dw_sparse_cg.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2009, 2010, 2011 Université de Bordeaux 1
  4. * Copyright (C) 2010, 2011 Centre National de la Recherche Scientifique
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. /*
  18. * Conjugate gradients for Sparse matrices
  19. */
  20. #include "dw_sparse_cg.h"
  21. #define FPRINTF(ofile, fmt, args ...) do { if (!getenv("STARPU_SSILENT")) {fprintf(ofile, fmt, ##args); }} while(0)
  22. static struct starpu_task *create_task(starpu_tag_t id)
  23. {
  24. struct starpu_codelet *cl = calloc(1,sizeof(struct starpu_codelet));
  25. struct starpu_task *task = starpu_task_create();
  26. task->cl = cl;
  27. task->cl_arg = NULL;
  28. task->use_tag = 1;
  29. task->tag_id = id;
  30. return task;
  31. }
  32. static void create_data(float **_nzvalA, float **_vecb, float **_vecx, uint32_t *_nnz, uint32_t *_nrow, uint32_t **_colind, uint32_t **_rowptr)
  33. {
  34. /* we need a sparse symetric (definite positive ?) matrix and a "dense" vector */
  35. /* example of 3-band matrix */
  36. float *nzval;
  37. uint32_t nnz;
  38. uint32_t *colind;
  39. uint32_t *rowptr;
  40. nnz = 3*size-2;
  41. nzval = malloc(nnz*sizeof(float));
  42. colind = malloc(nnz*sizeof(uint32_t));
  43. rowptr = malloc(size*sizeof(uint32_t));
  44. assert(nzval);
  45. assert(colind);
  46. assert(rowptr);
  47. /* fill the matrix */
  48. unsigned row;
  49. unsigned pos = 0;
  50. for (row = 0; row < size; row++)
  51. {
  52. rowptr[row] = pos;
  53. if (row > 0)
  54. {
  55. nzval[pos] = 1.0f;
  56. colind[pos] = row-1;
  57. pos++;
  58. }
  59. nzval[pos] = 5.0f;
  60. colind[pos] = row;
  61. pos++;
  62. if (row < size - 1)
  63. {
  64. nzval[pos] = 1.0f;
  65. colind[pos] = row+1;
  66. pos++;
  67. }
  68. }
  69. *_nnz = nnz;
  70. *_nrow = size;
  71. *_nzvalA = nzval;
  72. *_colind = colind;
  73. *_rowptr = rowptr;
  74. STARPU_ASSERT(pos == nnz);
  75. /* initiate the 2 vectors */
  76. float *invec, *outvec;
  77. invec = malloc(size*sizeof(float));
  78. assert(invec);
  79. outvec = malloc(size*sizeof(float));
  80. assert(outvec);
  81. /* fill those */
  82. unsigned ind;
  83. for (ind = 0; ind < size; ind++)
  84. {
  85. invec[ind] = 2.0f;
  86. outvec[ind] = 0.0f;
  87. }
  88. *_vecb = invec;
  89. *_vecx = outvec;
  90. }
  91. void init_problem(void)
  92. {
  93. /* create the sparse input matrix */
  94. float *nzval;
  95. float *vecb;
  96. float *vecx;
  97. uint32_t nnz;
  98. uint32_t nrow;
  99. uint32_t *colind;
  100. uint32_t *rowptr;
  101. create_data(&nzval, &vecb, &vecx, &nnz, &nrow, &colind, &rowptr);
  102. conjugate_gradient(nzval, vecb, vecx, nnz, nrow, colind, rowptr);
  103. }
  104. /*
  105. * cg initialization phase
  106. */
  107. void init_cg(struct cg_problem *problem)
  108. {
  109. problem->i = 0;
  110. /* r = b - A x */
  111. struct starpu_task *task1 = create_task(1UL);
  112. task1->cl->where = STARPU_CPU;
  113. task1->cl->cpu_funcs[0] = cpu_codelet_func_1;
  114. task1->cl->nbuffers = 4;
  115. task1->buffers[0].handle = problem->ds_matrixA;
  116. task1->buffers[0].mode = STARPU_R;
  117. task1->buffers[1].handle = problem->ds_vecx;
  118. task1->buffers[1].mode = STARPU_R;
  119. task1->buffers[2].handle = problem->ds_vecr;
  120. task1->buffers[2].mode = STARPU_W;
  121. task1->buffers[3].handle = problem->ds_vecb;
  122. task1->buffers[3].mode = STARPU_R;
  123. /* d = r */
  124. struct starpu_task *task2 = create_task(2UL);
  125. task2->cl->where = STARPU_CPU;
  126. task2->cl->cpu_funcs[0] = cpu_codelet_func_2;
  127. task2->cl->nbuffers = 2;
  128. task2->buffers[0].handle = problem->ds_vecd;
  129. task2->buffers[0].mode = STARPU_W;
  130. task2->buffers[1].handle = problem->ds_vecr;
  131. task2->buffers[1].mode = STARPU_R;
  132. starpu_tag_declare_deps((starpu_tag_t)2UL, 1, (starpu_tag_t)1UL);
  133. /* delta_new = trans(r) r */
  134. struct starpu_task *task3 = create_task(3UL);
  135. task3->cl->where = STARPU_CUDA|STARPU_CPU;
  136. #ifdef STARPU_USE_CUDA
  137. task3->cl->cuda_funcs[0] = cublas_codelet_func_3;
  138. #endif
  139. task3->cl->cpu_funcs[0] = cpu_codelet_func_3;
  140. task3->cl_arg = problem;
  141. task3->cl->nbuffers = 1;
  142. task3->buffers[0].handle = problem->ds_vecr;
  143. task3->buffers[0].mode = STARPU_R;
  144. task3->callback_func = iteration_cg;
  145. task3->callback_arg = problem;
  146. /* XXX 3 should only depend on 1 ... */
  147. starpu_tag_declare_deps((starpu_tag_t)3UL, 1, (starpu_tag_t)2UL);
  148. /* launch the computation now */
  149. starpu_task_submit(task1);
  150. starpu_task_submit(task2);
  151. starpu_task_submit(task3);
  152. }
  153. /*
  154. * the inner iteration of the cg algorithm
  155. * the codelet code launcher is its own callback !
  156. */
  157. void launch_new_cg_iteration(struct cg_problem *problem)
  158. {
  159. unsigned iter = problem->i;
  160. unsigned long long maskiter = (iter*1024);
  161. /* q = A d */
  162. struct starpu_task *task4 = create_task(maskiter | 4UL);
  163. task4->cl->where = STARPU_CPU;
  164. task4->cl->cpu_funcs[0] = cpu_codelet_func_4;
  165. task4->cl->nbuffers = 3;
  166. task4->buffers[0].handle = problem->ds_matrixA;
  167. task4->buffers[0].mode = STARPU_R;
  168. task4->buffers[1].handle = problem->ds_vecd;
  169. task4->buffers[1].mode = STARPU_R;
  170. task4->buffers[2].handle = problem->ds_vecq;
  171. task4->buffers[2].mode = STARPU_W;
  172. /* alpha = delta_new / ( trans(d) q )*/
  173. struct starpu_task *task5 = create_task(maskiter | 5UL);
  174. task5->cl->where = STARPU_CUDA|STARPU_CPU;
  175. #ifdef STARPU_USE_CUDA
  176. task5->cl->cuda_funcs[0] = cublas_codelet_func_5;
  177. #endif
  178. task5->cl->cpu_funcs[0] = cpu_codelet_func_5;
  179. task5->cl_arg = problem;
  180. task5->cl->nbuffers = 2;
  181. task5->buffers[0].handle = problem->ds_vecd;
  182. task5->buffers[0].mode = STARPU_R;
  183. task5->buffers[1].handle = problem->ds_vecq;
  184. task5->buffers[1].mode = STARPU_R;
  185. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 5UL), 1, (starpu_tag_t)(maskiter | 4UL));
  186. /* x = x + alpha d */
  187. struct starpu_task *task6 = create_task(maskiter | 6UL);
  188. task6->cl->where = STARPU_CUDA|STARPU_CPU;
  189. #ifdef STARPU_USE_CUDA
  190. task6->cl->cuda_funcs[0] = cublas_codelet_func_6;
  191. #endif
  192. task6->cl->cpu_funcs[0] = cpu_codelet_func_6;
  193. task6->cl_arg = problem;
  194. task6->cl->nbuffers = 2;
  195. task6->buffers[0].handle = problem->ds_vecx;
  196. task6->buffers[0].mode = STARPU_RW;
  197. task6->buffers[1].handle = problem->ds_vecd;
  198. task6->buffers[1].mode = STARPU_R;
  199. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 6UL), 1, (starpu_tag_t)(maskiter | 5UL));
  200. /* r = r - alpha q */
  201. struct starpu_task *task7 = create_task(maskiter | 7UL);
  202. task7->cl->where = STARPU_CUDA|STARPU_CPU;
  203. #ifdef STARPU_USE_CUDA
  204. task7->cl->cuda_funcs[0] = cublas_codelet_func_7;
  205. #endif
  206. task7->cl->cpu_funcs[0] = cpu_codelet_func_7;
  207. task7->cl_arg = problem;
  208. task7->cl->nbuffers = 2;
  209. task7->buffers[0].handle = problem->ds_vecr;
  210. task7->buffers[0].mode = STARPU_RW;
  211. task7->buffers[1].handle = problem->ds_vecq;
  212. task7->buffers[1].mode = STARPU_R;
  213. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 7UL), 1, (starpu_tag_t)(maskiter | 6UL));
  214. /* update delta_* and compute beta */
  215. struct starpu_task *task8 = create_task(maskiter | 8UL);
  216. task8->cl->where = STARPU_CUDA|STARPU_CPU;
  217. #ifdef STARPU_USE_CUDA
  218. task8->cl->cuda_funcs[0] = cublas_codelet_func_8;
  219. #endif
  220. task8->cl->cpu_funcs[0] = cpu_codelet_func_8;
  221. task8->cl_arg = problem;
  222. task8->cl->nbuffers = 1;
  223. task8->buffers[0].handle = problem->ds_vecr;
  224. task8->buffers[0].mode = STARPU_R;
  225. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 8UL), 1, (starpu_tag_t)(maskiter | 7UL));
  226. /* d = r + beta d */
  227. struct starpu_task *task9 = create_task(maskiter | 9UL);
  228. task9->cl->where = STARPU_CUDA|STARPU_CPU;
  229. #ifdef STARPU_USE_CUDA
  230. task9->cl->cuda_funcs[0] = cublas_codelet_func_9;
  231. #endif
  232. task9->cl->cpu_funcs[0] = cpu_codelet_func_9;
  233. task9->cl_arg = problem;
  234. task9->cl->nbuffers = 2;
  235. task9->buffers[0].handle = problem->ds_vecd;
  236. task9->buffers[0].mode = STARPU_RW;
  237. task9->buffers[1].handle = problem->ds_vecr;
  238. task9->buffers[1].mode = STARPU_R;
  239. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 9UL), 1, (starpu_tag_t)(maskiter | 8UL));
  240. task9->callback_func = iteration_cg;
  241. task9->callback_arg = problem;
  242. /* launch the computation now */
  243. starpu_task_submit(task4);
  244. starpu_task_submit(task5);
  245. starpu_task_submit(task6);
  246. starpu_task_submit(task7);
  247. starpu_task_submit(task8);
  248. starpu_task_submit(task9);
  249. }
  250. void iteration_cg(void *problem)
  251. {
  252. struct cg_problem *pb = problem;
  253. FPRINTF(stdout, "i : %d (MAX %d)\n\tdelta_new %f (%f)\n", pb->i, MAXITER, pb->delta_new, sqrt(pb->delta_new / pb->size));
  254. if ((pb->i < MAXITER) &&
  255. (pb->delta_new > pb->epsilon) )
  256. {
  257. if (pb->i % 1000 == 0)
  258. FPRINTF(stdout, "i : %d\n\tdelta_new %f (%f)\n", pb->i, pb->delta_new, sqrt(pb->delta_new / pb->size));
  259. pb->i++;
  260. /* we did not reach the stop condition yet */
  261. launch_new_cg_iteration(problem);
  262. }
  263. else
  264. {
  265. /* we may stop */
  266. FPRINTF(stdout, "We are done ... after %d iterations \n", pb->i - 1);
  267. FPRINTF(stdout, "i : %d\n\tdelta_new %2.5f\n", pb->i, pb->delta_new);
  268. sem_post(pb->sem);
  269. }
  270. }
  271. /*
  272. * initializing the problem
  273. */
  274. void conjugate_gradient(float *nzvalA, float *vecb, float *vecx, uint32_t nnz,
  275. unsigned nrow, uint32_t *colind, uint32_t *rowptr)
  276. {
  277. /* first register all the data structures to StarPU */
  278. starpu_data_handle_t ds_matrixA;
  279. starpu_data_handle_t ds_vecx, ds_vecb;
  280. starpu_data_handle_t ds_vecr, ds_vecd, ds_vecq;
  281. /* first the user-allocated data */
  282. starpu_csr_data_register(&ds_matrixA, 0, nnz, nrow,
  283. (uintptr_t)nzvalA, colind, rowptr, 0, sizeof(float));
  284. starpu_vector_data_register(&ds_vecx, 0, (uintptr_t)vecx, nrow, sizeof(float));
  285. starpu_vector_data_register(&ds_vecb, 0, (uintptr_t)vecb, nrow, sizeof(float));
  286. /* then allocate the algorithm intern data */
  287. float *ptr_vecr, *ptr_vecd, *ptr_vecq;
  288. unsigned i;
  289. ptr_vecr = malloc(nrow*sizeof(float));
  290. ptr_vecd = malloc(nrow*sizeof(float));
  291. ptr_vecq = malloc(nrow*sizeof(float));
  292. for (i = 0; i < nrow; i++)
  293. {
  294. ptr_vecr[i] = 0.0f;
  295. ptr_vecd[i] = 0.0f;
  296. ptr_vecq[i] = 0.0f;
  297. }
  298. FPRINTF(stdout, "nrow = %u \n", nrow);
  299. /* and register them as well */
  300. starpu_vector_data_register(&ds_vecr, 0, (uintptr_t)ptr_vecr, nrow, sizeof(float));
  301. starpu_vector_data_register(&ds_vecd, 0, (uintptr_t)ptr_vecd, nrow, sizeof(float));
  302. starpu_vector_data_register(&ds_vecq, 0, (uintptr_t)ptr_vecq, nrow, sizeof(float));
  303. /* we now have the complete problem */
  304. struct cg_problem problem;
  305. problem.ds_matrixA = ds_matrixA;
  306. problem.ds_vecx = ds_vecx;
  307. problem.ds_vecb = ds_vecb;
  308. problem.ds_vecr = ds_vecr;
  309. problem.ds_vecd = ds_vecd;
  310. problem.ds_vecq = ds_vecq;
  311. problem.epsilon = EPSILON;
  312. problem.size = nrow;
  313. problem.delta_old = 1.0;
  314. problem.delta_new = 1.0; /* just to make sure we do at least one iteration */
  315. /* we need a semaphore to synchronize with callbacks */
  316. sem_t sem;
  317. sem_init(&sem, 0, 0U);
  318. problem.sem = &sem;
  319. init_cg(&problem);
  320. sem_wait(&sem);
  321. sem_destroy(&sem);
  322. print_results(vecx, nrow);
  323. starpu_data_unregister(ds_matrixA);
  324. starpu_data_unregister(ds_vecx);
  325. starpu_data_unregister(ds_vecb);
  326. starpu_data_unregister(ds_vecr);
  327. starpu_data_unregister(ds_vecd);
  328. starpu_data_unregister(ds_vecq);
  329. }
  330. void do_conjugate_gradient(float *nzvalA, float *vecb, float *vecx, uint32_t nnz,
  331. unsigned nrow, uint32_t *colind, uint32_t *rowptr)
  332. {
  333. /* start the runtime */
  334. starpu_init(NULL);
  335. starpu_helper_cublas_init();
  336. conjugate_gradient(nzvalA, vecb, vecx, nnz, nrow, colind, rowptr);
  337. }