as an argument of the callback. The prototype of a callback
  480. function must be:
  481. @code{void (*callback_function)(void *);}
  482. If the @code{synchronous} field is non-zero, task submission will be
  483. synchronous: the @code{starpu_task_submit} function will not return until the
  484. task was executed. Note that the @code{starpu_shutdown} method does not
  485. guarantee that asynchronous tasks have been executed before it returns,
  486. @code{starpu_task_wait_for_all} can be used to that effect..
  487. @node Execution of Hello World
  488. @subsection Execution of Hello World
  489. @smallexample
  490. % make hello_world
  491. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  492. % ./hello_world
  493. Hello world (params = @{1, 2.000000@} )
  494. Callback function (arg 42)
  495. @end smallexample
  496. @node Scaling a Vector
  497. @section Manipulating Data: Scaling a Vector
  498. The previous example has shown how to submit tasks. In this section,
  499. we show how StarPU tasks can manipulate data. The full source code for
  500. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  501. @menu
  502. * Source code of Vector Scaling::
  503. * Execution of Vector Scaling::
  504. @end menu
  505. @node Source code of Vector Scaling
  506. @subsection Source code of Vector Scaling
  507. Programmers can describe the data layout of their application so that StarPU is
  508. responsible for enforcing data coherency and availability across the machine.
  509. Instead of handling complex (and non-portable) mechanisms to perform data
  510. movements, programmers only declare which piece of data is accessed and/or
  511. modified by a task, and StarPU makes sure that when a computational kernel
  512. starts somewhere (e.g. on a GPU), its data are available locally.
  513. Before submitting those tasks, the programmer first needs to declare the
  514. different pieces of data to StarPU using the @code{starpu_*_data_register}
  515. functions. To ease the development of applications for StarPU, it is possible
  516. to describe multiple types of data layout. A type of data layout is called an
  517. @b{interface}. There are different predefined interfaces available in StarPU:
  518. here we will consider the @b{vector interface}.
  519. The following lines show how to declare an array of @code{NX} elements of type
  520. @code{float} using the vector interface:
  521. @cartouche
  522. @smallexample
  523. float vector[NX];
  524. starpu_data_handle vector_handle;
  525. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  526. sizeof(vector[0]));
  527. @end smallexample
  528. @end cartouche
  529. The first argument, called the @b{data handle}, is an opaque pointer which
  530. designates the array in StarPU. This is also the structure which is used to
  531. describe which data is used by a task. The second argument is the node number
  532. where the data originally resides. Here it is 0 since the @code{vector} array is in
  533. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  534. the number of elements in the vector and the size of each element.
  535. The following shows how to construct a StarPU task that will manipulate the
  536. vector and a constant factor.
  537. @cartouche
  538. @smallexample
  539. float factor = 3.14;
  540. struct starpu_task *task = starpu_task_create();
  541. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  542. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  543. task->buffers[0].mode = STARPU_RW;
  544. task->cl_arg = &factor;
  545. task->cl_arg_size = sizeof(factor);
  546. task->synchronous = 1;
  547. starpu_task_submit(task);
  548. @end smallexample
  549. @end cartouche
  550. Since the factor is a mere constant float value parameter,
  551. it does not need a preliminary registration, and
  552. can just be passed through the @code{cl_arg} pointer like in the previous
  553. example. The vector parameter is described by its handle.
  554. There are two fields in each element of the @code{buffers} array.
  555. @code{handle} is the handle of the data, and @code{mode} specifies how the
  556. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  557. write-only and @code{STARPU_RW} for read and write access).
  558. The definition of the codelet can be written as follows:
  559. @cartouche
  560. @smallexample
  561. void scal_cpu_func(void *buffers[], void *cl_arg)
  562. @{
  563. unsigned i;
  564. float *factor = cl_arg;
  565. /* length of the vector */
  566. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  567. /* local copy of the vector pointer */
  568. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  569. for (i = 0; i < n; i++)
  570. val[i] *= *factor;
  571. @}
  572. starpu_codelet cl = @{
  573. .where = STARPU_CPU,
  574. .cpu_func = scal_cpu_func,
  575. .nbuffers = 1
  576. @};
  577. @end smallexample
  578. @end cartouche
  579. The first argument is an array that gives
  580. a description of all the buffers passed in the @code{task->buffers}@ array. The
  581. size of this array is given by the @code{nbuffers} field of the codelet
  582. structure. For the sake of genericity, this array contains pointers to the
  583. different interfaces describing each buffer. In the case of the @b{vector
  584. interface}, the location of the vector (resp. its length) is accessible in the
  585. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  586. read-write fashion, any modification will automatically affect future accesses
  587. to this vector made by other tasks.
  588. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  589. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  590. constant factor from this pointer.
  591. @node Execution of Vector Scaling
  592. @subsection Execution of Vector Scaling
  593. @smallexample
  594. % make vector_scal
  595. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  596. % ./vector_scal
  597. 0.000000 3.000000 6.000000 9.000000 12.000000
  598. @end smallexample
  599. @node Vector Scaling on an Hybrid CPU/GPU Machine
  600. @section Vector Scaling on an Hybrid CPU/GPU Machine
  601. Contrary to the previous examples, the task submitted in this example may not
  602. only be executed by the CPUs, but also by a CUDA device.
  603. @menu
  604. * Definition of the CUDA Kernel::
  605. * Definition of the OpenCL Kernel::
  606. * Definition of the Main Code::
  607. * Execution of Hybrid Vector Scaling::
  608. @end menu
  609. @node Definition of the CUDA Kernel
  610. @subsection Definition of the CUDA Kernel
  611. The CUDA implementation can be written as follows. It needs to be
  612. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  613. driver.
  614. @cartouche
  615. @smallexample
  616. #include <starpu.h>
  617. static __global__ void vector_mult_cuda(float *val, unsigned n,
  618. float factor)
  619. @{
  620. unsigned i;
  621. if (i < n)
  622. val[i] *= factor;
  623. @}
  624. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  625. @{
  626. float *factor = (float *)_args;
  627. /* length of the vector */
  628. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  629. /* local copy of the vector pointer */
  630. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  631. unsigned threads_per_block = 64;
  632. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  633. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  634. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  635. @}
  636. @end smallexample
  637. @end cartouche
  638. @node Definition of the OpenCL Kernel
  639. @subsection Definition of the OpenCL Kernel
  640. The OpenCL implementation can be written as follows. StarPU provides
  641. tools to compile a OpenCL kernel stored in a file.
  642. @cartouche
  643. @smallexample
  644. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  645. @{
  646. const int i = get_global_id(0);
  647. if (i < nx) @{
  648. val[i] *= factor;
  649. @}
  650. @}
  651. @end smallexample
  652. @end cartouche
  653. @cartouche
  654. @smallexample
  655. #include <starpu.h>
  656. @i{#include <starpu_opencl.h>}
  657. @i{extern struct starpu_opencl_program programs;}
  658. void scal_opencl_func(void *buffers[], void *_args)
  659. @{
  660. float *factor = _args;
  661. @i{ int id, devid, err;}
  662. @i{ cl_kernel kernel;}
  663. @i{ cl_command_queue queue;}
  664. @i{ cl_event event;}
  665. /* length of the vector */
  666. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  667. /* local copy of the vector pointer */
  668. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  669. @i{ id = starpu_worker_get_id();}
  670. @i{ devid = starpu_worker_get_devid(id);}
  671. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  672. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  673. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  674. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  675. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  676. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  677. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  678. @i{ @{}
  679. @i{ size_t global=1;}
  680. @i{ size_t local=1;}
  681. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  682. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  683. @i{ @}}
  684. @i{ clFinish(queue);}
  685. @i{ starpu_opencl_collect_stats(event);}
  686. @i{ clReleaseEvent(event);}
  687. @i{ starpu_opencl_release_kernel(kernel);}
  688. @}
  689. @end smallexample
  690. @end cartouche
  691. @node Definition of the Main Code
  692. @subsection Definition of the Main Code
  693. The CPU implementation is the same as in the previous section.
  694. Here is the source of the main application. You can notice the value of the
  695. field @code{where} for the codelet. We specify
  696. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  697. can be executed either on a CPU or on a CUDA or an OpenCL device.
  698. @cartouche
  699. @smallexample
  700. #include <starpu.h>
  701. #define NX 2048
  702. extern void scal_cuda_func(void *buffers[], void *_args);
  703. extern void scal_cpu_func(void *buffers[], void *_args);
  704. extern void scal_opencl_func(void *buffers[], void *_args);
  705. /* @b{Definition of the codelet} */
  706. static starpu_codelet cl = @{
  707. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  708. /* @b{on a CUDA device, or on an OpenCL device} */
  709. .cuda_func = scal_cuda_func;
  710. .cpu_func = scal_cpu_func;
  711. .opencl_func = scal_opencl_func;
  712. .nbuffers = 1;
  713. @}
  714. #ifdef STARPU_USE_OPENCL
  715. /* @b{The compiled version of the OpenCL program} */
  716. struct starpu_opencl_program programs;
  717. #endif
  718. int main(int argc, char **argv)
  719. @{
  720. float *vector;
  721. int i, ret;
  722. float factor=3.0;
  723. struct starpu_task *task;
  724. starpu_data_handle vector_handle;
  725. starpu_init(NULL); /* @b{Initialising StarPU} */
  726. #ifdef STARPU_USE_OPENCL
  727. starpu_opencl_load_opencl_from_file(
  728. "examples/basic_examples/vector_scal_opencl_codelet.cl", &programs);
  729. #endif
  730. vector = malloc(NX*sizeof(vector[0]));
  731. assert(vector);
  732. for(i=0 ; i<NX ; i++) vector[i] = i;
  733. @end smallexample
  734. @end cartouche
  735. @cartouche
  736. @smallexample
  737. /* @b{Registering data within StarPU} */
  738. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  739. NX, sizeof(vector[0]));
  740. /* @b{Definition of the task} */
  741. task = starpu_task_create();
  742. task->cl = &cl;
  743. task->buffers[0].handle = vector_handle;
  744. task->buffers[0].mode = STARPU_RW;
  745. task->cl_arg = &factor;
  746. task->cl_arg_size = sizeof(factor);
  747. @end smallexample
  748. @end cartouche
  749. @cartouche
  750. @smallexample
  751. /* @b{Submitting the task} */
  752. ret = starpu_task_submit(task);
  753. if (ret == -ENODEV) @{
  754. fprintf(stderr, "No worker may execute this task\n");
  755. return 1;
  756. @}
  757. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  758. /* @b{Waiting for its termination} */
  759. starpu_task_wait_for_all();
  760. /* @b{Update the vector in RAM} */
  761. starpu_data_acquire(vector_handle, STARPU_R);
  762. @end smallexample
  763. @end cartouche
  764. @cartouche
  765. @smallexample
  766. /* @b{Access the data} */
  767. for(i=0 ; i<NX; i++) @{
  768. fprintf(stderr, "%f ", vector[i]);
  769. @}
  770. fprintf(stderr, "\n");
  771. /* @b{Release the data and shutdown StarPU} */
  772. starpu_data_release(vector_handle);
  773. starpu_shutdown();
  774. return 0;
  775. @}
  776. @end smallexample
  777. @end cartouche
  778. @node Execution of Hybrid Vector Scaling
  779. @subsection Execution of Hybrid Vector Scaling
  780. The Makefile given at the beginning of the section must be extended to
  781. give the rules to compile the CUDA source code. Note that the source
  782. file of the OpenCL kernel does not need to be compiled now, it will
  783. be compiled at run-time when calling the function
  784. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  785. @cartouche
  786. @smallexample
  787. CFLAGS += $(shell pkg-config --cflags libstarpu)
  788. LDFLAGS += $(shell pkg-config --libs libstarpu)
  789. CC = gcc
  790. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  791. %.o: %.cu
  792. nvcc $(CFLAGS) $< -c $@
  793. clean:
  794. rm -f vector_scal *.o
  795. @end smallexample
  796. @end cartouche
  797. @smallexample
  798. % make
  799. @end smallexample
  800. and to execute it, with the default configuration:
  801. @smallexample
  802. % ./vector_scal
  803. 0.000000 3.000000 6.000000 9.000000 12.000000
  804. @end smallexample
  805. or for example, by disabling CPU devices:
  806. @smallexample
  807. % STARPU_NCPUS=0 ./vector_scal
  808. 0.000000 3.000000 6.000000 9.000000 12.000000
  809. @end smallexample
  810. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  811. see @ref{Using accelerators}):
  812. @smallexample
  813. % STARPU_NCUDA=0 ./vector_scal
  814. 0.000000 3.000000 6.000000 9.000000 12.000000
  815. @end smallexample
  816. @node Task and Worker Profiling
  817. @section Task and Worker Profiling
  818. A full example showing how to use the profiling API is available in
  819. the StarPU sources in the directory @code{examples/profiling/}.
  820. @cartouche
  821. @smallexample
  822. struct starpu_task *task = starpu_task_create();
  823. task->cl = &cl;
  824. task->synchronous = 1;
  825. /* We will destroy the task structure by hand so that we can
  826. * query the profiling info before the task is destroyed. */
  827. task->destroy = 0;
  828. /* Submit and wait for completion (since synchronous was set to 1) */
  829. starpu_task_submit(task);
  830. /* The task is finished, get profiling information */
  831. struct starpu_task_profiling_info *info = task->profiling_info;
  832. /* How much time did it take before the task started ? */
  833. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  834. /* How long was the task execution ? */
  835. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  836. /* We don't need the task structure anymore */
  837. starpu_task_destroy(task);
  838. @end smallexample
  839. @end cartouche
  840. @cartouche
  841. @smallexample
  842. /* Display the occupancy of all workers during the test */
  843. int worker;
  844. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  845. @{
  846. struct starpu_worker_profiling_info worker_info;
  847. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  848. STARPU_ASSERT(!ret);
  849. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  850. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  851. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  852. float executing_ratio = 100.0*executing_time/total_time;
  853. float sleeping_ratio = 100.0*sleeping_time/total_time;
  854. char workername[128];
  855. starpu_worker_get_name(worker, workername, 128);
  856. fprintf(stderr, "Worker %s:\n", workername);
  857. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  858. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  859. executing_ratio);
  860. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  861. sleeping_ratio);
  862. @}
  863. @end smallexample
  864. @end cartouche
  865. @node Partitioning Data
  866. @section Partitioning Data
  867. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  868. @cartouche
  869. @smallexample
  870. int vector[NX];
  871. starpu_data_handle handle;
  872. /* Declare data to StarPU */
  873. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  874. /* Partition the vector in PARTS sub-vectors */
  875. starpu_filter f =
  876. @{
  877. .filter_func = starpu_block_filter_func_vector,
  878. .nchildren = PARTS,
  879. .get_nchildren = NULL,
  880. .get_child_ops = NULL
  881. @};
  882. starpu_data_partition(handle, &f);
  883. @end smallexample
  884. @end cartouche
  885. @cartouche
  886. @smallexample
  887. /* Submit a task on each sub-vector */
  888. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  889. /* Get subdata number i (there is only 1 dimension) */
  890. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  891. struct starpu_task *task = starpu_task_create();
  892. task->buffers[0].handle = sub_handle;
  893. task->buffers[0].mode = STARPU_RW;
  894. task->cl = &cl;
  895. task->synchronous = 1;
  896. task->cl_arg = &factor;
  897. task->cl_arg_size = sizeof(factor);
  898. starpu_task_submit(task);
  899. @}
  900. @end smallexample
  901. @end cartouche
  902. Partitioning can be applied several times, see
  903. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  904. @node Performance model example
  905. @section Performance model example
  906. To achieve good scheduling, StarPU scheduling policies need to be able to
  907. estimate in advance the duration of a task. This is done by giving to codelets a
  908. performance model. There are several kinds of performance models.
  909. @itemize
  910. @item
  911. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  912. see for instance
  913. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  914. @item
  915. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  916. given set of data input/output sizes, the performance will always be about the
  917. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  918. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  919. few different sets of data input/output sizes. StarPU will then keep record of
  920. the average time of previous executions on the various processing units, and use
  921. it as an estimation. History is done per task size, by using a hash of the input
  922. and ouput sizes as an index.
  923. It will also save it in @code{~/.starpu/sampling/codelets}
  924. for further executions, and can be observed by using the
  925. @code{starpu_perfmodel_display} command. The following is a small code example.
  926. @cartouche
  927. @smallexample
  928. static struct starpu_perfmodel_t mult_perf_model = @{
  929. .type = STARPU_HISTORY_BASED,
  930. .symbol = "mult_perf_model"
  931. @};
  932. starpu_codelet cl = @{
  933. .where = STARPU_CPU,
  934. .cpu_func = cpu_mult,
  935. .nbuffers = 3,
  936. /* for the scheduling policy to be able to use performance models */
  937. .model = &mult_perf_model
  938. @};
  939. @end smallexample
  940. @end cartouche
  941. @item
  942. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  943. type). This still assumes performance regularity, but can work with various data
  944. input sizes, by applying a*n^b+c regression over observed execution times.
  945. @end itemize
  946. The same can be done for task power consumption estimation, by setting the
  947. @code{power_model} field the same way as the @code{model} field. Note: for
  948. now, the application has to give to the power consumption performance model
  949. a different name.
  950. @node Theoretical lower bound on execution time
  951. @section Theoretical lower bound on execution time
  952. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  953. bound for the execution time of a whole set of tasks. See for
  954. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  955. call @code{starpu_bound_start}, and after complete execution, call
  956. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  957. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  958. problem corresponding to the schedule of your tasks. Run it through
  959. @code{lp_solve} or any other linear programming solver, and that will give you a
  960. lower bound for the total execution time of your tasks. If StarPU was compiled
  961. with the glpk library installed, @code{starpu_bound_compute} can be used to
  962. solve it immediately and get the optimized minimum. Its @code{integer}
  963. parameter allows to decide whether integer resolution should be computed
  964. and returned.
  965. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  966. dependencies into account. It must be understood that the linear programming
  967. problem size is quadratic with the number of tasks and thus the time to solve it
  968. will be very long, it could be minutes for just a few dozen tasks. You should
  969. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  970. problem to MPS format and then use a better solver, @code{glpsol} might be
  971. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  972. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  973. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  974. of @code{lp_solve}. For instance, we often just use
  975. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  976. the @code{-gr} option can also be quite useful.
  977. Setting @code{deps} to 0 will only take into account the actual computations
  978. on processing units. It however still properly takes into account the varying
  979. performances of kernels and processing units, which is quite more accurate than
  980. just comparing StarPU performances with the fastest of the kernels being used.
  981. The @code{prio} parameter tells StarPU whether to simulate taking into account
  982. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  983. tasks before less prioritized tasks, to check to which extend this results
  984. to a less optimal solution. This increases even more computation time.
  985. Note that for simplicity, all this however doesn't take into account data
  986. transfers, which are assumed to be completely overlapped.
  987. @node Insert Task Utility
  988. @section Insert Task Utility
  989. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  990. the creation and submission of tasks.
  991. @emph{Prototype}:
  992. @code{int starpu_insert_task(starpu_codelet *cl, ...);}
  993. The arguments following the codelets can be of the following types:
  994. @itemize
  995. @item
  996. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH} an access mode followed by a data handle;
  997. @item
  998. @code{STARPU_VALUE} followed by a pointer to a constant value and
  999. the size of the constant;
  1000. @item
  1001. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  1002. @item
  1003. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1004. argument to the callback function;
  1005. @item
  1006. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1007. @end itemize
  1008. A call to @code{starpu_insert_task} will create and submit the task
  1009. based on the given arguments. The list of varying arguments has to be
  1010. ended by the value @code{0}.
  1011. Parameters to be passed to the codelet implementation are defined
  1012. through the type @code{STARPU_VALUE}. The function
  1013. @code{starpu_unpack_cl_args} must be called within the codelet
  1014. implementation to retrieve them.
  1015. Here the implementation of the codelet:
  1016. @smallexample
  1017. void func_cpu(void *descr[], void *_args)
  1018. @{
  1019. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1020. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1021. int ifactor;
  1022. float ffactor;
  1023. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1024. *x0 = *x0 * ifactor;
  1025. *x1 = *x1 * ffactor;
  1026. @}
  1027. starpu_codelet mycodelet = @{
  1028. .where = STARPU_CPU,
  1029. .cpu_func = func_cpu,
  1030. .nbuffers = 2
  1031. @};
  1032. @end smallexample
  1033. And the call to the @code{starpu_insert_task} wrapper:
  1034. @smallexample
  1035. starpu_insert_task(&mycodelet,
  1036. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1037. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1038. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1039. 0);
  1040. @end smallexample
  1041. The call to @code{starpu_insert_task} is equivalent to the following
  1042. code:
  1043. @smallexample
  1044. struct starpu_task *task = starpu_task_create();
  1045. task->cl = &mycodelet;
  1046. task->buffers[0].handle = data_handles[0];
  1047. task->buffers[0].mode = STARPU_RW;
  1048. task->buffers[1].handle = data_handles[1];
  1049. task->buffers[1].mode = STARPU_RW;
  1050. char *arg_buffer;
  1051. size_t arg_buffer_size;
  1052. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  1053. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1054. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1055. 0);
  1056. task->cl_arg = arg_buffer;
  1057. task->cl_arg_size = arg_buffer_size;
  1058. int ret = starpu_task_submit(task);
  1059. @end smallexample
  1060. @node More examples
  1061. @section More examples
  1062. More examples are available in the StarPU sources in the @code{examples/}
  1063. directory. Simple examples include:
  1064. @table @asis
  1065. @item @code{incrementer/}:
  1066. Trivial incrementation test.
  1067. @item @code{basic_examples/}:
  1068. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1069. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1070. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1071. interface, and an example using the variable data interface.
  1072. @item @code{matvecmult/}:
  1073. OpenCL example from NVidia, adapted to StarPU.
  1074. @item @code{axpy/}:
  1075. AXPY CUBLAS operation adapted to StarPU.
  1076. @item @code{fortran/}:
  1077. Example of Fortran bindings.
  1078. @end table
  1079. More advanced examples include:
  1080. @table @asis
  1081. @item @code{filters/}:
  1082. Examples using filters, as shown in @ref{Partitioning Data}.
  1083. @item @code{lu/}:
  1084. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1085. @item @code{cholesky/}:
  1086. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1087. @end table
  1088. @c ---------------------------------------------------------------------
  1089. @c Performance options
  1090. @c ---------------------------------------------------------------------
  1091. @node Performance optimization
  1092. @chapter How to optimize performance with StarPU
  1093. TODO: improve!
  1094. @menu
  1095. * Data management::
  1096. * Task submission::
  1097. * Task priorities::
  1098. * Task scheduling policy::
  1099. * Task distribution vs Data transfer::
  1100. * Power-based scheduling::
  1101. * Profiling::
  1102. * CUDA-specific optimizations::
  1103. @end menu
  1104. Simply encapsulating application kernels into tasks already permits to
  1105. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1106. few additional changes are needed.
  1107. @node Data management
  1108. @section Data management
  1109. By default, StarPU does not enable data prefetching, because CUDA does
  1110. not announce when too many data transfers were scheduled and can thus block
  1111. unexpectedly... To enable data prefetching, use @code{export STARPU_PREFETCH=1}
  1112. .
  1113. By default, StarPU leaves replicates of data wherever they were used, in case they
  1114. will be re-used by other tasks, thus saving the data transfer time. When some
  1115. task modifies some data, all the other replicates are invalidated, and only the
  1116. processing unit will have a valid replicate of the data. If the application knows
  1117. that this data will not be re-used by further tasks, it should advise StarPU to
  1118. immediately replicate it to a desired list of memory nodes (given through a
  1119. bitmask). This can be understood like the write-through mode of CPU caches.
  1120. @example
  1121. starpu_data_set_wt_mask(img_handle, 1<<0);
  1122. @end example
  1123. will for instance request to always transfer a replicate into the main memory (node
  1124. 0), as bit 0 of the write-through bitmask is being set.
  1125. When the application allocates data, whenever possible it should use the
  1126. @code{starpu_data_malloc_pinned_if_possible} function, which will ask CUDA or
  1127. OpenCL to make the allocation itself and pin the corresponding allocated
  1128. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1129. transfer to overlap with computations.
  1130. @node Task submission
  1131. @section Task submission
  1132. To let StarPU make online optimizations, tasks should be submitted
  1133. asynchronously as much as possible. Ideally, all the tasks should be
  1134. submitted, and a mere @code{starpu_task_wait_for_all} call be done to wait for
  1135. termination. StarPU will then be able to rework the whole schedule, overlap
  1136. computation with communication, manage accelerator local memory usage, etc.
  1137. @node Task priorities
  1138. @section Task priorities
  1139. By default, StarPU will consider the tasks in the order they are submitted by
  1140. the application. If the application programmer knows that some tasks should
  1141. be performed in priority (for instance because their output is needed by many
  1142. other tasks and may thus be a bottleneck if not executed early enough), the
  1143. @code{priority} field of the task structure should be set to transmit the
  1144. priority information to StarPU.
  1145. @node Task scheduling policy
  1146. @section Task scheduling policy
  1147. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1148. because it provides correct load balance even if the application codelets do not
  1149. have performance models. If your application codelets have performance models,
  1150. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1151. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1152. the list of available schedulers.
  1153. Most schedulers are based on an estimation of codelet duration on each kind
  1154. of processing unit. For this to be possible, the application programmer needs
  1155. to configure a performance model for the codelets of the application (see
  1156. @ref{Performance model example} for instance). History-based performance models
  1157. use on-line calibration. StarPU will automatically calibrate codelets
  1158. which have never been calibrated yet. To force continuing calibration, use
  1159. @code{export STARPU_CALIBRATE=1} . To drop existing calibration information
  1160. completely and re-calibrate from start, use @code{export STARPU_CALIBRATE=2}.
  1161. Note: due to CUDA limitations, to be able to measure kernel duration,
  1162. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1163. disables data transfer / computation overlapping, and should thus not be used
  1164. for eventual benchmarks. Note 2: history-based performance model get calibrated
  1165. only if a performance-model-based scheduler is chosen.
  1166. @node Task distribution vs Data transfer
  1167. @section Task distribution vs Data transfer
  1168. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1169. thus needs to find a balance between both. The target function that the
  1170. @code{dmda} scheduler of StarPU
  1171. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1172. @code{T_execution} is the estimated execution time of the codelet (usually
  1173. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1174. latter is however estimated based on bus calibration before execution start,
  1175. i.e. with an idle machine. You can force bus re-calibration by running
  1176. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1177. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance.
  1178. This is of course imprecise, but in practice, a rough estimation already gives
  1179. the good results that a precise estimation would give.
  1180. @node Power-based scheduling
  1181. @section Power-based scheduling
  1182. If the application can provide some power performance model (through
  1183. the @code{power_model} field of the codelet structure), StarPU will
  1184. take it into account when distributing tasks. The target function that
  1185. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1186. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1187. is the estimated task consumption in Joules. To tune this parameter, use
  1188. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1189. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1190. alpha and beta to zero permits to only take into account power consumption.
  1191. This is however not sufficient to correctly optimize power: the scheduler would
  1192. simply tend to run all computations on the most energy-conservative processing
  1193. unit. To account for the consumption of the whole machine (including idle
  1194. processing units), the idle power of the machine should be given by setting
  1195. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1196. be obtained from the machine power supplier.
  1197. The power actually consumed by the total execution can be displayed by setting
  1198. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1199. @node Profiling
  1200. @section Profiling
  1201. Profiling can be enabled by using @code{export STARPU_PROFILING=1} or by
  1202. calling @code{starpu_profiling_status_set} from the source code.
  1203. Statistics on the execution can then be obtained by using @code{export
  1204. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} . Workers
  1205. stats will include an approximation of the number of executed tasks even if
  1206. @code{STARPU_PROFILING} is not set. This is a convenient way to check that
  1207. execution did happen on accelerators without penalizing performance with
  1208. the profiling overhead. More details on performance feedback are provided by the
  1209. next chapter.
  1210. @node CUDA-specific optimizations
  1211. @section CUDA-specific optimizations
  1212. Due to CUDA limitations, StarPU will have a hard time overlapping its own
  1213. communications and the codelet computations if the application does not use a
  1214. dedicated CUDA stream for its computations. StarPU provides one by the use of
  1215. @code{starpu_cuda_get_local_stream()} which should be used by all CUDA codelet
  1216. operations. For instance:
  1217. @example
  1218. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1219. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1220. @end example
  1221. Unfortunately, a lot of CUDA libraries do not have stream variants of
  1222. kernels. That will lower the potential for overlapping.
  1223. @c ---------------------------------------------------------------------
  1224. @c Performance feedback
  1225. @c ---------------------------------------------------------------------
  1226. @node Performance feedback
  1227. @chapter Performance feedback
  1228. @menu
  1229. * On-line:: On-line performance feedback
  1230. * Off-line:: Off-line performance feedback
  1231. * Codelet performance:: Performance of codelets
  1232. @end menu
  1233. @node On-line
  1234. @section On-line performance feedback
  1235. @menu
  1236. * Enabling monitoring:: Enabling on-line performance monitoring
  1237. * Task feedback:: Per-task feedback
  1238. * Codelet feedback:: Per-codelet feedback
  1239. * Worker feedback:: Per-worker feedback
  1240. * Bus feedback:: Bus-related feedback
  1241. @end menu
  1242. @node Enabling monitoring
  1243. @subsection Enabling on-line performance monitoring
  1244. In order to enable online performance monitoring, the application can call
  1245. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1246. detect whether monitoring is already enabled or not by calling
  1247. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1248. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1249. can also be set to 1 to achieve the same effect.
  1250. Likewise, performance monitoring is stopped by calling
  1251. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1252. does not reset the performance counters so that the application may consult
  1253. them later on.
  1254. More details about the performance monitoring API are available in section
  1255. @ref{Profiling API}.
  1256. @node Task feedback
  1257. @subsection Per-task feedback
  1258. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1259. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1260. structure when a task terminates.
  1261. This structure is automatically destroyed when the task structure is destroyed,
  1262. either automatically or by calling @code{starpu_task_destroy}.
  1263. The @code{starpu_task_profiling_info} structure indicates the date when the
  1264. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1265. terminated (@code{end_time}), relative to the initialization of
  1266. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1267. that has executed the task (@code{workerid}).
  1268. These date are stored as @code{timespec} structures which the user may convert
  1269. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1270. function.
  1271. It it worth noting that the application may directly access this structure from
  1272. the callback executed at the end of the task. The @code{starpu_task} structure
  1273. associated to the callback currently being executed is indeed accessible with
  1274. the @code{starpu_get_current_task()} function.
  1275. @node Codelet feedback
  1276. @subsection Per-codelet feedback
  1277. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1278. an array of counters. The i-th entry of the array is incremented every time a
  1279. task implementing the codelet is executed on the i-th worker.
  1280. This array is not reinitialized when profiling is enabled or disabled.
  1281. @node Worker feedback
  1282. @subsection Per-worker feedback
  1283. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1284. function is a @code{starpu_worker_profiling_info} structure that gives
  1285. statistics about the specified worker. This structure specifies when StarPU
  1286. started collecting profiling information for that worker (@code{start_time}),
  1287. the duration of the profiling measurement interval (@code{total_time}), the
  1288. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1289. because there is no task to execute at all (@code{sleeping_time}), and the
  1290. number of tasks that were executed while profiling was enabled.
  1291. These values give an estimation of the proportion of time spent do real work,
  1292. and the time spent either sleeping because there are not enough executable
  1293. tasks or simply wasted in pure StarPU overhead.
  1294. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1295. information associated to a worker.
  1296. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1297. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1298. generate a graphic showing the evolution of these values during the time, for
  1299. the different workers.
  1300. @node Bus feedback
  1301. @subsection Bus-related feedback
  1302. TODO
  1303. @c how to enable/disable performance monitoring
  1304. @c what kind of information do we get ?
  1305. @node Off-line
  1306. @section Off-line performance feedback
  1307. @menu
  1308. * Generating traces:: Generating traces with FxT
  1309. * Gantt diagram:: Creating a Gantt Diagram
  1310. * DAG:: Creating a DAG with graphviz
  1311. * starpu-top:: Monitoring activity
  1312. @end menu
  1313. @node Generating traces
  1314. @subsection Generating traces with FxT
  1315. StarPU can use the FxT library (see
  1316. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1317. with a limited runtime overhead.
  1318. You can either get the FxT library from CVS (autotools are required):
  1319. @example
  1320. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1321. % ./bootstrap
  1322. @end example
  1323. If autotools are not available on your machine, or if you prefer to do so,
  1324. FxT's code is also available as a tarball:
  1325. @example
  1326. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.tar.gz
  1327. @end example
  1328. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1329. done following the standard procedure:
  1330. @example
  1331. % ./configure --prefix=$FXTDIR
  1332. % make
  1333. % make install
  1334. @end example
  1335. In order to have StarPU to generate traces, StarPU should be configured with
  1336. the @code{--with-fxt} option:
  1337. @example
  1338. $ ./configure --with-fxt=$FXTDIR
  1339. @end example
  1340. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1341. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1342. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1343. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1344. @code{/tmp/} directory by default, or by the directory specified by
  1345. the @code{STARPU_FXT_PREFIX} environment variable.
  1346. @node Gantt diagram
  1347. @subsection Creating a Gantt Diagram
  1348. When the FxT trace file @code{filename} has been generated, it is possible to
  1349. generate a trace in the Paje format by calling:
  1350. @example
  1351. % starpu_fxt_tool -i filename
  1352. @end example
  1353. Or alternatively, setting the @code{STARPU_GENERATE_TRACE} environment variable
  1354. to 1 before application execution will make StarPU do it automatically at
  1355. application shutdown.
  1356. This will create a @code{paje.trace} file in the current directory that can be
  1357. inspected with the ViTE trace visualizing open-source tool. More information
  1358. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1359. possible to open the @code{paje.trace} file with ViTE by using the following
  1360. command:
  1361. @example
  1362. % vite paje.trace
  1363. @end example
  1364. @node DAG
  1365. @subsection Creating a DAG with graphviz
  1366. When the FxT trace file @code{filename} has been generated, it is possible to
  1367. generate a task graph in the DOT format by calling:
  1368. @example
  1369. $ starpu_fxt_tool -i filename
  1370. @end example
  1371. This will create a @code{dag.dot} file in the current directory. This file is a
  1372. task graph described using the DOT language. It is possible to get a
  1373. graphical output of the graph by using the graphviz library:
  1374. @example
  1375. $ dot -Tpdf dag.dot -o output.pdf
  1376. @end example
  1377. @node starpu-top
  1378. @subsection Monitoring activity
  1379. When the FxT trace file @code{filename} has been generated, it is possible to
  1380. generate a activity trace by calling:
  1381. @example
  1382. $ starpu_fxt_tool -i filename
  1383. @end example
  1384. This will create an @code{activity.data} file in the current
  1385. directory. A profile of the application showing the activity of StarPU
  1386. during the execution of the program can be generated:
  1387. @example
  1388. $ starpu_top.sh activity.data
  1389. @end example
  1390. This will create a file named @code{activity.eps} in the current directory.
  1391. This picture is composed of two parts.
  1392. The first part shows the activity of the different workers. The green sections
  1393. indicate which proportion of the time was spent executed kernels on the
  1394. processing unit. The red sections indicate the proportion of time spent in
  1395. StartPU: an important overhead may indicate that the granularity may be too
  1396. low, and that bigger tasks may be appropriate to use the processing unit more
  1397. efficiently. The black sections indicate that the processing unit was blocked
  1398. because there was no task to process: this may indicate a lack of parallelism
  1399. which may be alleviated by creating more tasks when it is possible.
  1400. The second part of the @code{activity.eps} picture is a graph showing the
  1401. evolution of the number of tasks available in the system during the execution.
  1402. Ready tasks are shown in black, and tasks that are submitted but not
  1403. schedulable yet are shown in grey.
  1404. @node Codelet performance
  1405. @section Performance of codelets
  1406. The performance model of codelets can be examined by using the
  1407. @code{starpu_perfmodel_display} tool:
  1408. @example
  1409. $ starpu_perfmodel_display -l
  1410. file: <malloc_pinned.hannibal>
  1411. file: <starpu_slu_lu_model_21.hannibal>
  1412. file: <starpu_slu_lu_model_11.hannibal>
  1413. file: <starpu_slu_lu_model_22.hannibal>
  1414. file: <starpu_slu_lu_model_12.hannibal>
  1415. @end example
  1416. Here, the codelets of the lu example are available. We can examine the
  1417. performance of the 22 kernel:
  1418. @example
  1419. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1420. performance model for cpu
  1421. # hash size mean dev n
  1422. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1423. performance model for cuda_0
  1424. # hash size mean dev n
  1425. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1426. performance model for cuda_1
  1427. # hash size mean dev n
  1428. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1429. performance model for cuda_2
  1430. # hash size mean dev n
  1431. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1432. @end example
  1433. We can see that for the given size, over a sample of a few hundreds of
  1434. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1435. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1436. CPUs.
  1437. @c ---------------------------------------------------------------------
  1438. @c MPI support
  1439. @c ---------------------------------------------------------------------
  1440. @node StarPU MPI support
  1441. @chapter StarPU MPI support
  1442. TODO: document include/starpu_mpi.h and explain a simple example (pingpong?)
  1443. @c ---------------------------------------------------------------------
  1444. @c Configuration options
  1445. @c ---------------------------------------------------------------------
  1446. @node Configuring StarPU
  1447. @chapter Configuring StarPU
  1448. @menu
  1449. * Compilation configuration::
  1450. * Execution configuration through environment variables::
  1451. @end menu
  1452. @node Compilation configuration
  1453. @section Compilation configuration
  1454. The following arguments can be given to the @code{configure} script.
  1455. @menu
  1456. * Common configuration::
  1457. * Configuring workers::
  1458. * Advanced configuration::
  1459. @end menu
  1460. @node Common configuration
  1461. @subsection Common configuration
  1462. @menu
  1463. * --enable-debug::
  1464. * --enable-fast::
  1465. * --enable-verbose::
  1466. * --enable-coverage::
  1467. @end menu
  1468. @node --enable-debug
  1469. @subsubsection @code{--enable-debug}
  1470. @table @asis
  1471. @item @emph{Description}:
  1472. Enable debugging messages.
  1473. @end table
  1474. @node --enable-fast
  1475. @subsubsection @code{--enable-fast}
  1476. @table @asis
  1477. @item @emph{Description}:
  1478. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1479. @end table
  1480. @node --enable-verbose
  1481. @subsubsection @code{--enable-verbose}
  1482. @table @asis
  1483. @item @emph{Description}:
  1484. Augment the verbosity of the debugging messages. This can be disabled
  1485. at runtime by setting the environment variable @code{STARPU_SILENT} to
  1486. any value.
  1487. @smallexample
  1488. % STARPU_SILENT=1 ./vector_scal
  1489. @end smallexample
  1490. @end table
  1491. @node --enable-coverage
  1492. @subsubsection @code{--enable-coverage}
  1493. @table @asis
  1494. @item @emph{Description}:
  1495. Enable flags for the @code{gcov} coverage tool.
  1496. @end table
  1497. @node Configuring workers
  1498. @subsection Configuring workers
  1499. @menu
  1500. * --enable-nmaxcpus::
  1501. * --disable-cpu::
  1502. * --enable-maxcudadev::
  1503. * --disable-cuda::
  1504. * --with-cuda-dir::
  1505. * --with-cuda-include-dir::
  1506. * --with-cuda-lib-dir::
  1507. * --enable-maxopencldev::
  1508. * --disable-opencl::
  1509. * --with-opencl-dir::
  1510. * --with-opencl-include-dir::
  1511. * --with-opencl-lib-dir::
  1512. * --enable-gordon::
  1513. * --with-gordon-dir::
  1514. @end menu
  1515. @node --enable-nmaxcpus
  1516. @subsubsection @code{--enable-nmaxcpus=<number>}
  1517. @table @asis
  1518. @item @emph{Description}:
  1519. Defines the maximum number of CPU cores that StarPU will support, then
  1520. available as the @code{STARPU_NMAXCPUS} macro.
  1521. @end table
  1522. @node --disable-cpu
  1523. @subsubsection @code{--disable-cpu}
  1524. @table @asis
  1525. @item @emph{Description}:
  1526. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1527. @end table
  1528. @node --enable-maxcudadev
  1529. @subsubsection @code{--enable-maxcudadev=<number>}
  1530. @table @asis
  1531. @item @emph{Description}:
  1532. Defines the maximum number of CUDA devices that StarPU will support, then
  1533. available as the @code{STARPU_MAXCUDADEVS} macro.
  1534. @end table
  1535. @node --disable-cuda
  1536. @subsubsection @code{--disable-cuda}
  1537. @table @asis
  1538. @item @emph{Description}:
  1539. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1540. @end table
  1541. @node --with-cuda-dir
  1542. @subsubsection @code{--with-cuda-dir=<path>}
  1543. @table @asis
  1544. @item @emph{Description}:
  1545. Specify the directory where CUDA is installed. This directory should notably contain
  1546. @code{include/cuda.h}.
  1547. @end table
  1548. @node --with-cuda-include-dir
  1549. @subsubsection @code{--with-cuda-include-dir=<path>}
  1550. @table @asis
  1551. @item @emph{Description}:
  1552. Specify the directory where CUDA headers are installed. This directory should
  1553. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1554. value given to @code{--with-cuda-dir}.
  1555. @end table
  1556. @node --with-cuda-lib-dir
  1557. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1558. @table @asis
  1559. @item @emph{Description}:
  1560. Specify the directory where the CUDA library is installed. This directory should
  1561. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1562. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1563. @end table
  1564. @node --enable-maxopencldev
  1565. @subsubsection @code{--enable-maxopencldev=<number>}
  1566. @table @asis
  1567. @item @emph{Description}:
  1568. Defines the maximum number of OpenCL devices that StarPU will support, then
  1569. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1570. @end table
  1571. @node --disable-opencl
  1572. @subsubsection @code{--disable-opencl}
  1573. @table @asis
  1574. @item @emph{Description}:
  1575. Disable the use of OpenCL, even if the SDK is detected.
  1576. @end table
  1577. @node --with-opencl-dir
  1578. @subsubsection @code{--with-opencl-dir=<path>}
  1579. @table @asis
  1580. @item @emph{Description}:
  1581. Specify the location of the OpenCL SDK. This directory should notably contain
  1582. @code{include/CL/cl.h} (or @code{include/OpenCL/cl.h} on Mac OS).
  1583. @end table
  1584. @node --with-opencl-include-dir
  1585. @subsubsection @code{--with-opencl-include-dir=<path>}
  1586. @table @asis
  1587. @item @emph{Description}:
  1588. Specify the location of OpenCL headers. This directory should notably contain
  1589. @code{CL/cl.h} (or @code{OpenCL/cl.h} on Mac OS). This defaults to
  1590. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1591. @end table
  1592. @node --with-opencl-lib-dir
  1593. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1594. @table @asis
  1595. @item @emph{Description}:
  1596. Specify the location of the OpenCL library. This directory should notably
  1597. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1598. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1599. @end table
  1600. @node --enable-gordon
  1601. @subsubsection @code{--enable-gordon}
  1602. @table @asis
  1603. @item @emph{Description}:
  1604. Enable the use of the Gordon runtime for Cell SPUs.
  1605. @c TODO: rather default to enabled when detected
  1606. @end table
  1607. @node --with-gordon-dir
  1608. @subsubsection @code{--with-gordon-dir=<path>}
  1609. @table @asis
  1610. @item @emph{Description}:
  1611. Specify the location of the Gordon SDK.
  1612. @end table
  1613. @node Advanced configuration
  1614. @subsection Advanced configuration
  1615. @menu
  1616. * --enable-perf-debug::
  1617. * --enable-model-debug::
  1618. * --enable-stats::
  1619. * --enable-maxbuffers::
  1620. * --enable-allocation-cache::
  1621. * --enable-opengl-render::
  1622. * --enable-blas-lib::
  1623. * --with-magma::
  1624. * --with-fxt::
  1625. * --with-perf-model-dir::
  1626. * --with-mpicc::
  1627. * --with-goto-dir::
  1628. * --with-atlas-dir::
  1629. * --with-mkl-cflags::
  1630. * --with-mkl-ldflags::
  1631. @end menu
  1632. @node --enable-perf-debug
  1633. @subsubsection @code{--enable-perf-debug}
  1634. @table @asis
  1635. @item @emph{Description}:
  1636. Enable performance debugging.
  1637. @end table
  1638. @node --enable-model-debug
  1639. @subsubsection @code{--enable-model-debug}
  1640. @table @asis
  1641. @item @emph{Description}:
  1642. Enable performance model debugging.
  1643. @end table
  1644. @node --enable-stats
  1645. @subsubsection @code{--enable-stats}
  1646. @table @asis
  1647. @item @emph{Description}:
  1648. Enable statistics.
  1649. @end table
  1650. @node --enable-maxbuffers
  1651. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1652. @table @asis
  1653. @item @emph{Description}:
  1654. Define the maximum number of buffers that tasks will be able to take
  1655. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1656. @end table
  1657. @node --enable-allocation-cache
  1658. @subsubsection @code{--enable-allocation-cache}
  1659. @table @asis
  1660. @item @emph{Description}:
  1661. Enable the use of a data allocation cache to avoid the cost of it with
  1662. CUDA. Still experimental.
  1663. @end table
  1664. @node --enable-opengl-render
  1665. @subsubsection @code{--enable-opengl-render}
  1666. @table @asis
  1667. @item @emph{Description}:
  1668. Enable the use of OpenGL for the rendering of some examples.
  1669. @c TODO: rather default to enabled when detected
  1670. @end table
  1671. @node --enable-blas-lib
  1672. @subsubsection @code{--enable-blas-lib=<name>}
  1673. @table @asis
  1674. @item @emph{Description}:
  1675. Specify the blas library to be used by some of the examples. The
  1676. library has to be 'atlas' or 'goto'.
  1677. @end table
  1678. @node --with-magma
  1679. @subsubsection @code{--with-magma=<path>}
  1680. @table @asis
  1681. @item @emph{Description}:
  1682. Specify where magma is installed. This directory should notably contain
  1683. @code{include/magmablas.h}.
  1684. @end table
  1685. @node --with-fxt
  1686. @subsubsection @code{--with-fxt=<path>}
  1687. @table @asis
  1688. @item @emph{Description}:
  1689. Specify the location of FxT (for generating traces and rendering them
  1690. using ViTE). This directory should notably contain
  1691. @code{include/fxt/fxt.h}.
  1692. @c TODO add ref to other section
  1693. @end table
  1694. @node --with-perf-model-dir
  1695. @subsubsection @code{--with-perf-model-dir=<dir>}
  1696. @table @asis
  1697. @item @emph{Description}:
  1698. Specify where performance models should be stored (instead of defaulting to the
  1699. current user's home).
  1700. @end table
  1701. @node --with-mpicc
  1702. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1703. @table @asis
  1704. @item @emph{Description}:
  1705. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1706. @end table
  1707. @node --with-goto-dir
  1708. @subsubsection @code{--with-goto-dir=<dir>}
  1709. @table @asis
  1710. @item @emph{Description}:
  1711. Specify the location of GotoBLAS.
  1712. @end table
  1713. @node --with-atlas-dir
  1714. @subsubsection @code{--with-atlas-dir=<dir>}
  1715. @table @asis
  1716. @item @emph{Description}:
  1717. Specify the location of ATLAS. This directory should notably contain
  1718. @code{include/cblas.h}.
  1719. @end table
  1720. @node --with-mkl-cflags
  1721. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1722. @table @asis
  1723. @item @emph{Description}:
  1724. Specify the compilation flags for the MKL Library.
  1725. @end table
  1726. @node --with-mkl-ldflags
  1727. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1728. @table @asis
  1729. @item @emph{Description}:
  1730. Specify the linking flags for the MKL Library. Note that the
  1731. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1732. website provides a script to determine the linking flags.
  1733. @end table
  1734. @c ---------------------------------------------------------------------
  1735. @c Environment variables
  1736. @c ---------------------------------------------------------------------
  1737. @node Execution configuration through environment variables
  1738. @section Execution configuration through environment variables
  1739. @menu
  1740. * Workers:: Configuring workers
  1741. * Scheduling:: Configuring the Scheduling engine
  1742. * Misc:: Miscellaneous and debug
  1743. @end menu
  1744. Note: the values given in @code{starpu_conf} structure passed when
  1745. calling @code{starpu_init} will override the values of the environment
  1746. variables.
  1747. @node Workers
  1748. @subsection Configuring workers
  1749. @menu
  1750. * STARPU_NCPUS:: Number of CPU workers
  1751. * STARPU_NCUDA:: Number of CUDA workers
  1752. * STARPU_NOPENCL:: Number of OpenCL workers
  1753. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1754. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1755. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1756. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1757. @end menu
  1758. @node STARPU_NCPUS
  1759. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1760. @table @asis
  1761. @item @emph{Description}:
  1762. Specify the number of CPU workers (thus not including workers dedicated to control acceleratores). Note that by default, StarPU will not allocate
  1763. more CPU workers than there are physical CPUs, and that some CPUs are used to control
  1764. the accelerators.
  1765. @end table
  1766. @node STARPU_NCUDA
  1767. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1768. @table @asis
  1769. @item @emph{Description}:
  1770. Specify the number of CUDA devices that StarPU can use. If
  1771. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1772. possible to select which CUDA devices should be used by the means of the
  1773. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1774. create as many CUDA workers as there are CUDA devices.
  1775. @end table
  1776. @node STARPU_NOPENCL
  1777. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1778. @table @asis
  1779. @item @emph{Description}:
  1780. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1781. @end table
  1782. @node STARPU_NGORDON
  1783. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1784. @table @asis
  1785. @item @emph{Description}:
  1786. Specify the number of SPUs that StarPU can use.
  1787. @end table
  1788. @node STARPU_WORKERS_CPUID
  1789. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1790. @table @asis
  1791. @item @emph{Description}:
  1792. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1793. specifies on which logical CPU the different workers should be
  1794. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  1795. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  1796. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  1797. determined by the OS, or provided by the @code{hwloc} library in case it is
  1798. available.
  1799. Note that the first workers correspond to the CUDA workers, then come the
  1800. OpenCL and the SPU, and finally the CPU workers. For example if
  1801. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1802. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1803. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1804. the logical CPUs #1 and #3 will be used by the CPU workers.
  1805. If the number of workers is larger than the array given in
  1806. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1807. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1808. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1809. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1810. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1811. @end table
  1812. @node STARPU_WORKERS_CUDAID
  1813. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1814. @table @asis
  1815. @item @emph{Description}:
  1816. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1817. possible to select which CUDA devices should be used by StarPU. On a machine
  1818. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1819. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1820. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1821. the one reported by CUDA).
  1822. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1823. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1824. @end table
  1825. @node STARPU_WORKERS_OPENCLID
  1826. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1827. @table @asis
  1828. @item @emph{Description}:
  1829. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1830. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1831. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1832. @end table
  1833. @node Scheduling
  1834. @subsection Configuring the Scheduling engine
  1835. @menu
  1836. * STARPU_SCHED:: Scheduling policy
  1837. * STARPU_CALIBRATE:: Calibrate performance models
  1838. * STARPU_PREFETCH:: Use data prefetch
  1839. * STARPU_SCHED_ALPHA:: Computation factor
  1840. * STARPU_SCHED_BETA:: Communication factor
  1841. @end menu
  1842. @node STARPU_SCHED
  1843. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1844. @table @asis
  1845. @item @emph{Description}:
  1846. This chooses between the different scheduling policies proposed by StarPU: work
  1847. random, stealing, greedy, with performance models, etc.
  1848. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1849. @end table
  1850. @node STARPU_CALIBRATE
  1851. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1852. @table @asis
  1853. @item @emph{Description}:
  1854. If this variable is set to 1, the performance models are calibrated during
  1855. the execution. If it is set to 2, the previous values are dropped to restart
  1856. calibration from scratch. Setting this variable to 0 disable calibration, this
  1857. is the default behaviour.
  1858. Note: this currently only applies to dm and dmda scheduling policies.
  1859. @end table
  1860. @node STARPU_PREFETCH
  1861. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1862. @table @asis
  1863. @item @emph{Description}:
  1864. This variable indicates whether data prefetching should be enabled (0 means
  1865. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1866. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1867. advance, so that data is already present on the GPU when the task starts. As a
  1868. result, computation and data transfers are overlapped.
  1869. @end table
  1870. @node STARPU_SCHED_ALPHA
  1871. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1872. @table @asis
  1873. @item @emph{Description}:
  1874. To estimate the cost of a task StarPU takes into account the estimated
  1875. computation time (obtained thanks to performance models). The alpha factor is
  1876. the coefficient to be applied to it before adding it to the communication part.
  1877. @end table
  1878. @node STARPU_SCHED_BETA
  1879. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1880. @table @asis
  1881. @item @emph{Description}:
  1882. To estimate the cost of a task StarPU takes into account the estimated
  1883. data transfer time (obtained thanks to performance models). The beta factor is
  1884. the coefficient to be applied to it before adding it to the computation part.
  1885. @end table
  1886. @node Misc
  1887. @subsection Miscellaneous and debug
  1888. @menu
  1889. * STARPU_SILENT:: Disable verbose mode
  1890. * STARPU_LOGFILENAME:: Select debug file name
  1891. * STARPU_FXT_PREFIX:: FxT trace location
  1892. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1893. * STARPU_GENERATE_TRACE:: Generate a Paje trace when StarPU is shut down
  1894. @end menu
  1895. @node STARPU_SILENT
  1896. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  1897. @table @asis
  1898. @item @emph{Description}:
  1899. This variable allows to disable verbose mode at runtime when StarPU
  1900. has been configured with the option @code{--enable-verbose}.
  1901. @end table
  1902. @node STARPU_LOGFILENAME
  1903. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1904. @table @asis
  1905. @item @emph{Description}:
  1906. This variable specifies in which file the debugging output should be saved to.
  1907. @end table
  1908. @node STARPU_FXT_PREFIX
  1909. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1910. @table @asis
  1911. @item @emph{Description}
  1912. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1913. @end table
  1914. @node STARPU_LIMIT_GPU_MEM
  1915. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1916. @table @asis
  1917. @item @emph{Description}
  1918. This variable specifies the maximum number of megabytes that should be
  1919. available to the application on each GPUs. In case this value is smaller than
  1920. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1921. on the device. This variable is intended to be used for experimental purposes
  1922. as it emulates devices that have a limited amount of memory.
  1923. @end table
  1924. @node STARPU_GENERATE_TRACE
  1925. @subsubsection @code{STARPU_GENERATE_TRACE} -- Generate a Paje trace when StarPU is shut down
  1926. @table @asis
  1927. @item @emph{Description}
  1928. When set to 1, this variable indicates that StarPU should automatically
  1929. generate a Paje trace when starpu_shutdown is called.
  1930. @end table
  1931. @c ---------------------------------------------------------------------
  1932. @c StarPU API
  1933. @c ---------------------------------------------------------------------
  1934. @node StarPU API
  1935. @chapter StarPU API
  1936. @menu
  1937. * Initialization and Termination:: Initialization and Termination methods
  1938. * Workers' Properties:: Methods to enumerate workers' properties
  1939. * Data Library:: Methods to manipulate data
  1940. * Data Interfaces::
  1941. * Data Partition::
  1942. * Codelets and Tasks:: Methods to construct tasks
  1943. * Explicit Dependencies:: Explicit Dependencies
  1944. * Implicit Data Dependencies:: Implicit Data Dependencies
  1945. * Performance Model API::
  1946. * Profiling API:: Profiling API
  1947. * CUDA extensions:: CUDA extensions
  1948. * OpenCL extensions:: OpenCL extensions
  1949. * Cell extensions:: Cell extensions
  1950. * Miscellaneous helpers::
  1951. @end menu
  1952. @node Initialization and Termination
  1953. @section Initialization and Termination
  1954. @menu
  1955. * starpu_init:: Initialize StarPU
  1956. * struct starpu_conf:: StarPU runtime configuration
  1957. * starpu_conf_init:: Initialize starpu_conf structure
  1958. * starpu_shutdown:: Terminate StarPU
  1959. @end menu
  1960. @node starpu_init
  1961. @subsection @code{starpu_init} -- Initialize StarPU
  1962. @table @asis
  1963. @item @emph{Description}:
  1964. This is StarPU initialization method, which must be called prior to any other
  1965. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1966. policy, number of cores, ...) by passing a non-null argument. Default
  1967. configuration is used if the passed argument is @code{NULL}.
  1968. @item @emph{Return value}:
  1969. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1970. indicates that no worker was available (so that StarPU was not initialized).
  1971. @item @emph{Prototype}:
  1972. @code{int starpu_init(struct starpu_conf *conf);}
  1973. @end table
  1974. @node struct starpu_conf
  1975. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1976. @table @asis
  1977. @item @emph{Description}:
  1978. This structure is passed to the @code{starpu_init} function in order
  1979. to configure StarPU.
  1980. When the default value is used, StarPU automatically selects the number
  1981. of processing units and takes the default scheduling policy. This parameter
  1982. overwrites the equivalent environment variables.
  1983. @item @emph{Fields}:
  1984. @table @asis
  1985. @item @code{sched_policy_name} (default = NULL):
  1986. This is the name of the scheduling policy. This can also be specified with the
  1987. @code{STARPU_SCHED} environment variable.
  1988. @item @code{sched_policy} (default = NULL):
  1989. This is the definition of the scheduling policy. This field is ignored
  1990. if @code{sched_policy_name} is set.
  1991. @item @code{ncpus} (default = -1):
  1992. This is the number of CPU cores that StarPU can use. This can also be
  1993. specified with the @code{STARPU_NCPUS} environment variable.
  1994. @item @code{ncuda} (default = -1):
  1995. This is the number of CUDA devices that StarPU can use. This can also be
  1996. specified with the @code{STARPU_NCUDA} environment variable.
  1997. @item @code{nopencl} (default = -1):
  1998. This is the number of OpenCL devices that StarPU can use. This can also be
  1999. specified with the @code{STARPU_NOPENCL} environment variable.
  2000. @item @code{nspus} (default = -1):
  2001. This is the number of Cell SPUs that StarPU can use. This can also be
  2002. specified with the @code{STARPU_NGORDON} environment variable.
  2003. @item @code{use_explicit_workers_bindid} (default = 0)
  2004. If this flag is set, the @code{workers_bindid} array indicates where the
  2005. different workers are bound, otherwise StarPU automatically selects where to
  2006. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  2007. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  2008. ignored if the @code{use_explicit_workers_bindid} flag is set.
  2009. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  2010. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  2011. where to bind the different workers. The i-th entry of the
  2012. @code{workers_bindid} indicates the logical identifier of the processor which
  2013. should execute the i-th worker. Note that the logical ordering of the CPUs is
  2014. either determined by the OS, or provided by the @code{hwloc} library in case it
  2015. is available.
  2016. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  2017. ignored.
  2018. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  2019. If this flag is set, the CUDA workers will be attached to the CUDA devices
  2020. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  2021. CUDA devices in a round-robin fashion.
  2022. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  2023. ignored.
  2024. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  2025. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  2026. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  2027. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  2028. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  2029. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  2030. OpenCL devices in a round-robin fashion.
  2031. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  2032. @item @code{calibrate} (default = 0):
  2033. If this flag is set, StarPU will calibrate the performance models when
  2034. executing tasks. If this value is equal to -1, the default value is used. The
  2035. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  2036. variable when it is set.
  2037. @end table
  2038. @end table
  2039. @node starpu_conf_init
  2040. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  2041. @table @asis
  2042. This function initializes the @code{starpu_conf} structure passed as argument
  2043. with the default values. In case some configuration parameters are already
  2044. specified through environment variables, @code{starpu_conf_init} initializes
  2045. the fields of the structure according to the environment variables. For
  2046. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2047. @code{.ncuda} field of the structure passed as argument.
  2048. @item @emph{Return value}:
  2049. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2050. indicates that the argument was NULL.
  2051. @item @emph{Prototype}:
  2052. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2053. @end table
  2054. @node starpu_shutdown
  2055. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2056. @table @asis
  2057. @item @emph{Description}:
  2058. This is StarPU termination method. It must be called at the end of the
  2059. application: statistics and other post-mortem debugging information are not
  2060. guaranteed to be available until this method has been called.
  2061. @item @emph{Prototype}:
  2062. @code{void starpu_shutdown(void);}
  2063. @end table
  2064. @node Workers' Properties
  2065. @section Workers' Properties
  2066. @menu
  2067. * starpu_worker_get_count:: Get the number of processing units
  2068. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2069. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2070. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2071. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2072. * starpu_worker_get_id:: Get the identifier of the current worker
  2073. * starpu_worker_get_devid:: Get the device identifier of a worker
  2074. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2075. * starpu_worker_get_name:: Get the name of a worker
  2076. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2077. @end menu
  2078. @node starpu_worker_get_count
  2079. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2080. @table @asis
  2081. @item @emph{Description}:
  2082. This function returns the number of workers (i.e. processing units executing
  2083. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2084. @item @emph{Prototype}:
  2085. @code{unsigned starpu_worker_get_count(void);}
  2086. @end table
  2087. @node starpu_cpu_worker_get_count
  2088. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2089. @table @asis
  2090. @item @emph{Description}:
  2091. This function returns the number of CPUs controlled by StarPU. The returned
  2092. value should be at most @code{STARPU_NMAXCPUS}.
  2093. @item @emph{Prototype}:
  2094. @code{unsigned starpu_cpu_worker_get_count(void);}
  2095. @end table
  2096. @node starpu_cuda_worker_get_count
  2097. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2098. @table @asis
  2099. @item @emph{Description}:
  2100. This function returns the number of CUDA devices controlled by StarPU. The returned
  2101. value should be at most @code{STARPU_MAXCUDADEVS}.
  2102. @item @emph{Prototype}:
  2103. @code{unsigned starpu_cuda_worker_get_count(void);}
  2104. @end table
  2105. @node starpu_opencl_worker_get_count
  2106. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2107. @table @asis
  2108. @item @emph{Description}:
  2109. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2110. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2111. @item @emph{Prototype}:
  2112. @code{unsigned starpu_opencl_worker_get_count(void);}
  2113. @end table
  2114. @node starpu_spu_worker_get_count
  2115. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2116. @table @asis
  2117. @item @emph{Description}:
  2118. This function returns the number of Cell SPUs controlled by StarPU.
  2119. @item @emph{Prototype}:
  2120. @code{unsigned starpu_opencl_worker_get_count(void);}
  2121. @end table
  2122. @node starpu_worker_get_id
  2123. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2124. @table @asis
  2125. @item @emph{Description}:
  2126. This function returns the identifier of the worker associated to the calling
  2127. thread. The returned value is either -1 if the current context is not a StarPU
  2128. worker (i.e. when called from the application outside a task or a callback), or
  2129. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2130. @item @emph{Prototype}:
  2131. @code{int starpu_worker_get_id(void);}
  2132. @end table
  2133. @node starpu_worker_get_devid
  2134. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2135. @table @asis
  2136. @item @emph{Description}:
  2137. This functions returns the device id of the worker associated to an identifier
  2138. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2139. CUDA worker, this device identifier is the logical device identifier exposed by
  2140. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2141. identifier of a CPU worker is the logical identifier of the core on which the
  2142. worker was bound; this identifier is either provided by the OS or by the
  2143. @code{hwloc} library in case it is available.
  2144. @item @emph{Prototype}:
  2145. @code{int starpu_worker_get_devid(int id);}
  2146. @end table
  2147. @node starpu_worker_get_type
  2148. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2149. @table @asis
  2150. @item @emph{Description}:
  2151. This function returns the type of worker associated to an identifier (as
  2152. returned by the @code{starpu_worker_get_id} function). The returned value
  2153. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2154. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2155. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2156. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2157. identifier is unspecified.
  2158. @item @emph{Prototype}:
  2159. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  2160. @end table
  2161. @node starpu_worker_get_name
  2162. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2163. @table @asis
  2164. @item @emph{Description}:
  2165. StarPU associates a unique human readable string to each processing unit. This
  2166. function copies at most the @code{maxlen} first bytes of the unique string
  2167. associated to a worker identified by its identifier @code{id} into the
  2168. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  2169. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  2170. function on an invalid identifier results in an unspecified behaviour.
  2171. @item @emph{Prototype}:
  2172. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  2173. @end table
  2174. @node starpu_worker_get_memory_node
  2175. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2176. @table @asis
  2177. @item @emph{Description}:
  2178. This function returns the identifier of the memory node associated to the
  2179. worker identified by @code{workerid}.
  2180. @item @emph{Prototype}:
  2181. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  2182. @end table
  2183. @node Data Library
  2184. @section Data Library
  2185. This section describes the data management facilities provided by StarPU.
  2186. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2187. design their own data interfaces if required.
  2188. @menu
  2189. * starpu_data_malloc_pinned_if_possible:: Allocate data and pin it
  2190. * starpu_access_mode:: Data access mode
  2191. * unsigned memory_node:: Memory node
  2192. * starpu_data_handle:: StarPU opaque data handle
  2193. * void *interface:: StarPU data interface
  2194. * starpu_data_register:: Register a piece of data to StarPU
  2195. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2196. * starpu_data_invalidate:: Invalidate all data replicates
  2197. * starpu_data_acquire:: Access registered data from the application
  2198. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2199. * starpu_data_release:: Release registered data from the application
  2200. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2201. @end menu
  2202. @node starpu_data_malloc_pinned_if_possible
  2203. @subsection @code{starpu_data_malloc_pinned_if_possible} -- Allocate data and pin it
  2204. @table @asis
  2205. @item @emph{Description}:
  2206. This function allocates data of the given size. It will also try to pin it in
  2207. CUDA or OpenGL, so that data transfers from this buffer can be asynchronous, and
  2208. thus permit data transfer and computation overlapping. The allocated buffer must
  2209. be freed thanks to the @code{starpu_data_free_pinned_if_possible} function.
  2210. @item @emph{Prototype}:
  2211. @code{int starpu_data_malloc_pinned_if_possible(void **A, size_t dim);}
  2212. @end table
  2213. @node starpu_access_mode
  2214. @subsection @code{starpu_access_mode} -- Data access mode
  2215. This datatype describes a data access mode. The different available modes are:
  2216. @table @asis
  2217. @table @asis
  2218. @item @code{STARPU_R} read-only mode.
  2219. @item @code{STARPU_W} write-only mode.
  2220. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2221. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2222. @end table
  2223. @end table
  2224. @node unsigned memory_node
  2225. @subsection @code{unsigned memory_node} -- Memory node
  2226. @table @asis
  2227. @item @emph{Description}:
  2228. Every worker is associated to a memory node which is a logical abstraction of
  2229. the address space from which the processing unit gets its data. For instance,
  2230. the memory node associated to the different CPU workers represents main memory
  2231. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2232. Every memory node is identified by a logical index which is accessible from the
  2233. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2234. to StarPU, the specified memory node indicates where the piece of data
  2235. initially resides (we also call this memory node the home node of a piece of
  2236. data).
  2237. @end table
  2238. @node starpu_data_handle
  2239. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2240. @table @asis
  2241. @item @emph{Description}:
  2242. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2243. data. Once a piece of data has been registered to StarPU, it is associated to a
  2244. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2245. over the entire machine, so that we can maintain data consistency and locate
  2246. data replicates for instance.
  2247. @end table
  2248. @node void *interface
  2249. @subsection @code{void *interface} -- StarPU data interface
  2250. @table @asis
  2251. @item @emph{Description}:
  2252. Data management is done at a high-level in StarPU: rather than accessing a mere
  2253. list of contiguous buffers, the tasks may manipulate data that are described by
  2254. a high-level construct which we call data interface.
  2255. An example of data interface is the "vector" interface which describes a
  2256. contiguous data array on a spefic memory node. This interface is a simple
  2257. structure containing the number of elements in the array, the size of the
  2258. elements, and the address of the array in the appropriate address space (this
  2259. address may be invalid if there is no valid copy of the array in the memory
  2260. node). More informations on the data interfaces provided by StarPU are
  2261. given in @ref{Data Interfaces}.
  2262. When a piece of data managed by StarPU is used by a task, the task
  2263. implementation is given a pointer to an interface describing a valid copy of
  2264. the data that is accessible from the current processing unit.
  2265. @end table
  2266. @node starpu_data_register
  2267. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2268. @table @asis
  2269. @item @emph{Description}:
  2270. Register a piece of data into the handle located at the @code{handleptr}
  2271. address. The @code{interface} buffer contains the initial description of the
  2272. data in the home node. The @code{ops} argument is a pointer to a structure
  2273. describing the different methods used to manipulate this type of interface. See
  2274. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2275. If @code{home_node} is -1, StarPU will automatically
  2276. allocate the memory when it is used for the
  2277. first time in write-only mode. Once such data handle has been automatically
  2278. allocated, it is possible to access it using any access mode.
  2279. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2280. matrix) which can be registered by the means of helper functions (e.g.
  2281. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2282. @item @emph{Prototype}:
  2283. @code{void starpu_data_register(starpu_data_handle *handleptr,
  2284. uint32_t home_node,
  2285. void *interface,
  2286. struct starpu_data_interface_ops_t *ops);}
  2287. @end table
  2288. @node starpu_data_unregister
  2289. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2290. @table @asis
  2291. @item @emph{Description}:
  2292. This function unregisters a data handle from StarPU. If the data was
  2293. automatically allocated by StarPU because the home node was -1, all
  2294. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2295. is put back into the home node in the buffer that was initially registered.
  2296. Using a data handle that has been unregistered from StarPU results in an
  2297. undefined behaviour.
  2298. @item @emph{Prototype}:
  2299. @code{void starpu_data_unregister(starpu_data_handle handle);}
  2300. @end table
  2301. @node starpu_data_invalidate
  2302. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2303. @table @asis
  2304. @item @emph{Description}:
  2305. Destroy all replicates of the data handle. After data invalidation, the first
  2306. access to the handle must be performed in write-only mode. Accessing an
  2307. invalidated data in read-mode results in undefined behaviour.
  2308. @item @emph{Prototype}:
  2309. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  2310. @end table
  2311. @c TODO create a specific sections about user interaction with the DSM ?
  2312. @node starpu_data_acquire
  2313. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2314. @table @asis
  2315. @item @emph{Description}:
  2316. The application must call this function prior to accessing registered data from
  2317. main memory outside tasks. StarPU ensures that the application will get an
  2318. up-to-date copy of the data in main memory located where the data was
  2319. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2320. be consistent with the access mode specified in the @code{mode} argument.
  2321. @code{starpu_data_release} must be called once the application does not need to
  2322. access the piece of data anymore.
  2323. Note that implicit data dependencies are also enforced by
  2324. @code{starpu_data_acquire} in case they are enabled.
  2325. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2326. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2327. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2328. @item @emph{Prototype}:
  2329. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  2330. @end table
  2331. @node starpu_data_acquire_cb
  2332. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2333. @table @asis
  2334. @item @emph{Description}:
  2335. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2336. @code{starpu_data_release}. When the data specified in the first argument is
  2337. available in the appropriate access mode, the callback function is executed.
  2338. The application may access the requested data during the execution of this
  2339. callback. The callback function must call @code{starpu_data_release} once the
  2340. application does not need to access the piece of data anymore.
  2341. Note that implicit data dependencies are also enforced by
  2342. @code{starpu_data_acquire_cb} in case they are enabled.
  2343. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2344. be called from task callbacks. Upon successful completion, this function
  2345. returns 0.
  2346. @item @emph{Prototype}:
  2347. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2348. @end table
  2349. @node starpu_data_release
  2350. @subsection @code{starpu_data_release} -- Release registered data from the application
  2351. @table @asis
  2352. @item @emph{Description}:
  2353. This function releases the piece of data acquired by the application either by
  2354. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2355. @item @emph{Prototype}:
  2356. @code{void starpu_data_release(starpu_data_handle handle);}
  2357. @end table
  2358. @node starpu_data_set_wt_mask
  2359. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2360. @table @asis
  2361. @item @emph{Description}:
  2362. This function sets the write-through mask of a given data, i.e. a bitmask of
  2363. nodes where the data should be always replicated after modification.
  2364. @item @emph{Prototype}:
  2365. @code{void starpu_data_set_wt_mask(starpu_data_handle handle, uint32_t wt_mask);}
  2366. @end table
  2367. @node Data Interfaces
  2368. @section Data Interfaces
  2369. @menu
  2370. * Variable Interface::
  2371. * Vector Interface::
  2372. * Matrix Interface::
  2373. * 3D Matrix Interface::
  2374. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2375. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2376. @end menu
  2377. @node Variable Interface
  2378. @subsection Variable Interface
  2379. @table @asis
  2380. @item @emph{Description}:
  2381. This variant of @code{starpu_data_register} uses the variable interface,
  2382. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2383. and @code{elemsize} is the size of the variable.
  2384. @item @emph{Prototype}:
  2385. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2386. uint32_t home_node,
  2387. uintptr_t ptr, size_t elemsize);}
  2388. @item @emph{Example}:
  2389. @cartouche
  2390. @smallexample
  2391. float var;
  2392. starpu_data_handle var_handle;
  2393. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2394. @end smallexample
  2395. @end cartouche
  2396. @end table
  2397. @node Vector Interface
  2398. @subsection Vector Interface
  2399. @table @asis
  2400. @item @emph{Description}:
  2401. This variant of @code{starpu_data_register} uses the vector interface,
  2402. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2403. element in the home node. @code{nx} is the number of elements in the vector.
  2404. @code{elemsize} is the size of each element.
  2405. @item @emph{Prototype}:
  2406. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2407. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2408. @item @emph{Example}:
  2409. @cartouche
  2410. @smallexample
  2411. float vector[NX];
  2412. starpu_data_handle vector_handle;
  2413. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2414. sizeof(vector[0]));
  2415. @end smallexample
  2416. @end cartouche
  2417. @end table
  2418. @node Matrix Interface
  2419. @subsection Matrix Interface
  2420. @table @asis
  2421. @item @emph{Description}:
  2422. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2423. matrices of elements. @code{ptr} is the address of the first element in the home
  2424. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2425. of elements in a row (this can be different from @code{ld} if there are extra
  2426. elements for alignment for instance). @code{ny} is the number of rows.
  2427. @code{elemsize} is the size of each element.
  2428. @item @emph{Prototype}:
  2429. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2430. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2431. uint32_t ny, size_t elemsize);}
  2432. @item @emph{Example}:
  2433. @cartouche
  2434. @smallexample
  2435. float *matrix;
  2436. starpu_data_handle matrix_handle;
  2437. matrix = (float*)malloc(width * height * sizeof(float));
  2438. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2439. width, width, height, sizeof(float));
  2440. @end smallexample
  2441. @end cartouche
  2442. @end table
  2443. @node 3D Matrix Interface
  2444. @subsection 3D Matrix Interface
  2445. @table @asis
  2446. @item @emph{Description}:
  2447. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2448. @code{ptr} is the address of the array of first element in the home node.
  2449. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2450. of rows between z planes. @code{nx} is the number of elements in a row (this
  2451. can be different from @code{ldy} if there are extra elements for alignment
  2452. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2453. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2454. each element.
  2455. @item @emph{Prototype}:
  2456. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2457. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2458. uint32_t ny, uint32_t nz, size_t elemsize);}
  2459. @item @emph{Example}:
  2460. @cartouche
  2461. @smallexample
  2462. float *block;
  2463. starpu_data_handle block_handle;
  2464. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2465. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2466. nx, nx*ny, nx, ny, nz, sizeof(float));
  2467. @end smallexample
  2468. @end cartouche
  2469. @end table
  2470. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2471. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2472. @table @asis
  2473. @item @emph{Description}:
  2474. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2475. TODO
  2476. @item @emph{Prototype}:
  2477. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2478. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2479. @item @emph{Example}:
  2480. @cartouche
  2481. @smallexample
  2482. @end smallexample
  2483. @end cartouche
  2484. @end table
  2485. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2486. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2487. @table @asis
  2488. @item @emph{Description}:
  2489. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2490. TODO
  2491. @item @emph{Prototype}:
  2492. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2493. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2494. @item @emph{Example}:
  2495. @cartouche
  2496. @smallexample
  2497. @end smallexample
  2498. @end cartouche
  2499. @end table
  2500. @node Data Partition
  2501. @section Data Partition
  2502. @menu
  2503. * struct starpu_data_filter:: StarPU filter structure
  2504. * starpu_data_partition:: Partition Data
  2505. * starpu_data_unpartition:: Unpartition Data
  2506. * starpu_data_get_nb_children::
  2507. * starpu_data_get_sub_data::
  2508. * Predefined filter functions::
  2509. @end menu
  2510. @node struct starpu_data_filter
  2511. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2512. @table @asis
  2513. @item @emph{Description}:
  2514. The filter structure describes a data partitioning operation, to be given to the
  2515. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2516. @item @emph{Fields}:
  2517. @table @asis
  2518. @item @code{filter_func}:
  2519. This function fills the @code{child_interface} structure with interface
  2520. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2521. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2522. @item @code{nchildren}:
  2523. This is the number of parts to partition the data into.
  2524. @item @code{get_nchildren}:
  2525. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2526. children depends on the actual data (e.g. the number of blocks in a sparse
  2527. matrix).
  2528. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2529. @item @code{get_child_ops}:
  2530. In case the resulting children use a different data interface, this function
  2531. returns which interface is used by child number @code{id}.
  2532. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2533. @item @code{filter_arg}:
  2534. Some filters take an addition parameter, but this is usually unused.
  2535. @item @code{filter_arg_ptr}:
  2536. Some filters take an additional array parameter like the sizes of the parts, but
  2537. this is usually unused.
  2538. @end table
  2539. @end table
  2540. @node starpu_data_partition
  2541. @subsection starpu_data_partition -- Partition Data
  2542. @table @asis
  2543. @item @emph{Description}:
  2544. This requests partitioning one StarPU data @code{initial_handle} into several
  2545. subdata according to the filter @code{f}
  2546. @item @emph{Prototype}:
  2547. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2548. @item @emph{Example}:
  2549. @cartouche
  2550. @smallexample
  2551. struct starpu_data_filter f = @{
  2552. .filter_func = starpu_vertical_block_filter_func,
  2553. .nchildren = nslicesx,
  2554. .get_nchildren = NULL,
  2555. .get_child_ops = NULL
  2556. @};
  2557. starpu_data_partition(A_handle, &f);
  2558. @end smallexample
  2559. @end cartouche
  2560. @end table
  2561. @node starpu_data_unpartition
  2562. @subsection starpu_data_unpartition -- Unpartition data
  2563. @table @asis
  2564. @item @emph{Description}:
  2565. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2566. collected back into one big piece in the @code{gathering_node} (usually 0).
  2567. @item @emph{Prototype}:
  2568. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2569. @item @emph{Example}:
  2570. @cartouche
  2571. @smallexample
  2572. starpu_data_unpartition(A_handle, 0);
  2573. @end smallexample
  2574. @end cartouche
  2575. @end table
  2576. @node starpu_data_get_nb_children
  2577. @subsection starpu_data_get_nb_children
  2578. @table @asis
  2579. @item @emph{Description}:
  2580. This function returns the number of children.
  2581. @item @emph{Return value}:
  2582. The number of children.
  2583. @item @emph{Prototype}:
  2584. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2585. @end table
  2586. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2587. @node starpu_data_get_sub_data
  2588. @subsection starpu_data_get_sub_data
  2589. @table @asis
  2590. @item @emph{Description}:
  2591. After partitioning a StarPU data by applying a filter,
  2592. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2593. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2594. is the number of filters to traverse (in case several filters have been applied,
  2595. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2596. parameters are the indexes.
  2597. @item @emph{Return value}:
  2598. A handle to the subdata.
  2599. @item @emph{Prototype}:
  2600. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2601. @item @emph{Example}:
  2602. @cartouche
  2603. @smallexample
  2604. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2605. @end smallexample
  2606. @end cartouche
  2607. @end table
  2608. @node Predefined filter functions
  2609. @subsection Predefined filter functions
  2610. @menu
  2611. * Partitioning BCSR Data::
  2612. * Partitioning BLAS interface::
  2613. * Partitioning Vector Data::
  2614. * Partitioning Block Data::
  2615. @end menu
  2616. This section gives a partial list of the predefined partitioning functions.
  2617. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2618. list can be found in @code{starpu_data_filters.h} .
  2619. @node Partitioning BCSR Data
  2620. @subsubsection Partitioning BCSR Data
  2621. @table @asis
  2622. @item @emph{Description}:
  2623. TODO
  2624. @item @emph{Prototype}:
  2625. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2626. @end table
  2627. @table @asis
  2628. @item @emph{Description}:
  2629. TODO
  2630. @item @emph{Prototype}:
  2631. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2632. @end table
  2633. @node Partitioning BLAS interface
  2634. @subsubsection Partitioning BLAS interface
  2635. @table @asis
  2636. @item @emph{Description}:
  2637. This partitions a dense Matrix into horizontal blocks.
  2638. @item @emph{Prototype}:
  2639. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2640. @end table
  2641. @table @asis
  2642. @item @emph{Description}:
  2643. This partitions a dense Matrix into vertical blocks.
  2644. @item @emph{Prototype}:
  2645. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2646. @end table
  2647. @node Partitioning Vector Data
  2648. @subsubsection Partitioning Vector Data
  2649. @table @asis
  2650. @item @emph{Description}:
  2651. This partitions a vector into blocks of the same size.
  2652. @item @emph{Prototype}:
  2653. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2654. @end table
  2655. @table @asis
  2656. @item @emph{Description}:
  2657. This partitions a vector into blocks of sizes given in @code{filter_arg_ptr}.
  2658. @item @emph{Prototype}:
  2659. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2660. @end table
  2661. @table @asis
  2662. @item @emph{Description}:
  2663. This partitions a vector into two blocks, the first block size being given in @code{filter_arg}.
  2664. @item @emph{Prototype}:
  2665. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2666. @end table
  2667. @node Partitioning Block Data
  2668. @subsubsection Partitioning Block Data
  2669. @table @asis
  2670. @item @emph{Description}:
  2671. This partitions a 3D matrix along the X axis.
  2672. @item @emph{Prototype}:
  2673. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2674. @end table
  2675. @node Codelets and Tasks
  2676. @section Codelets and Tasks
  2677. @menu
  2678. * struct starpu_codelet:: StarPU codelet structure
  2679. * struct starpu_task:: StarPU task structure
  2680. * starpu_task_init:: Initialize a Task
  2681. * starpu_task_create:: Allocate and Initialize a Task
  2682. * starpu_task_deinit:: Release all the resources used by a Task
  2683. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2684. * starpu_task_wait:: Wait for the termination of a Task
  2685. * starpu_task_submit:: Submit a Task
  2686. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2687. * starpu_get_current_task:: Return the task currently executed by the worker
  2688. * starpu_display_codelet_stats:: Display statistics
  2689. @end menu
  2690. @node struct starpu_codelet
  2691. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2692. @table @asis
  2693. @item @emph{Description}:
  2694. The codelet structure describes a kernel that is possibly implemented on various
  2695. targets. For compatibility, make sure to initialize the whole structure to zero.
  2696. @item @emph{Fields}:
  2697. @table @asis
  2698. @item @code{where}:
  2699. Indicates which types of processing units are able to execute the codelet.
  2700. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2701. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2702. indicates that it is only available on Cell SPUs.
  2703. @item @code{cpu_func} (optional):
  2704. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2705. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2706. argument being the array of data managed by the data management library, and
  2707. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2708. field of the @code{starpu_task} structure.
  2709. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2710. the @code{where} field, it must be non-null otherwise.
  2711. @item @code{cuda_func} (optional):
  2712. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2713. must be a host-function written in the CUDA runtime API}. Its prototype must
  2714. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2715. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2716. field, it must be non-null otherwise.
  2717. @item @code{opencl_func} (optional):
  2718. Is a function pointer to the OpenCL implementation of the codelet. Its
  2719. prototype must be:
  2720. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2721. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2722. @code{where} field, it must be non-null otherwise.
  2723. @item @code{gordon_func} (optional):
  2724. This is the index of the Cell SPU implementation within the Gordon library.
  2725. See Gordon documentation for more details on how to register a kernel and
  2726. retrieve its index.
  2727. @item @code{nbuffers}:
  2728. Specifies the number of arguments taken by the codelet. These arguments are
  2729. managed by the DSM and are accessed from the @code{void *buffers[]}
  2730. array. The constant argument passed with the @code{cl_arg} field of the
  2731. @code{starpu_task} structure is not counted in this number. This value should
  2732. not be above @code{STARPU_NMAXBUFS}.
  2733. @item @code{model} (optional):
  2734. This is a pointer to the task duration performance model associated to this
  2735. codelet. This optional field is ignored when set to @code{NULL}.
  2736. TODO
  2737. @item @code{power_model} (optional):
  2738. This is a pointer to the task power consumption performance model associated
  2739. to this codelet. This optional field is ignored when set to @code{NULL}.
  2740. In the case of parallel codelets, this has to account for all processing units
  2741. involved in the parallel execution.
  2742. TODO
  2743. @end table
  2744. @end table
  2745. @node struct starpu_task
  2746. @subsection @code{struct starpu_task} -- StarPU task structure
  2747. @table @asis
  2748. @item @emph{Description}:
  2749. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2750. processing units managed by StarPU. It instantiates a codelet. It can either be
  2751. allocated dynamically with the @code{starpu_task_create} method, or declared
  2752. statically. In the latter case, the programmer has to zero the
  2753. @code{starpu_task} structure and to fill the different fields properly. The
  2754. indicated default values correspond to the configuration of a task allocated
  2755. with @code{starpu_task_create}.
  2756. @item @emph{Fields}:
  2757. @table @asis
  2758. @item @code{cl}:
  2759. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2760. describes where the kernel should be executed, and supplies the appropriate
  2761. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2762. such empty tasks can be useful for synchronization purposes.
  2763. @item @code{buffers}:
  2764. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2765. different pieces of data accessed by the task, and how they should be accessed.
  2766. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2767. @code{handle} field specifies the handle of the piece of data, and the
  2768. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2769. of entries in this array must be specified in the @code{nbuffers} field of the
  2770. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2771. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2772. option when configuring StarPU.
  2773. @item @code{cl_arg} (optional) (default = NULL):
  2774. This pointer is passed to the codelet through the second argument
  2775. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2776. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2777. argument.
  2778. @item @code{cl_arg_size} (optional, Cell specific):
  2779. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2780. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2781. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2782. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2783. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2784. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2785. codelets.
  2786. @item @code{callback_func} (optional) (default = @code{NULL}):
  2787. This is a function pointer of prototype @code{void (*f)(void *)} which
  2788. specifies a possible callback. If this pointer is non-null, the callback
  2789. function is executed @emph{on the host} after the execution of the task. The
  2790. callback is passed the value contained in the @code{callback_arg} field. No
  2791. callback is executed if the field is set to @code{NULL}.
  2792. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2793. This is the pointer passed to the callback function. This field is ignored if
  2794. the @code{callback_func} is set to @code{NULL}.
  2795. @item @code{use_tag} (optional) (default = 0):
  2796. If set, this flag indicates that the task should be associated with the tag
  2797. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2798. with the task and to express task dependencies easily.
  2799. @item @code{tag_id}:
  2800. This fields contains the tag associated to the task if the @code{use_tag} field
  2801. was set, it is ignored otherwise.
  2802. @item @code{synchronous}:
  2803. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2804. returns only when the task has been executed (or if no worker is able to
  2805. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2806. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2807. This field indicates a level of priority for the task. This is an integer value
  2808. that must be set between the return values of the
  2809. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2810. and that of the @code{starpu_sched_get_max_priority} for the most important
  2811. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2812. are provided for convenience and respectively returns value of
  2813. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2814. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2815. order to allow static task initialization. Scheduling strategies that take
  2816. priorities into account can use this parameter to take better scheduling
  2817. decisions, but the scheduling policy may also ignore it.
  2818. @item @code{execute_on_a_specific_worker} (default = 0):
  2819. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2820. task to the worker specified by the @code{workerid} field.
  2821. @item @code{workerid} (optional):
  2822. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2823. which is the identifier of the worker that should process this task (as
  2824. returned by @code{starpu_worker_get_id}). This field is ignored if
  2825. @code{execute_on_a_specific_worker} field is set to 0.
  2826. @item @code{detach} (optional) (default = 1):
  2827. If this flag is set, it is not possible to synchronize with the task
  2828. by the means of @code{starpu_task_wait} later on. Internal data structures
  2829. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2830. flag is not set.
  2831. @item @code{destroy} (optional) (default = 1):
  2832. If this flag is set, the task structure will automatically be freed, either
  2833. after the execution of the callback if the task is detached, or during
  2834. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2835. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2836. called explicitly. Setting this flag for a statically allocated task structure
  2837. will result in undefined behaviour.
  2838. @item @code{predicted} (output field):
  2839. Predicted duration of the task. This field is only set if the scheduling
  2840. strategy used performance models.
  2841. @end table
  2842. @end table
  2843. @node starpu_task_init
  2844. @subsection @code{starpu_task_init} -- Initialize a Task
  2845. @table @asis
  2846. @item @emph{Description}:
  2847. Initialize a task structure with default values. This function is implicitly
  2848. called by @code{starpu_task_create}. By default, tasks initialized with
  2849. @code{starpu_task_init} must be deinitialized explicitly with
  2850. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2851. constant @code{STARPU_TASK_INITIALIZER}.
  2852. @item @emph{Prototype}:
  2853. @code{void starpu_task_init(struct starpu_task *task);}
  2854. @end table
  2855. @node starpu_task_create
  2856. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2857. @table @asis
  2858. @item @emph{Description}:
  2859. Allocate a task structure and initialize it with default values. Tasks
  2860. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2861. task is terminated. If the destroy flag is explicitly unset, the resources used
  2862. by the task are freed by calling
  2863. @code{starpu_task_destroy}.
  2864. @item @emph{Prototype}:
  2865. @code{struct starpu_task *starpu_task_create(void);}
  2866. @end table
  2867. @node starpu_task_deinit
  2868. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2869. @table @asis
  2870. @item @emph{Description}:
  2871. Release all the structures automatically allocated to execute the task. This is
  2872. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2873. freed. This should be used for statically allocated tasks for instance.
  2874. @item @emph{Prototype}:
  2875. @code{void starpu_task_deinit(struct starpu_task *task);}
  2876. @end table
  2877. @node starpu_task_destroy
  2878. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2879. @table @asis
  2880. @item @emph{Description}:
  2881. Free the resource allocated during @code{starpu_task_create}. This function can be
  2882. called automatically after the execution of a task by setting the
  2883. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2884. Calling this function on a statically allocated task results in an undefined
  2885. behaviour.
  2886. @item @emph{Prototype}:
  2887. @code{void starpu_task_destroy(struct starpu_task *task);}
  2888. @end table
  2889. @node starpu_task_wait
  2890. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2891. @table @asis
  2892. @item @emph{Description}:
  2893. This function blocks until the task has been executed. It is not possible to
  2894. synchronize with a task more than once. It is not possible to wait for
  2895. synchronous or detached tasks.
  2896. @item @emph{Return value}:
  2897. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2898. indicates that the specified task was either synchronous or detached.
  2899. @item @emph{Prototype}:
  2900. @code{int starpu_task_wait(struct starpu_task *task);}
  2901. @end table
  2902. @node starpu_task_submit
  2903. @subsection @code{starpu_task_submit} -- Submit a Task
  2904. @table @asis
  2905. @item @emph{Description}:
  2906. This function submits a task to StarPU. Calling this function does
  2907. not mean that the task will be executed immediately as there can be data or task
  2908. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2909. scheduling this task with respect to such dependencies.
  2910. This function returns immediately if the @code{synchronous} field of the
  2911. @code{starpu_task} structure was set to 0, and block until the termination of
  2912. the task otherwise. It is also possible to synchronize the application with
  2913. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2914. function for instance.
  2915. @item @emph{Return value}:
  2916. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2917. means that there is no worker able to process this task (e.g. there is no GPU
  2918. available and this task is only implemented for CUDA devices).
  2919. @item @emph{Prototype}:
  2920. @code{int starpu_task_submit(struct starpu_task *task);}
  2921. @end table
  2922. @node starpu_task_wait_for_all
  2923. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2924. @table @asis
  2925. @item @emph{Description}:
  2926. This function blocks until all the tasks that were submitted are terminated.
  2927. @item @emph{Prototype}:
  2928. @code{void starpu_task_wait_for_all(void);}
  2929. @end table
  2930. @node starpu_get_current_task
  2931. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2932. @table @asis
  2933. @item @emph{Description}:
  2934. This function returns the task currently executed by the worker, or
  2935. NULL if it is called either from a thread that is not a task or simply
  2936. because there is no task being executed at the moment.
  2937. @item @emph{Prototype}:
  2938. @code{struct starpu_task *starpu_get_current_task(void);}
  2939. @end table
  2940. @node starpu_display_codelet_stats
  2941. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2942. @table @asis
  2943. @item @emph{Description}:
  2944. Output on @code{stderr} some statistics on the codelet @code{cl}.
  2945. @item @emph{Prototype}:
  2946. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2947. @end table
  2948. @c Callbacks : what can we put in callbacks ?
  2949. @node Explicit Dependencies
  2950. @section Explicit Dependencies
  2951. @menu
  2952. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2953. * starpu_tag_t:: Task logical identifier
  2954. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2955. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2956. * starpu_tag_wait:: Block until a Tag is terminated
  2957. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2958. * starpu_tag_remove:: Destroy a Tag
  2959. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2960. @end menu
  2961. @node starpu_task_declare_deps_array
  2962. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2963. @table @asis
  2964. @item @emph{Description}:
  2965. Declare task dependencies between a @code{task} and an array of tasks of length
  2966. @code{ndeps}. This function must be called prior to the submission of the task,
  2967. but it may called after the submission or the execution of the tasks in the
  2968. array provided the tasks are still valid (ie. they were not automatically
  2969. destroyed). Calling this function on a task that was already submitted or with
  2970. an entry of @code{task_array} that is not a valid task anymore results in an
  2971. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  2972. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2973. same task, in this case, the dependencies are added. It is possible to have
  2974. redundancy in the task dependencies.
  2975. @item @emph{Prototype}:
  2976. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  2977. @end table
  2978. @node starpu_tag_t
  2979. @subsection @code{starpu_tag_t} -- Task logical identifier
  2980. @table @asis
  2981. @item @emph{Description}:
  2982. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  2983. dependencies between tasks by the means of those tags. To do so, fill the
  2984. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2985. be arbitrary) and set the @code{use_tag} field to 1.
  2986. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2987. not be started until the tasks which holds the declared dependency tags are
  2988. completed.
  2989. @end table
  2990. @node starpu_tag_declare_deps
  2991. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  2992. @table @asis
  2993. @item @emph{Description}:
  2994. Specify the dependencies of the task identified by tag @code{id}. The first
  2995. argument specifies the tag which is configured, the second argument gives the
  2996. number of tag(s) on which @code{id} depends. The following arguments are the
  2997. tags which have to be terminated to unlock the task.
  2998. This function must be called before the associated task is submitted to StarPU
  2999. with @code{starpu_task_submit}.
  3000. @item @emph{Remark}
  3001. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  3002. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  3003. typically need to be explicitly casted. Using the
  3004. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  3005. @item @emph{Prototype}:
  3006. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  3007. @item @emph{Example}:
  3008. @cartouche
  3009. @example
  3010. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3011. starpu_tag_declare_deps((starpu_tag_t)0x1,
  3012. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  3013. @end example
  3014. @end cartouche
  3015. @end table
  3016. @node starpu_tag_declare_deps_array
  3017. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  3018. @table @asis
  3019. @item @emph{Description}:
  3020. This function is similar to @code{starpu_tag_declare_deps}, except that its
  3021. does not take a variable number of arguments but an array of tags of size
  3022. @code{ndeps}.
  3023. @item @emph{Prototype}:
  3024. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  3025. @item @emph{Example}:
  3026. @cartouche
  3027. @example
  3028. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3029. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  3030. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  3031. @end example
  3032. @end cartouche
  3033. @end table
  3034. @node starpu_tag_wait
  3035. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  3036. @table @asis
  3037. @item @emph{Description}:
  3038. This function blocks until the task associated to tag @code{id} has been
  3039. executed. This is a blocking call which must therefore not be called within
  3040. tasks or callbacks, but only from the application directly. It is possible to
  3041. synchronize with the same tag multiple times, as long as the
  3042. @code{starpu_tag_remove} function is not called. Note that it is still
  3043. possible to synchronize with a tag associated to a task which @code{starpu_task}
  3044. data structure was freed (e.g. if the @code{destroy} flag of the
  3045. @code{starpu_task} was enabled).
  3046. @item @emph{Prototype}:
  3047. @code{void starpu_tag_wait(starpu_tag_t id);}
  3048. @end table
  3049. @node starpu_tag_wait_array
  3050. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3051. @table @asis
  3052. @item @emph{Description}:
  3053. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3054. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  3055. terminated.
  3056. @item @emph{Prototype}:
  3057. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  3058. @end table
  3059. @node starpu_tag_remove
  3060. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3061. @table @asis
  3062. @item @emph{Description}:
  3063. This function releases the resources associated to tag @code{id}. It can be
  3064. called once the corresponding task has been executed and when there is
  3065. no other tag that depend on this tag anymore.
  3066. @item @emph{Prototype}:
  3067. @code{void starpu_tag_remove(starpu_tag_t id);}
  3068. @end table
  3069. @node starpu_tag_notify_from_apps
  3070. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3071. @table @asis
  3072. @item @emph{Description}:
  3073. This function explicitly unlocks tag @code{id}. It may be useful in the
  3074. case of applications which execute part of their computation outside StarPU
  3075. tasks (e.g. third-party libraries). It is also provided as a
  3076. convenient tool for the programmer, for instance to entirely construct the task
  3077. DAG before actually giving StarPU the opportunity to execute the tasks.
  3078. @item @emph{Prototype}:
  3079. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  3080. @end table
  3081. @node Implicit Data Dependencies
  3082. @section Implicit Data Dependencies
  3083. @menu
  3084. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3085. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3086. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3087. @end menu
  3088. In this section, we describe how StarPU makes it possible to insert implicit
  3089. task dependencies in order to enforce sequential data consistency. When this
  3090. data consistency is enabled on a specific data handle, any data access will
  3091. appear as sequentially consistent from the application. For instance, if the
  3092. application submits two tasks that access the same piece of data in read-only
  3093. mode, and then a third task that access it in write mode, dependencies will be
  3094. added between the two first tasks and the third one. Implicit data dependencies
  3095. are also inserted in the case of data accesses from the application.
  3096. @node starpu_data_set_default_sequential_consistency_flag
  3097. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3098. @table @asis
  3099. @item @emph{Description}:
  3100. Set the default sequential consistency flag. If a non-zero value is passed, a
  3101. sequential data consistency will be enforced for all handles registered after
  3102. this function call, otherwise it is disabled. By default, StarPU enables
  3103. sequential data consistency. It is also possible to select the data consistency
  3104. mode of a specific data handle with the
  3105. @code{starpu_data_set_sequential_consistency_flag} function.
  3106. @item @emph{Prototype}:
  3107. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  3108. @end table
  3109. @node starpu_data_get_default_sequential_consistency_flag
  3110. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3111. @table @asis
  3112. @item @emph{Description}:
  3113. This function returns the current default sequential consistency flag.
  3114. @item @emph{Prototype}:
  3115. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  3116. @end table
  3117. @node starpu_data_set_sequential_consistency_flag
  3118. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3119. @table @asis
  3120. @item @emph{Description}:
  3121. Select the data consistency mode associated to a data handle. The consistency
  3122. mode set using this function has the priority over the default mode which can
  3123. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3124. @item @emph{Prototype}:
  3125. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  3126. @end table
  3127. @node Performance Model API
  3128. @section Performance Model API
  3129. @menu
  3130. * starpu_load_history_debug::
  3131. * starpu_perfmodel_debugfilepath::
  3132. * starpu_perfmodel_get_arch_name::
  3133. * starpu_force_bus_sampling::
  3134. @end menu
  3135. @node starpu_load_history_debug
  3136. @subsection @code{starpu_load_history_debug}
  3137. @table @asis
  3138. @item @emph{Description}:
  3139. TODO
  3140. @item @emph{Prototype}:
  3141. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  3142. @end table
  3143. @node starpu_perfmodel_debugfilepath
  3144. @subsection @code{starpu_perfmodel_debugfilepath}
  3145. @table @asis
  3146. @item @emph{Description}:
  3147. TODO
  3148. @item @emph{Prototype}:
  3149. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  3150. @end table
  3151. @node starpu_perfmodel_get_arch_name
  3152. @subsection @code{starpu_perfmodel_get_arch_name}
  3153. @table @asis
  3154. @item @emph{Description}:
  3155. TODO
  3156. @item @emph{Prototype}:
  3157. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  3158. @end table
  3159. @node starpu_force_bus_sampling
  3160. @subsection @code{starpu_force_bus_sampling}
  3161. @table @asis
  3162. @item @emph{Description}:
  3163. This forces sampling the bus performance model again.
  3164. @item @emph{Prototype}:
  3165. @code{void starpu_force_bus_sampling(void);}
  3166. @end table
  3167. @node Profiling API
  3168. @section Profiling API
  3169. @menu
  3170. * starpu_profiling_status_set:: starpu_profiling_status_set
  3171. * starpu_profiling_status_get:: starpu_profiling_status_get
  3172. * struct starpu_task_profiling_info:: task profiling information
  3173. * struct starpu_worker_profiling_info:: worker profiling information
  3174. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3175. * struct starpu_bus_profiling_info:: bus profiling information
  3176. * starpu_bus_get_count::
  3177. * starpu_bus_get_id::
  3178. * starpu_bus_get_src::
  3179. * starpu_bus_get_dst::
  3180. * starpu_timing_timespec_delay_us::
  3181. * starpu_timing_timespec_to_us::
  3182. * starpu_bus_profiling_helper_display_summary::
  3183. * starpu_worker_profiling_helper_display_summary::
  3184. @end menu
  3185. @node starpu_profiling_status_set
  3186. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3187. @table @asis
  3188. @item @emph{Description}:
  3189. Thie function sets the profiling status. Profiling is activated by passing
  3190. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3191. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3192. resets all profiling measurements. When profiling is enabled, the
  3193. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3194. to a valid @code{struct starpu_task_profiling_info} structure containing
  3195. information about the execution of the task.
  3196. @item @emph{Return value}:
  3197. Negative return values indicate an error, otherwise the previous status is
  3198. returned.
  3199. @item @emph{Prototype}:
  3200. @code{int starpu_profiling_status_set(int status);}
  3201. @end table
  3202. @node starpu_profiling_status_get
  3203. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3204. @table @asis
  3205. @item @emph{Description}:
  3206. Return the current profiling status or a negative value in case there was an error.
  3207. @item @emph{Prototype}:
  3208. @code{int starpu_profiling_status_get(void);}
  3209. @end table
  3210. @node struct starpu_task_profiling_info
  3211. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3212. @table @asis
  3213. @item @emph{Description}:
  3214. This structure contains information about the execution of a task. It is
  3215. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3216. structure if profiling was enabled.
  3217. @item @emph{Fields}:
  3218. @table @asis
  3219. @item @code{submit_time}:
  3220. Date of task submission (relative to the initialization of StarPU).
  3221. @item @code{start_time}:
  3222. Date of task execution beginning (relative to the initialization of StarPU).
  3223. @item @code{end_time}:
  3224. Date of task execution termination (relative to the initialization of StarPU).
  3225. @item @code{workerid}:
  3226. Identifier of the worker which has executed the task.
  3227. @end table
  3228. @end table
  3229. @node struct starpu_worker_profiling_info
  3230. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3231. @table @asis
  3232. @item @emph{Description}:
  3233. This structure contains the profiling information associated to a worker.
  3234. @item @emph{Fields}:
  3235. @table @asis
  3236. @item @code{start_time}:
  3237. Starting date for the reported profiling measurements.
  3238. @item @code{total_time}:
  3239. Duration of the profiling measurement interval.
  3240. @item @code{executing_time}:
  3241. Time spent by the worker to execute tasks during the profiling measurement interval.
  3242. @item @code{sleeping_time}:
  3243. Time spent idling by the worker during the profiling measurement interval.
  3244. @item @code{executed_tasks}:
  3245. Number of tasks executed by the worker during the profiling measurement interval.
  3246. @end table
  3247. @end table
  3248. @node starpu_worker_get_profiling_info
  3249. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3250. @table @asis
  3251. @item @emph{Description}:
  3252. Get the profiling info associated to the worker identified by @code{workerid},
  3253. and reset the profiling measurements. If the @code{worker_info} argument is
  3254. NULL, only reset the counters associated to worker @code{workerid}.
  3255. @item @emph{Return value}:
  3256. Upon successful completion, this function returns 0. Otherwise, a negative
  3257. value is returned.
  3258. @item @emph{Prototype}:
  3259. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3260. @end table
  3261. @node struct starpu_bus_profiling_info
  3262. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3263. @table @asis
  3264. @item @emph{Description}:
  3265. TODO
  3266. @item @emph{Fields}:
  3267. @table @asis
  3268. @item @code{start_time}:
  3269. TODO
  3270. @item @code{total_time}:
  3271. TODO
  3272. @item @code{transferred_bytes}:
  3273. TODO
  3274. @item @code{transfer_count}:
  3275. TODO
  3276. @end table
  3277. @end table
  3278. @node starpu_bus_get_count
  3279. @subsection @code{starpu_bus_get_count}
  3280. @table @asis
  3281. @item @emph{Description}:
  3282. TODO
  3283. @item @emph{Prototype}:
  3284. @code{int starpu_bus_get_count(void);}
  3285. @end table
  3286. @node starpu_bus_get_id
  3287. @subsection @code{starpu_bus_get_id}
  3288. @table @asis
  3289. @item @emph{Description}:
  3290. TODO
  3291. @item @emph{Prototype}:
  3292. @code{int starpu_bus_get_id(int src, int dst);}
  3293. @end table
  3294. @node starpu_bus_get_src
  3295. @subsection @code{starpu_bus_get_src}
  3296. @table @asis
  3297. @item @emph{Description}:
  3298. TODO
  3299. @item @emph{Prototype}:
  3300. @code{int starpu_bus_get_src(int busid);}
  3301. @end table
  3302. @node starpu_bus_get_dst
  3303. @subsection @code{starpu_bus_get_dst}
  3304. @table @asis
  3305. @item @emph{Description}:
  3306. TODO
  3307. @item @emph{Prototype}:
  3308. @code{int starpu_bus_get_dst(int busid);}
  3309. @end table
  3310. @node starpu_timing_timespec_delay_us
  3311. @subsection @code{starpu_timing_timespec_delay_us}
  3312. @table @asis
  3313. @item @emph{Description}:
  3314. TODO
  3315. @item @emph{Prototype}:
  3316. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  3317. @end table
  3318. @node starpu_timing_timespec_to_us
  3319. @subsection @code{starpu_timing_timespec_to_us}
  3320. @table @asis
  3321. @item @emph{Description}:
  3322. TODO
  3323. @item @emph{Prototype}:
  3324. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  3325. @end table
  3326. @node starpu_bus_profiling_helper_display_summary
  3327. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3328. @table @asis
  3329. @item @emph{Description}:
  3330. TODO
  3331. @item @emph{Prototype}:
  3332. @code{void starpu_bus_profiling_helper_display_summary(void);}
  3333. @end table
  3334. @node starpu_worker_profiling_helper_display_summary
  3335. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3336. @table @asis
  3337. @item @emph{Description}:
  3338. TODO
  3339. @item @emph{Prototype}:
  3340. @code{void starpu_worker_profiling_helper_display_summary(void);}
  3341. @end table
  3342. @node CUDA extensions
  3343. @section CUDA extensions
  3344. @c void starpu_data_malloc_pinned_if_possible(float **A, size_t dim);
  3345. @menu
  3346. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3347. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3348. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3349. @end menu
  3350. @node starpu_cuda_get_local_stream
  3351. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3352. @table @asis
  3353. @item @emph{Description}:
  3354. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3355. function is only provided for convenience so that programmers can easily use
  3356. asynchronous operations within codelets without having to create a stream by
  3357. hand. Note that the application is not forced to use the stream provided by
  3358. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3359. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3360. the likelihood of having all transfers overlapped.
  3361. @item @emph{Prototype}:
  3362. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  3363. @end table
  3364. @node starpu_helper_cublas_init
  3365. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3366. @table @asis
  3367. @item @emph{Description}:
  3368. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3369. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3370. controlled by StarPU. This call blocks until CUBLAS has been properly
  3371. initialized on every device.
  3372. @item @emph{Prototype}:
  3373. @code{void starpu_helper_cublas_init(void);}
  3374. @end table
  3375. @node starpu_helper_cublas_shutdown
  3376. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3377. @table @asis
  3378. @item @emph{Description}:
  3379. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3380. @item @emph{Prototype}:
  3381. @code{void starpu_helper_cublas_shutdown(void);}
  3382. @end table
  3383. @node OpenCL extensions
  3384. @section OpenCL extensions
  3385. @menu
  3386. * Enabling OpenCL:: Enabling OpenCL
  3387. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3388. * Loading OpenCL kernels:: Loading OpenCL kernels
  3389. * OpenCL statistics:: Collecting statistics from OpenCL
  3390. @end menu
  3391. @node Enabling OpenCL
  3392. @subsection Enabling OpenCL
  3393. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3394. enabled by default. To enable OpenCL, you need either to disable CUDA
  3395. when configuring StarPU:
  3396. @example
  3397. % ./configure --disable-cuda
  3398. @end example
  3399. or when running applications:
  3400. @example
  3401. % STARPU_NCUDA=0 ./application
  3402. @end example
  3403. OpenCL will automatically be started on any device not yet used by
  3404. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3405. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3406. so:
  3407. @example
  3408. % STARPU_NCUDA=2 ./application
  3409. @end example
  3410. @node Compiling OpenCL kernels
  3411. @subsection Compiling OpenCL kernels
  3412. Source codes for OpenCL kernels can be stored in a file or in a
  3413. string. StarPU provides functions to build the program executable for
  3414. each available OpenCL device as a @code{cl_program} object. This
  3415. program executable can then be loaded within a specific queue as
  3416. explained in the next section. These are only helpers, Applications
  3417. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3418. use (e.g. different programs on the different OpenCL devices, for
  3419. relocation purpose for instance).
  3420. @menu
  3421. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3422. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3423. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3424. @end menu
  3425. @node starpu_opencl_load_opencl_from_file
  3426. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3427. @table @asis
  3428. @item @emph{Description}:
  3429. TODO
  3430. @item @emph{Prototype}:
  3431. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs);}
  3432. @end table
  3433. @node starpu_opencl_load_opencl_from_string
  3434. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3435. @table @asis
  3436. @item @emph{Description}:
  3437. TODO
  3438. @item @emph{Prototype}:
  3439. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs);}
  3440. @end table
  3441. @node starpu_opencl_unload_opencl
  3442. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3443. @table @asis
  3444. @item @emph{Description}:
  3445. TODO
  3446. @item @emph{Prototype}:
  3447. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3448. @end table
  3449. @node Loading OpenCL kernels
  3450. @subsection Loading OpenCL kernels
  3451. @menu
  3452. * starpu_opencl_load_kernel:: Loading a kernel
  3453. * starpu_opencl_relase_kernel:: Releasing a kernel
  3454. @end menu
  3455. @node starpu_opencl_load_kernel
  3456. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3457. @table @asis
  3458. @item @emph{Description}:
  3459. TODO
  3460. @item @emph{Prototype}:
  3461. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3462. }
  3463. @end table
  3464. @node starpu_opencl_relase_kernel
  3465. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3466. @table @asis
  3467. @item @emph{Description}:
  3468. TODO
  3469. @item @emph{Prototype}:
  3470. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3471. @end table
  3472. @node OpenCL statistics
  3473. @subsection OpenCL statistics
  3474. @menu
  3475. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3476. @end menu
  3477. @node starpu_opencl_collect_stats
  3478. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3479. @table @asis
  3480. @item @emph{Description}:
  3481. After termination of the kernels, the OpenCL codelet should call this function
  3482. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3483. collect statistics about the kernel execution (used cycles, consumed power).
  3484. @item @emph{Prototype}:
  3485. @code{int starpu_opencl_collect_stats(cl_event event);}
  3486. @end table
  3487. @node Cell extensions
  3488. @section Cell extensions
  3489. nothing yet.
  3490. @node Miscellaneous helpers
  3491. @section Miscellaneous helpers
  3492. @menu
  3493. * starpu_data_cpy:: Copy a data handle into another data handle
  3494. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3495. @end menu
  3496. @node starpu_data_cpy
  3497. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3498. @table @asis
  3499. @item @emph{Description}:
  3500. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3501. The @code{asynchronous} parameter indicates whether the function should
  3502. block or not. In the case of an asynchronous call, it is possible to
  3503. synchronize with the termination of this operation either by the means of
  3504. implicit dependencies (if enabled) or by calling
  3505. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3506. this callback function is executed after the handle has been copied, and it is
  3507. given the @code{callback_arg} pointer as argument.
  3508. @item @emph{Prototype}:
  3509. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3510. @end table
  3511. @node starpu_execute_on_each_worker
  3512. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3513. @table @asis
  3514. @item @emph{Description}:
  3515. When calling this method, the offloaded function specified by the first argument is
  3516. executed by every StarPU worker that may execute the function.
  3517. The second argument is passed to the offloaded function.
  3518. The last argument specifies on which types of processing units the function
  3519. should be executed. Similarly to the @code{where} field of the
  3520. @code{starpu_codelet} structure, it is possible to specify that the function
  3521. should be executed on every CUDA device and every CPU by passing
  3522. @code{STARPU_CPU|STARPU_CUDA}.
  3523. This function blocks until the function has been executed on every appropriate
  3524. processing units, so that it may not be called from a callback function for
  3525. instance.
  3526. @item @emph{Prototype}:
  3527. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3528. @end table
  3529. @c ---------------------------------------------------------------------
  3530. @c Advanced Topics
  3531. @c ---------------------------------------------------------------------
  3532. @node Advanced Topics
  3533. @chapter Advanced Topics
  3534. @menu
  3535. * Defining a new data interface::
  3536. * Defining a new scheduling policy::
  3537. @end menu
  3538. @node Defining a new data interface
  3539. @section Defining a new data interface
  3540. @menu
  3541. * struct starpu_data_interface_ops_t:: Per-interface methods
  3542. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3543. * An example of data interface:: An example of data interface
  3544. @end menu
  3545. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3546. @node struct starpu_data_interface_ops_t
  3547. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3548. @table @asis
  3549. @item @emph{Description}:
  3550. TODO describe all the different fields
  3551. @end table
  3552. @node struct starpu_data_copy_methods
  3553. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3554. @table @asis
  3555. @item @emph{Description}:
  3556. TODO describe all the different fields
  3557. @end table
  3558. @node An example of data interface
  3559. @subsection An example of data interface
  3560. @table @asis
  3561. TODO
  3562. @end table
  3563. @node Defining a new scheduling policy
  3564. @section Defining a new scheduling policy
  3565. TODO
  3566. A full example showing how to define a new scheduling policy is available in
  3567. the StarPU sources in the directory @code{examples/scheduler/}.
  3568. @menu
  3569. * struct starpu_sched_policy_s::
  3570. * starpu_worker_set_sched_condition::
  3571. * starpu_sched_set_min_priority:: Set the minimum priority level
  3572. * starpu_sched_set_max_priority:: Set the maximum priority level
  3573. * starpu_push_local_task:: Assign a task to a worker
  3574. * Source code::
  3575. @end menu
  3576. @node struct starpu_sched_policy_s
  3577. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3578. @table @asis
  3579. @item @emph{Description}:
  3580. This structure contains all the methods that implement a scheduling policy. An
  3581. application may specify which scheduling strategy in the @code{sched_policy}
  3582. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3583. function.
  3584. @item @emph{Fields}:
  3585. @table @asis
  3586. @item @code{init_sched}:
  3587. Initialize the scheduling policy.
  3588. @item @code{deinit_sched}:
  3589. Cleanup the scheduling policy.
  3590. @item @code{push_task}:
  3591. Insert a task into the scheduler.
  3592. @item @code{push_prio_task}:
  3593. Insert a priority task into the scheduler.
  3594. @item @code{push_prio_notify}:
  3595. Notify the scheduler that a task was pushed on the worker. This method is
  3596. called when a task that was explicitely assigned to a worker is scheduled. This
  3597. method therefore permits to keep the state of of the scheduler coherent even
  3598. when StarPU bypasses the scheduling strategy.
  3599. @item @code{pop_task}:
  3600. Get a task from the scheduler. The mutex associated to the worker is already
  3601. taken when this method is called. If this method is defined as @code{NULL}, the
  3602. worker will only execute tasks from its local queue. In this case, the
  3603. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3604. assign tasks to the different workers.
  3605. @item @code{pop_every_task}:
  3606. Remove all available tasks from the scheduler (tasks are chained by the means
  3607. of the prev and next fields of the starpu_task structure). The mutex associated
  3608. to the worker is already taken when this method is called.
  3609. @item @code{post_exec_hook} (optionnal):
  3610. This method is called every time a task has been executed.
  3611. @item @code{policy_name}:
  3612. Name of the policy (optionnal).
  3613. @item @code{policy_description}:
  3614. Description of the policy (optionnal).
  3615. @end table
  3616. @end table
  3617. @node starpu_worker_set_sched_condition
  3618. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3619. @table @asis
  3620. @item @emph{Description}:
  3621. When there is no available task for a worker, StarPU blocks this worker on a
  3622. condition variable. This function specifies which condition variable (and the
  3623. associated mutex) should be used to block (and to wake up) a worker. Note that
  3624. multiple workers may use the same condition variable. For instance, in the case
  3625. of a scheduling strategy with a single task queue, the same condition variable
  3626. would be used to block and wake up all workers.
  3627. The initialization method of a scheduling strategy (@code{init_sched}) must
  3628. call this function once per worker.
  3629. @item @emph{Prototype}:
  3630. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3631. @end table
  3632. @node starpu_sched_set_min_priority
  3633. @subsection @code{starpu_sched_set_min_priority}
  3634. @table @asis
  3635. @item @emph{Description}:
  3636. Defines the minimum priority level supported by the scheduling policy. The
  3637. default minimum priority level is the same as the default priority level which
  3638. is 0 by convention. The application may access that value by calling the
  3639. @code{starpu_sched_get_min_priority} function. This function should only be
  3640. called from the initialization method of the scheduling policy, and should not
  3641. be used directly from the application.
  3642. @item @emph{Prototype}:
  3643. @code{void starpu_sched_set_min_priority(int min_prio);}
  3644. @end table
  3645. @node starpu_sched_set_max_priority
  3646. @subsection @code{starpu_sched_set_max_priority}
  3647. @table @asis
  3648. @item @emph{Description}:
  3649. Defines the maximum priority level supported by the scheduling policy. The
  3650. default maximum priority level is 1. The application may access that value by
  3651. calling the @code{starpu_sched_get_max_priority} function. This function should
  3652. only be called from the initialization method of the scheduling policy, and
  3653. should not be used directly from the application.
  3654. @item @emph{Prototype}:
  3655. @code{void starpu_sched_set_min_priority(int max_prio);}
  3656. @end table
  3657. @node starpu_push_local_task
  3658. @subsection @code{starpu_push_local_task}
  3659. @table @asis
  3660. @item @emph{Description}:
  3661. The scheduling policy may put tasks directly into a worker's local queue so
  3662. that it is not always necessary to create its own queue when the local queue
  3663. is sufficient. If "back" not null, the task is put at the back of the queue
  3664. where the worker will pop tasks first. Setting "back" to 0 therefore ensures
  3665. a FIFO ordering.
  3666. @item @emph{Prototype}:
  3667. @code{int starpu_push_local_task(int workerid, struct starpu_task *task, int back);}
  3668. @end table
  3669. @node Source code
  3670. @subsection Source code
  3671. @cartouche
  3672. @smallexample
  3673. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3674. .init_sched = init_dummy_sched,
  3675. .deinit_sched = deinit_dummy_sched,
  3676. .push_task = push_task_dummy,
  3677. .push_prio_task = NULL,
  3678. .pop_task = pop_task_dummy,
  3679. .post_exec_hook = NULL,
  3680. .pop_every_task = NULL,
  3681. .policy_name = "dummy",
  3682. .policy_description = "dummy scheduling strategy"
  3683. @};
  3684. @end smallexample
  3685. @end cartouche
  3686. @c ---------------------------------------------------------------------
  3687. @c Appendices
  3688. @c ---------------------------------------------------------------------
  3689. @c ---------------------------------------------------------------------
  3690. @c Full source code for the 'Scaling a Vector' example
  3691. @c ---------------------------------------------------------------------
  3692. @node Full source code for the 'Scaling a Vector' example
  3693. @appendix Full source code for the 'Scaling a Vector' example
  3694. @menu
  3695. * Main application::
  3696. * CPU Kernel::
  3697. * CUDA Kernel::
  3698. * OpenCL Kernel::
  3699. @end menu
  3700. @node Main application
  3701. @section Main application
  3702. @smallexample
  3703. @include vector_scal_c.texi
  3704. @end smallexample
  3705. @node CPU Kernel
  3706. @section CPU Kernel
  3707. @smallexample
  3708. @include vector_scal_cpu.texi
  3709. @end smallexample
  3710. @node CUDA Kernel
  3711. @section CUDA Kernel
  3712. @smallexample
  3713. @include vector_scal_cuda.texi
  3714. @end smallexample
  3715. @node OpenCL Kernel
  3716. @section OpenCL Kernel
  3717. @menu
  3718. * Invoking the kernel::
  3719. * Source of the kernel::
  3720. @end menu
  3721. @node Invoking the kernel
  3722. @subsection Invoking the kernel
  3723. @smallexample
  3724. @include vector_scal_opencl.texi
  3725. @end smallexample
  3726. @node Source of the kernel
  3727. @subsection Source of the kernel
  3728. @smallexample
  3729. @include vector_scal_opencl_codelet.texi
  3730. @end smallexample
  3731. @bye