basic-examples.texi 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Compiling and linking options::
  9. * Hello World:: Submitting Tasks
  10. * Vector Scaling Using the C Extension::
  11. * Vector Scaling Using StarPu's API::
  12. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  13. @end menu
  14. @node Compiling and linking options
  15. @section Compiling and linking options
  16. Let's suppose StarPU has been installed in the directory
  17. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  18. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  19. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  20. libraries at runtime.
  21. @example
  22. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  23. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  24. @end example
  25. The Makefile could for instance contain the following lines to define which
  26. options must be given to the compiler and to the linker:
  27. @cartouche
  28. @example
  29. CFLAGS += $$(pkg-config --cflags starpu-1.0)
  30. LDFLAGS += $$(pkg-config --libs starpu-1.0)
  31. @end example
  32. @end cartouche
  33. Also pass the @code{--static} option if the application is to be linked statically.
  34. @node Hello World
  35. @section Hello World
  36. This section shows how to implement a simple program that submits a task
  37. to StarPU. You can either use the StarPU C extension (@pxref{C
  38. Extensions}) or directly use the StarPU's API.
  39. @menu
  40. * Hello World using the C Extension::
  41. * Hello World using StarPU's API::
  42. @end menu
  43. @node Hello World using the C Extension
  44. @subsection Hello World using the C Extension
  45. Writing a task is both simpler and less error-prone when using the C
  46. extensions implemented by StarPU's GCC plug-in (@pxref{C Extensions}).
  47. In a nutshell, all it takes is to declare a task, declare and define its
  48. implementations (for CPU, OpenCL, and/or CUDA), and invoke the task like
  49. a regular C function. The example below defines @code{my_task}, which
  50. has a single implementation for CPU:
  51. @cartouche
  52. @smallexample
  53. /* Task declaration. */
  54. static void my_task (int x) __attribute__ ((task));
  55. /* Declaration of the CPU implementation of `my_task'. */
  56. static void my_task_cpu (int x) __attribute__ ((task_implementation ("cpu", my_task)));
  57. /* Definition of said CPU implementation. */
  58. static void my_task_cpu (int x)
  59. @{
  60. printf ("Hello, world! With x = %d\n", x);
  61. @}
  62. int main ()
  63. @{
  64. /* Initialize StarPU. */
  65. #pragma starpu initialize
  66. /* Do an asynchronous call to `my_task'. */
  67. my_task (42);
  68. /* Wait for the call to complete. */
  69. #pragma starpu wait
  70. /* Terminate. */
  71. #pragma starpu shutdown
  72. return 0;
  73. @}
  74. @end smallexample
  75. @end cartouche
  76. @noindent
  77. The code can then be compiled and linked with GCC and the
  78. @code{-fplugin} flag:
  79. @example
  80. $ gcc hello-starpu.c \
  81. -fplugin=`pkg-config starpu-1.0 --variable=gccplugin` \
  82. `pkg-config starpu-1.0 --libs`
  83. @end example
  84. As can be seen above, basic use the C extensions allows programmers to
  85. use StarPU tasks while essentially annotating ``regular'' C code.
  86. @node Hello World using StarPU's API
  87. @subsection Hello World using StarPU's API
  88. The remainder of this section shows how to achieve the same result using
  89. StarPU's standard C API.
  90. @menu
  91. * Required Headers::
  92. * Defining a Codelet::
  93. * Submitting a Task::
  94. * Execution of Hello World::
  95. @end menu
  96. @node Required Headers
  97. @subsubsection Required Headers
  98. The @code{starpu.h} header should be included in any code using StarPU.
  99. @cartouche
  100. @smallexample
  101. #include <starpu.h>
  102. @end smallexample
  103. @end cartouche
  104. @node Defining a Codelet
  105. @subsubsection Defining a Codelet
  106. @cartouche
  107. @smallexample
  108. struct params @{
  109. int i;
  110. float f;
  111. @};
  112. void cpu_func(void *buffers[], void *cl_arg)
  113. @{
  114. struct params *params = cl_arg;
  115. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  116. @}
  117. struct starpu_codelet cl =
  118. @{
  119. .where = STARPU_CPU,
  120. .cpu_funcs = @{ cpu_func, NULL @},
  121. .nbuffers = 0
  122. @};
  123. @end smallexample
  124. @end cartouche
  125. A codelet is a structure that represents a computational kernel. Such a codelet
  126. may contain an implementation of the same kernel on different architectures
  127. (e.g. CUDA, Cell's SPU, x86, ...).
  128. The @code{nbuffers} field specifies the number of data buffers that are
  129. manipulated by the codelet: here the codelet does not access or modify any data
  130. that is controlled by our data management library. Note that the argument
  131. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  132. structure) does not count as a buffer since it is not managed by our data
  133. management library, but just contain trivial parameters.
  134. @c TODO need a crossref to the proper description of "where" see bla for more ...
  135. We create a codelet which may only be executed on the CPUs. The @code{where}
  136. field is a bitmask that defines where the codelet may be executed. Here, the
  137. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  138. (@pxref{Codelets and Tasks} for more details on this field). Note that
  139. the @code{where} field is optional, when unset its value is
  140. automatically set based on the availability of the different
  141. @code{XXX_funcs} fields.
  142. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  143. which @emph{must} have the following prototype:
  144. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  145. In this example, we can ignore the first argument of this function which gives a
  146. description of the input and output buffers (e.g. the size and the location of
  147. the matrices) since there is none.
  148. The second argument is a pointer to a buffer passed as an
  149. argument to the codelet by the means of the @code{cl_arg} field of the
  150. @code{starpu_task} structure.
  151. @c TODO rewrite so that it is a little clearer ?
  152. Be aware that this may be a pointer to a
  153. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  154. if the codelet modifies this buffer, there is no guarantee that the initial
  155. buffer will be modified as well: this for instance implies that the buffer
  156. cannot be used as a synchronization medium. If synchronization is needed, data
  157. has to be registered to StarPU, see @ref{Vector Scaling Using StarPu's API}.
  158. @node Submitting a Task
  159. @subsubsection Submitting a Task
  160. @cartouche
  161. @smallexample
  162. void callback_func(void *callback_arg)
  163. @{
  164. printf("Callback function (arg %x)\n", callback_arg);
  165. @}
  166. int main(int argc, char **argv)
  167. @{
  168. /* @b{initialize StarPU} */
  169. starpu_init(NULL);
  170. struct starpu_task *task = starpu_task_create();
  171. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  172. struct params params = @{ 1, 2.0f @};
  173. task->cl_arg = &params;
  174. task->cl_arg_size = sizeof(params);
  175. task->callback_func = callback_func;
  176. task->callback_arg = 0x42;
  177. /* @b{starpu_task_submit will be a blocking call} */
  178. task->synchronous = 1;
  179. /* @b{submit the task to StarPU} */
  180. starpu_task_submit(task);
  181. /* @b{terminate StarPU} */
  182. starpu_shutdown();
  183. return 0;
  184. @}
  185. @end smallexample
  186. @end cartouche
  187. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  188. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  189. be submitted after the termination of StarPU by a call to
  190. @code{starpu_shutdown}.
  191. In the example above, a task structure is allocated by a call to
  192. @code{starpu_task_create}. This function only allocates and fills the
  193. corresponding structure with the default settings (@pxref{Codelets and
  194. Tasks, starpu_task_create}), but it does not submit the task to StarPU.
  195. @c not really clear ;)
  196. The @code{cl} field is a pointer to the codelet which the task will
  197. execute: in other words, the codelet structure describes which computational
  198. kernel should be offloaded on the different architectures, and the task
  199. structure is a wrapper containing a codelet and the piece of data on which the
  200. codelet should operate.
  201. The optional @code{cl_arg} field is a pointer to a buffer (of size
  202. @code{cl_arg_size}) with some parameters for the kernel
  203. described by the codelet. For instance, if a codelet implements a computational
  204. kernel that multiplies its input vector by a constant, the constant could be
  205. specified by the means of this buffer, instead of registering it as a StarPU
  206. data. It must however be noted that StarPU avoids making copy whenever possible
  207. and rather passes the pointer as such, so the buffer which is pointed at must
  208. kept allocated until the task terminates, and if several tasks are submitted
  209. with various parameters, each of them must be given a pointer to their own
  210. buffer.
  211. Once a task has been executed, an optional callback function is be called.
  212. While the computational kernel could be offloaded on various architectures, the
  213. callback function is always executed on a CPU. The @code{callback_arg}
  214. pointer is passed as an argument of the callback. The prototype of a callback
  215. function must be:
  216. @code{void (*callback_function)(void *);}
  217. If the @code{synchronous} field is non-zero, task submission will be
  218. synchronous: the @code{starpu_task_submit} function will not return until the
  219. task was executed. Note that the @code{starpu_shutdown} method does not
  220. guarantee that asynchronous tasks have been executed before it returns,
  221. @code{starpu_task_wait_for_all} can be used to that effect, or data can be
  222. unregistered (@code{starpu_data_unregister(vector_handle);}), which will
  223. implicitly wait for all the tasks scheduled to work on it, unless explicitly
  224. disabled thanks to @code{starpu_data_set_default_sequential_consistency_flag} or
  225. @code{starpu_data_set_sequential_consistency_flag}.
  226. @node Execution of Hello World
  227. @subsubsection Execution of Hello World
  228. @smallexample
  229. % make hello_world
  230. cc $(pkg-config --cflags starpu-1.0) $(pkg-config --libs starpu-1.0) hello_world.c -o hello_world
  231. % ./hello_world
  232. Hello world (params = @{1, 2.000000@} )
  233. Callback function (arg 42)
  234. @end smallexample
  235. @node Vector Scaling Using the C Extension
  236. @section Vector Scaling Using the C Extension
  237. The previous example has shown how to submit tasks. In this section,
  238. we show how StarPU tasks can manipulate data. The version of this
  239. example using StarPU's API is given in the next sections.
  240. @menu
  241. * Adding an OpenCL Task Implementation::
  242. * Adding a CUDA Task Implementation::
  243. @end menu
  244. The simplest way to get started writing StarPU programs is using the C
  245. language extensions provided by the GCC plug-in (@pxref{C Extensions}).
  246. These extensions map directly to StarPU's main concepts: tasks, task
  247. implementations for CPU, OpenCL, or CUDA, and registered data buffers.
  248. The example below is a vector-scaling program, that multiplies elements
  249. of a vector by a given factor@footnote{The complete example, and
  250. additional examples, is available in the @file{gcc-plugin/examples}
  251. directory of the StarPU distribution.}. For comparison, the standard C
  252. version that uses StarPU's standard C programming interface is given in
  253. the next section (@pxref{Vector Scaling Using StarPu's API, standard C
  254. version of the example}).
  255. First of all, the vector-scaling task and its simple CPU implementation
  256. has to be defined:
  257. @cartouche
  258. @smallexample
  259. /* Declare the `vector_scal' task. */
  260. static void vector_scal (size_t size, float vector[size],
  261. float factor)
  262. __attribute__ ((task));
  263. /* Declare and define the standard CPU implementation. */
  264. static void vector_scal_cpu (size_t size, float vector[size],
  265. float factor)
  266. __attribute__ ((task_implementation ("cpu", vector_scal)));
  267. static void
  268. vector_scal_cpu (size_t size, float vector[size], float factor)
  269. @{
  270. size_t i;
  271. for (i = 0; i < size; i++)
  272. vector[i] *= factor;
  273. @}
  274. @end smallexample
  275. @end cartouche
  276. Next, the body of the program, which uses the task defined above, can be
  277. implemented:
  278. @cartouche
  279. @smallexample
  280. int
  281. main (void)
  282. @{
  283. #pragma starpu initialize
  284. #define NX 0x100000
  285. #define FACTOR 3.14
  286. @{
  287. float vector[NX] __attribute__ ((heap_allocated));
  288. #pragma starpu register vector
  289. size_t i;
  290. for (i = 0; i < NX; i++)
  291. vector[i] = (float) i;
  292. vector_scal (NX, vector, FACTOR);
  293. #pragma starpu wait
  294. @} /* VECTOR is automatically freed here. */
  295. #pragma starpu shutdown
  296. return valid ? EXIT_SUCCESS : EXIT_FAILURE;
  297. @}
  298. @end smallexample
  299. @end cartouche
  300. @noindent
  301. The @code{main} function above does several things:
  302. @itemize
  303. @item
  304. It initializes StarPU. This has to be done explicitly, as it is
  305. undesirable to add implicit initialization code in user code.
  306. @item
  307. It allocates @var{vector} in the heap; it will automatically be freed
  308. when its scope is left. Alternatively, good old @code{malloc} and
  309. @code{free} could have been used, but they are more error-prone and
  310. require more typing.
  311. @item
  312. It @dfn{registers} the memory pointed to by @var{vector}. Eventually,
  313. when OpenCL or CUDA task implementations are added, this will allow
  314. StarPU to transfer that memory region between GPUs and the main memory.
  315. Removing this @code{pragma} is an error.
  316. @item
  317. It invokes the @code{vector_scal} task. The invocation looks the same
  318. as a standard C function call. However, it is an @dfn{asynchronous
  319. invocation}, meaning that the actual call is performed in parallel with
  320. the caller's continuation.
  321. @item
  322. It @dfn{waits} for the termination of the @code{vector_scal}
  323. asynchronous call.
  324. @item
  325. Finally, StarPU is shut down, giving it an opportunity to write
  326. profiling info to a file on disk, for instance (@pxref{Off-line,
  327. off-line performance feedback}).
  328. @end itemize
  329. The program can be compiled and linked with GCC and the @code{-fplugin}
  330. flag:
  331. @example
  332. $ gcc hello-starpu.c \
  333. -fplugin=`pkg-config starpu-1.0 --variable=gccplugin` \
  334. `pkg-config starpu-1.0 --libs`
  335. @end example
  336. And voil@`a!
  337. @node Adding an OpenCL Task Implementation
  338. @subsection Adding an OpenCL Task Implementation
  339. Now, this is all fine and great, but you certainly want to take
  340. advantage of these newfangled GPUs that your lab just bought, don't you?
  341. So, let's add an OpenCL implementation of the @code{vector_scal} task.
  342. We assume that the OpenCL kernel is available in a file,
  343. @file{vector_scal_opencl_kernel.cl}, not shown here. The OpenCL task
  344. implementation is similar to that used with the standard C API
  345. (@pxref{Definition of the OpenCL Kernel}). It is declared and defined
  346. in our C file like this:
  347. @cartouche
  348. @smallexample
  349. /* Include StarPU's OpenCL integration. */
  350. #include <starpu_opencl.h>
  351. /* The OpenCL programs, loaded from `main' (see below). */
  352. static struct starpu_opencl_program cl_programs;
  353. static void vector_scal_opencl (size_t size, float vector[size],
  354. float factor)
  355. __attribute__ ((task_implementation ("opencl", vector_scal)));
  356. static void
  357. vector_scal_opencl (size_t size, float vector[size], float factor)
  358. @{
  359. int id, devid, err;
  360. cl_kernel kernel;
  361. cl_command_queue queue;
  362. cl_event event;
  363. /* VECTOR is GPU memory pointer, not a main memory pointer. */
  364. cl_mem val = (cl_mem) vector;
  365. id = starpu_worker_get_id ();
  366. devid = starpu_worker_get_devid (id);
  367. /* Prepare to invoke the kernel. In the future, this will be largely
  368. automated. */
  369. err = starpu_opencl_load_kernel (&kernel, &queue, &cl_programs,
  370. "vector_mult_opencl", devid);
  371. if (err != CL_SUCCESS)
  372. STARPU_OPENCL_REPORT_ERROR (err);
  373. err = clSetKernelArg (kernel, 0, sizeof (val), &val);
  374. err |= clSetKernelArg (kernel, 1, sizeof (size), &size);
  375. err |= clSetKernelArg (kernel, 2, sizeof (factor), &factor);
  376. if (err)
  377. STARPU_OPENCL_REPORT_ERROR (err);
  378. size_t global = 1, local = 1;
  379. err = clEnqueueNDRangeKernel (queue, kernel, 1, NULL, &global,
  380. &local, 0, NULL, &event);
  381. if (err != CL_SUCCESS)
  382. STARPU_OPENCL_REPORT_ERROR (err);
  383. clFinish (queue);
  384. starpu_opencl_collect_stats (event);
  385. clReleaseEvent (event);
  386. /* Done with KERNEL. */
  387. starpu_opencl_release_kernel (kernel);
  388. @}
  389. @end smallexample
  390. @end cartouche
  391. @noindent
  392. The OpenCL kernel itself must be loaded from @code{main}, sometime after
  393. the @code{initialize} pragma:
  394. @cartouche
  395. @smallexample
  396. starpu_opencl_load_opencl_from_file ("vector_scal_opencl_kernel.cl",
  397. &cl_programs, "");
  398. @end smallexample
  399. @end cartouche
  400. @noindent
  401. And that's it. The @code{vector_scal} task now has an additional
  402. implementation, for OpenCL, which StarPU's scheduler may choose to use
  403. at run-time. Unfortunately, the @code{vector_scal_opencl} above still
  404. has to go through the common OpenCL boilerplate; in the future,
  405. additional extensions will automate most of it.
  406. @node Adding a CUDA Task Implementation
  407. @subsection Adding a CUDA Task Implementation
  408. Adding a CUDA implementation of the task is very similar, except that
  409. the implementation itself is typically written in CUDA, and compiled
  410. with @code{nvcc}. Thus, the C file only needs to contain an external
  411. declaration for the task implementation:
  412. @cartouche
  413. @smallexample
  414. extern void vector_scal_cuda (size_t size, float vector[size],
  415. float factor)
  416. __attribute__ ((task_implementation ("cuda", vector_scal)));
  417. @end smallexample
  418. @end cartouche
  419. The actual implementation of the CUDA task goes into a separate
  420. compilation unit, in a @file{.cu} file. It is very close to the
  421. implementation when using StarPU's standard C API (@pxref{Definition of
  422. the CUDA Kernel}).
  423. @cartouche
  424. @smallexample
  425. /* CUDA implementation of the `vector_scal' task, to be compiled
  426. with `nvcc'. */
  427. #include <starpu.h>
  428. #include <starpu_cuda.h>
  429. #include <stdlib.h>
  430. static __global__ void
  431. vector_mult_cuda (float *val, unsigned n, float factor)
  432. @{
  433. unsigned i = blockIdx.x * blockDim.x + threadIdx.x;
  434. if (i < n)
  435. val[i] *= factor;
  436. @}
  437. /* Definition of the task implementation declared in the C file. */
  438. extern "C" void
  439. vector_scal_cuda (size_t size, float vector[], float factor)
  440. @{
  441. unsigned threads_per_block = 64;
  442. unsigned nblocks = (size + threads_per_block - 1) / threads_per_block;
  443. vector_mult_cuda <<< nblocks, threads_per_block, 0,
  444. starpu_cuda_get_local_stream () >>> (vector, size, factor);
  445. cudaStreamSynchronize (starpu_cuda_get_local_stream ());
  446. @}
  447. @end smallexample
  448. @end cartouche
  449. The complete source code, in the @file{gcc-plugin/examples/vector_scal}
  450. directory of the StarPU distribution, also shows how an SSE-specialized
  451. CPU task implementation can be added.
  452. For more details on the C extensions provided by StarPU's GCC plug-in,
  453. @xref{C Extensions}.
  454. @node Vector Scaling Using StarPu's API
  455. @section Vector Scaling Using StarPu's API
  456. This section shows how to achieve the same result as explained in the
  457. previous section using StarPU's standard C API.
  458. The full source code for
  459. this example is given in @ref{Full source code for the 'Scaling a
  460. Vector' example}.
  461. @menu
  462. * Source Code of Vector Scaling::
  463. * Execution of Vector Scaling:: Running the program
  464. @end menu
  465. @node Source Code of Vector Scaling
  466. @subsection Source Code of Vector Scaling
  467. Programmers can describe the data layout of their application so that StarPU is
  468. responsible for enforcing data coherency and availability across the machine.
  469. Instead of handling complex (and non-portable) mechanisms to perform data
  470. movements, programmers only declare which piece of data is accessed and/or
  471. modified by a task, and StarPU makes sure that when a computational kernel
  472. starts somewhere (e.g. on a GPU), its data are available locally.
  473. Before submitting those tasks, the programmer first needs to declare the
  474. different pieces of data to StarPU using the @code{starpu_*_data_register}
  475. functions. To ease the development of applications for StarPU, it is possible
  476. to describe multiple types of data layout. A type of data layout is called an
  477. @b{interface}. There are different predefined interfaces available in StarPU:
  478. here we will consider the @b{vector interface}.
  479. The following lines show how to declare an array of @code{NX} elements of type
  480. @code{float} using the vector interface:
  481. @cartouche
  482. @smallexample
  483. float vector[NX];
  484. starpu_data_handle_t vector_handle;
  485. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  486. sizeof(vector[0]));
  487. @end smallexample
  488. @end cartouche
  489. The first argument, called the @b{data handle}, is an opaque pointer which
  490. designates the array in StarPU. This is also the structure which is used to
  491. describe which data is used by a task. The second argument is the node number
  492. where the data originally resides. Here it is 0 since the @code{vector} array is in
  493. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  494. the number of elements in the vector and the size of each element.
  495. The following shows how to construct a StarPU task that will manipulate the
  496. vector and a constant factor.
  497. @cartouche
  498. @smallexample
  499. float factor = 3.14;
  500. struct starpu_task *task = starpu_task_create();
  501. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  502. task->handles[0] = vector_handle; /* @b{First parameter of the codelet} */
  503. task->cl_arg = &factor;
  504. task->cl_arg_size = sizeof(factor);
  505. task->synchronous = 1;
  506. starpu_task_submit(task);
  507. @end smallexample
  508. @end cartouche
  509. Since the factor is a mere constant float value parameter,
  510. it does not need a preliminary registration, and
  511. can just be passed through the @code{cl_arg} pointer like in the previous
  512. example. The vector parameter is described by its handle.
  513. There are two fields in each element of the @code{buffers} array.
  514. @code{handle} is the handle of the data, and @code{mode} specifies how the
  515. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  516. write-only and @code{STARPU_RW} for read and write access).
  517. The definition of the codelet can be written as follows:
  518. @cartouche
  519. @smallexample
  520. void scal_cpu_func(void *buffers[], void *cl_arg)
  521. @{
  522. unsigned i;
  523. float *factor = cl_arg;
  524. /* length of the vector */
  525. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  526. /* CPU copy of the vector pointer */
  527. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  528. for (i = 0; i < n; i++)
  529. val[i] *= *factor;
  530. @}
  531. struct starpu_codelet cl = @{
  532. .where = STARPU_CPU,
  533. .cpu_funcs = @{ scal_cpu_func, NULL @},
  534. .nbuffers = 1,
  535. .modes = @{ STARPU_RW @}
  536. @};
  537. @end smallexample
  538. @end cartouche
  539. The first argument is an array that gives
  540. a description of all the buffers passed in the @code{task->handles}@ array. The
  541. size of this array is given by the @code{nbuffers} field of the codelet
  542. structure. For the sake of genericity, this array contains pointers to the
  543. different interfaces describing each buffer. In the case of the @b{vector
  544. interface}, the location of the vector (resp. its length) is accessible in the
  545. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  546. read-write fashion, any modification will automatically affect future accesses
  547. to this vector made by other tasks.
  548. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  549. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  550. constant factor from this pointer.
  551. @node Execution of Vector Scaling
  552. @subsection Execution of Vector Scaling
  553. @smallexample
  554. % make vector_scal
  555. cc $(pkg-config --cflags starpu-1.0) $(pkg-config --libs starpu-1.0) vector_scal.c -o vector_scal
  556. % ./vector_scal
  557. 0.000000 3.000000 6.000000 9.000000 12.000000
  558. @end smallexample
  559. @node Vector Scaling on an Hybrid CPU/GPU Machine
  560. @section Vector Scaling on an Hybrid CPU/GPU Machine
  561. Contrary to the previous examples, the task submitted in this example may not
  562. only be executed by the CPUs, but also by a CUDA device.
  563. @menu
  564. * Definition of the CUDA Kernel::
  565. * Definition of the OpenCL Kernel::
  566. * Definition of the Main Code::
  567. * Execution of Hybrid Vector Scaling::
  568. @end menu
  569. @node Definition of the CUDA Kernel
  570. @subsection Definition of the CUDA Kernel
  571. The CUDA implementation can be written as follows. It needs to be compiled with
  572. a CUDA compiler such as nvcc, the NVIDIA CUDA compiler driver. It must be noted
  573. that the vector pointer returned by STARPU_VECTOR_GET_PTR is here a pointer in GPU
  574. memory, so that it can be passed as such to the @code{vector_mult_cuda} kernel
  575. call.
  576. @cartouche
  577. @smallexample
  578. #include <starpu.h>
  579. #include <starpu_cuda.h>
  580. static __global__ void vector_mult_cuda(float *val, unsigned n,
  581. float factor)
  582. @{
  583. unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
  584. if (i < n)
  585. val[i] *= factor;
  586. @}
  587. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  588. @{
  589. float *factor = (float *)_args;
  590. /* length of the vector */
  591. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  592. /* CUDA copy of the vector pointer */
  593. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  594. unsigned threads_per_block = 64;
  595. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  596. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  597. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  598. @}
  599. @end smallexample
  600. @end cartouche
  601. @node Definition of the OpenCL Kernel
  602. @subsection Definition of the OpenCL Kernel
  603. The OpenCL implementation can be written as follows. StarPU provides
  604. tools to compile a OpenCL kernel stored in a file.
  605. @cartouche
  606. @smallexample
  607. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  608. @{
  609. const int i = get_global_id(0);
  610. if (i < nx) @{
  611. val[i] *= factor;
  612. @}
  613. @}
  614. @end smallexample
  615. @end cartouche
  616. Contrary to CUDA and CPU, @code{STARPU_VECTOR_GET_DEV_HANDLE} has to be used,
  617. which returns a @code{cl_mem} (which is not a device pointer, but an OpenCL
  618. handle), which can be passed as such to the OpenCL kernel. The difference is
  619. important when using partitioning, see @ref{Partitioning Data}.
  620. @cartouche
  621. @smallexample
  622. #include <starpu.h>
  623. @i{#include <starpu_opencl.h>}
  624. @i{extern struct starpu_opencl_program programs;}
  625. void scal_opencl_func(void *buffers[], void *_args)
  626. @{
  627. float *factor = _args;
  628. @i{ int id, devid, err;}
  629. @i{ cl_kernel kernel;}
  630. @i{ cl_command_queue queue;}
  631. @i{ cl_event event;}
  632. /* length of the vector */
  633. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  634. /* OpenCL copy of the vector pointer */
  635. cl_mem val = (cl_mem) STARPU_VECTOR_GET_DEV_HANDLE(buffers[0]);
  636. @i{ id = starpu_worker_get_id();}
  637. @i{ devid = starpu_worker_get_devid(id);}
  638. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  639. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  640. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  641. @i{ err = clSetKernelArg(kernel, 0, sizeof(val), &val);}
  642. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  643. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  644. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  645. @i{ @{}
  646. @i{ size_t global=n;}
  647. @i{ size_t local=1;}
  648. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  649. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  650. @i{ @}}
  651. @i{ clFinish(queue);}
  652. @i{ starpu_opencl_collect_stats(event);}
  653. @i{ clReleaseEvent(event);}
  654. @i{ starpu_opencl_release_kernel(kernel);}
  655. @}
  656. @end smallexample
  657. @end cartouche
  658. @node Definition of the Main Code
  659. @subsection Definition of the Main Code
  660. The CPU implementation is the same as in the previous section.
  661. Here is the source of the main application. You can notice the value of the
  662. field @code{where} for the codelet. We specify
  663. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  664. can be executed either on a CPU or on a CUDA or an OpenCL device.
  665. @cartouche
  666. @smallexample
  667. #include <starpu.h>
  668. #define NX 2048
  669. extern void scal_cuda_func(void *buffers[], void *_args);
  670. extern void scal_cpu_func(void *buffers[], void *_args);
  671. extern void scal_opencl_func(void *buffers[], void *_args);
  672. /* @b{Definition of the codelet} */
  673. static struct starpu_codelet cl = @{
  674. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  675. /* @b{on a CUDA device, or on an OpenCL device} */
  676. .cuda_funcs = @{ scal_cuda_func, NULL @},
  677. .cpu_funcs = @{ scal_cpu_func, NULL @},
  678. .opencl_funcs = @{ scal_opencl_func, NULL @},
  679. .nbuffers = 1,
  680. .modes = @{ STARPU_RW @}
  681. @}
  682. #ifdef STARPU_USE_OPENCL
  683. /* @b{The compiled version of the OpenCL program} */
  684. struct starpu_opencl_program programs;
  685. #endif
  686. int main(int argc, char **argv)
  687. @{
  688. float *vector;
  689. int i, ret;
  690. float factor=3.0;
  691. struct starpu_task *task;
  692. starpu_data_handle_t vector_handle;
  693. starpu_init(NULL); /* @b{Initialising StarPU} */
  694. #ifdef STARPU_USE_OPENCL
  695. starpu_opencl_load_opencl_from_file(
  696. "examples/basic_examples/vector_scal_opencl_codelet.cl",
  697. &programs, NULL);
  698. #endif
  699. vector = malloc(NX*sizeof(vector[0]));
  700. assert(vector);
  701. for(i=0 ; i<NX ; i++) vector[i] = i;
  702. @end smallexample
  703. @end cartouche
  704. @cartouche
  705. @smallexample
  706. /* @b{Registering data within StarPU} */
  707. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  708. NX, sizeof(vector[0]));
  709. /* @b{Definition of the task} */
  710. task = starpu_task_create();
  711. task->cl = &cl;
  712. task->handles[0] = vector_handle;
  713. task->cl_arg = &factor;
  714. task->cl_arg_size = sizeof(factor);
  715. @end smallexample
  716. @end cartouche
  717. @cartouche
  718. @smallexample
  719. /* @b{Submitting the task} */
  720. ret = starpu_task_submit(task);
  721. if (ret == -ENODEV) @{
  722. fprintf(stderr, "No worker may execute this task\n");
  723. return 1;
  724. @}
  725. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  726. /* @b{Waiting for its termination} */
  727. starpu_task_wait_for_all();
  728. /* @b{Update the vector in RAM} */
  729. starpu_data_acquire(vector_handle, STARPU_R);
  730. @end smallexample
  731. @end cartouche
  732. @cartouche
  733. @smallexample
  734. /* @b{Access the data} */
  735. for(i=0 ; i<NX; i++) @{
  736. fprintf(stderr, "%f ", vector[i]);
  737. @}
  738. fprintf(stderr, "\n");
  739. /* @b{Release the RAM view of the data before unregistering it and shutting down StarPU} */
  740. starpu_data_release(vector_handle);
  741. starpu_data_unregister(vector_handle);
  742. starpu_shutdown();
  743. return 0;
  744. @}
  745. @end smallexample
  746. @end cartouche
  747. @node Execution of Hybrid Vector Scaling
  748. @subsection Execution of Hybrid Vector Scaling
  749. The Makefile given at the beginning of the section must be extended to
  750. give the rules to compile the CUDA source code. Note that the source
  751. file of the OpenCL kernel does not need to be compiled now, it will
  752. be compiled at run-time when calling the function
  753. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  754. @cartouche
  755. @smallexample
  756. CFLAGS += $(shell pkg-config --cflags starpu-1.0)
  757. LDFLAGS += $(shell pkg-config --libs starpu-1.0)
  758. CC = gcc
  759. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  760. %.o: %.cu
  761. nvcc $(CFLAGS) $< -c $@
  762. clean:
  763. rm -f vector_scal *.o
  764. @end smallexample
  765. @end cartouche
  766. @smallexample
  767. % make
  768. @end smallexample
  769. and to execute it, with the default configuration:
  770. @smallexample
  771. % ./vector_scal
  772. 0.000000 3.000000 6.000000 9.000000 12.000000
  773. @end smallexample
  774. or for example, by disabling CPU devices:
  775. @smallexample
  776. % STARPU_NCPUS=0 ./vector_scal
  777. 0.000000 3.000000 6.000000 9.000000 12.000000
  778. @end smallexample
  779. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  780. see @ref{Enabling OpenCL}):
  781. @smallexample
  782. % STARPU_NCUDA=0 ./vector_scal
  783. 0.000000 3.000000 6.000000 9.000000 12.000000
  784. @end smallexample