mpi_cholesky.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009-2011 Université de Bordeaux 1
  4. * Copyright (C) 2010 Mehdi Juhoor <mjuhoor@gmail.com>
  5. * Copyright (C) 2010, 2011 Centre National de la Recherche Scientifique
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. #include <starpu_mpi.h>
  19. #include "mpi_cholesky.h"
  20. #include "mpi_cholesky_models.h"
  21. /*
  22. * Create the codelets
  23. */
  24. static starpu_codelet cl11 =
  25. {
  26. .where = STARPU_CPU|STARPU_CUDA,
  27. .cpu_func = chol_cpu_codelet_update_u11,
  28. #ifdef STARPU_USE_CUDA
  29. .cuda_func = chol_cublas_codelet_update_u11,
  30. #endif
  31. .nbuffers = 1,
  32. .model = &chol_model_11
  33. };
  34. static starpu_codelet cl21 =
  35. {
  36. .where = STARPU_CPU|STARPU_CUDA,
  37. .cpu_func = chol_cpu_codelet_update_u21,
  38. #ifdef STARPU_USE_CUDA
  39. .cuda_func = chol_cublas_codelet_update_u21,
  40. #endif
  41. .nbuffers = 2,
  42. .model = &chol_model_21
  43. };
  44. static starpu_codelet cl22 =
  45. {
  46. .where = STARPU_CPU|STARPU_CUDA,
  47. .cpu_func = chol_cpu_codelet_update_u22,
  48. #ifdef STARPU_USE_CUDA
  49. .cuda_func = chol_cublas_codelet_update_u22,
  50. #endif
  51. .nbuffers = 3,
  52. .model = &chol_model_22
  53. };
  54. /* Returns the MPI node number where data indexes index is */
  55. int my_distrib(int x, int y, int nb_nodes) {
  56. return (x+y) % nb_nodes;
  57. }
  58. /*
  59. * code to bootstrap the factorization
  60. * and construct the DAG
  61. */
  62. static void dw_cholesky(float ***matA, unsigned size, unsigned ld, unsigned nblocks, int rank, int nodes)
  63. {
  64. struct timeval start;
  65. struct timeval end;
  66. starpu_data_handle **data_handles;
  67. int x, y;
  68. /* create all the DAG nodes */
  69. unsigned i,j,k;
  70. data_handles = malloc(nblocks*sizeof(starpu_data_handle *));
  71. for(x=0 ; x<nblocks ; x++) data_handles[x] = malloc(nblocks*sizeof(starpu_data_handle));
  72. gettimeofday(&start, NULL);
  73. for(x = 0; x < nblocks ; x++) {
  74. for (y = 0; y < nblocks; y++) {
  75. int mpi_rank = my_distrib(x, y, nodes);
  76. if (mpi_rank == rank) {
  77. //fprintf(stderr, "[%d] Owning data[%d][%d]\n", rank, x, y);
  78. starpu_matrix_data_register(&data_handles[x][y], 0, (uintptr_t)matA[x][y],
  79. ld, size/nblocks, size/nblocks, sizeof(float));
  80. }
  81. /* TODO: make better test to only registering what is needed */
  82. else {
  83. /* I don't own that index, but will need it for my computations */
  84. //fprintf(stderr, "[%d] Neighbour of data[%d][%d]\n", rank, x, y);
  85. starpu_matrix_data_register(&data_handles[x][y], -1, (uintptr_t)NULL,
  86. ld, size/nblocks, size/nblocks, sizeof(float));
  87. }
  88. if (data_handles[x][y])
  89. starpu_data_set_rank(data_handles[x][y], mpi_rank);
  90. }
  91. }
  92. for (k = 0; k < nblocks; k++)
  93. {
  94. int prio = STARPU_DEFAULT_PRIO;
  95. if (!noprio) prio = STARPU_MAX_PRIO;
  96. starpu_mpi_insert_task(MPI_COMM_WORLD, &cl11,
  97. STARPU_PRIORITY, prio,
  98. STARPU_RW, data_handles[k][k],
  99. 0);
  100. for (j = k+1; j<nblocks; j++)
  101. {
  102. prio = STARPU_DEFAULT_PRIO;
  103. if (!noprio&& (j == k+1)) prio = STARPU_MAX_PRIO;
  104. starpu_mpi_insert_task(MPI_COMM_WORLD, &cl21,
  105. STARPU_PRIORITY, prio,
  106. STARPU_R, data_handles[k][k],
  107. STARPU_RW, data_handles[k][j],
  108. 0);
  109. for (i = k+1; i<nblocks; i++)
  110. {
  111. if (i <= j)
  112. {
  113. prio = STARPU_DEFAULT_PRIO;
  114. if (!noprio && (i == k + 1) && (j == k +1) ) prio = STARPU_MAX_PRIO;
  115. starpu_mpi_insert_task(MPI_COMM_WORLD, &cl22,
  116. STARPU_PRIORITY, prio,
  117. STARPU_R, data_handles[k][i],
  118. STARPU_R, data_handles[k][j],
  119. STARPU_RW, data_handles[i][j],
  120. 0);
  121. }
  122. }
  123. }
  124. }
  125. starpu_task_wait_for_all();
  126. for(x = 0; x < nblocks ; x++) {
  127. for (y = 0; y < nblocks; y++) {
  128. if (data_handles[x][y])
  129. starpu_data_unregister(data_handles[x][y]);
  130. }
  131. free(data_handles[x]);
  132. }
  133. free(data_handles);
  134. gettimeofday(&end, NULL);
  135. double timing = (double)((end.tv_sec - start.tv_sec)*1000000 + (end.tv_usec - start.tv_usec));
  136. fprintf(stderr, "Computation took (in ms)\n");
  137. printf("%2.2f\n", timing/1000);
  138. double flop = (1.0f*size*size*size)/3.0f;
  139. fprintf(stderr, "Synthetic GFlops : %2.2f\n", (flop/timing/1000.0f));
  140. }
  141. int main(int argc, char **argv)
  142. {
  143. /* create a simple definite positive symetric matrix example
  144. *
  145. * Hilbert matrix : h(i,j) = 1/(i+j+1)
  146. * */
  147. float ***bmat;
  148. int rank, nodes;
  149. parse_args(argc, argv);
  150. starpu_init(NULL);
  151. starpu_mpi_initialize_extended(&rank, &nodes);
  152. starpu_helper_cublas_init();
  153. unsigned i,j,x,y;
  154. bmat = malloc(nblocks * sizeof(float *));
  155. for(x=0 ; x<nblocks ; x++)
  156. {
  157. bmat[x] = malloc(nblocks * sizeof(float *));
  158. for(y=0 ; y<nblocks ; y++)
  159. {
  160. starpu_malloc((void **)&bmat[x][y], BLOCKSIZE*BLOCKSIZE*sizeof(float));
  161. for (i = 0; i < BLOCKSIZE; i++)
  162. {
  163. for (j = 0; j < BLOCKSIZE; j++)
  164. {
  165. bmat[x][y][j +i*BLOCKSIZE] = (1.0f/(1.0f+(i+(x*BLOCKSIZE)+j+(y*BLOCKSIZE)))) + ((i+(x*BLOCKSIZE) == j+(y*BLOCKSIZE))?1.0f*size:0.0f);
  166. //mat[j +i*size] = ((i == j)?1.0f*size:0.0f);
  167. }
  168. }
  169. }
  170. }
  171. if (display) {
  172. printf("[%d] Input :\n", rank);
  173. for(y=0 ; y<nblocks ; y++)
  174. {
  175. for(x=0 ; x<nblocks ; x++)
  176. {
  177. printf("Block %d,%d :\n", x, y);
  178. for (j = 0; j < BLOCKSIZE; j++)
  179. {
  180. for (i = 0; i < BLOCKSIZE; i++)
  181. {
  182. if (i <= j) {
  183. printf("%2.2f\t", bmat[y][x][j +i*BLOCKSIZE]);
  184. }
  185. else {
  186. printf(".\t");
  187. }
  188. }
  189. printf("\n");
  190. }
  191. }
  192. }
  193. }
  194. dw_cholesky(bmat, size, size/nblocks, nblocks, rank, nodes);
  195. starpu_mpi_shutdown();
  196. if (display) {
  197. printf("[%d] Results :\n", rank);
  198. for(y=0 ; y<nblocks ; y++)
  199. {
  200. for(x=0 ; x<nblocks ; x++)
  201. {
  202. printf("Block %d,%d :\n", x, y);
  203. for (j = 0; j < BLOCKSIZE; j++)
  204. {
  205. for (i = 0; i < BLOCKSIZE; i++)
  206. {
  207. if (i <= j) {
  208. printf("%2.2f\t", bmat[y][x][j +i*BLOCKSIZE]);
  209. }
  210. else {
  211. printf(".\t");
  212. }
  213. }
  214. printf("\n");
  215. }
  216. }
  217. }
  218. }
  219. float *rmat = malloc(size*size*sizeof(float));
  220. for(x=0 ; x<nblocks ; x++) {
  221. for(y=0 ; y<nblocks ; y++) {
  222. for (i = 0; i < BLOCKSIZE; i++) {
  223. for (j = 0; j < BLOCKSIZE; j++) {
  224. rmat[j+(y*BLOCKSIZE)+(i+(x*BLOCKSIZE))*size] = bmat[x][y][j +i*BLOCKSIZE];
  225. }
  226. }
  227. }
  228. }
  229. fprintf(stderr, "[%d] compute explicit LLt ...\n", rank);
  230. for (j = 0; j < size; j++)
  231. {
  232. for (i = 0; i < size; i++)
  233. {
  234. if (i > j) {
  235. rmat[j+i*size] = 0.0f; // debug
  236. }
  237. }
  238. }
  239. float *test_mat = malloc(size*size*sizeof(float));
  240. STARPU_ASSERT(test_mat);
  241. SSYRK("L", "N", size, size, 1.0f,
  242. rmat, size, 0.0f, test_mat, size);
  243. fprintf(stderr, "[%d] comparing results ...\n", rank);
  244. if (display) {
  245. for (j = 0; j < size; j++)
  246. {
  247. for (i = 0; i < size; i++)
  248. {
  249. if (i <= j) {
  250. printf("%2.2f\t", test_mat[j +i*size]);
  251. }
  252. else {
  253. printf(".\t");
  254. }
  255. }
  256. printf("\n");
  257. }
  258. }
  259. int correctness = 1;
  260. for(x = 0; x < nblocks ; x++)
  261. {
  262. for (y = 0; y < nblocks; y++)
  263. {
  264. int mpi_rank = my_distrib(x, y, nodes);
  265. if (mpi_rank == rank) {
  266. for (i = (size/nblocks)*x ; i < (size/nblocks)*x+(size/nblocks); i++)
  267. {
  268. for (j = (size/nblocks)*y ; j < (size/nblocks)*y+(size/nblocks); j++)
  269. {
  270. if (i <= j)
  271. {
  272. float orig = (1.0f/(1.0f+i+j)) + ((i == j)?1.0f*size:0.0f);
  273. float err = abs(test_mat[j +i*size] - orig);
  274. if (err > 0.00001) {
  275. fprintf(stderr, "[%d] Error[%d, %d] --> %2.2f != %2.2f (err %2.2f)\n", rank, i, j, test_mat[j +i*size], orig, err);
  276. correctness = 0;
  277. break;
  278. }
  279. }
  280. }
  281. }
  282. }
  283. }
  284. }
  285. for(x=0 ; x<nblocks ; x++)
  286. {
  287. for(y=0 ; y<nblocks ; y++)
  288. {
  289. starpu_free((void *)bmat[x][y]);
  290. }
  291. free(bmat[x]);
  292. }
  293. free(bmat);
  294. free(rmat);
  295. free(test_mat);
  296. starpu_helper_cublas_shutdown();
  297. starpu_shutdown();
  298. assert(correctness);
  299. return 0;
  300. }