starpu_dlu_lu_model_11.idgraf 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. ##################
  2. # Performance Model Version
  3. 45
  4. ####################
  5. # COMBs
  6. # number of combinations
  7. 9
  8. ####################
  9. # COMB_8
  10. # number of types devices
  11. 1
  12. ####################
  13. # DEV_0
  14. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  15. 0
  16. ####################
  17. # DEV_0
  18. # device id
  19. 0
  20. ####################
  21. # DEV_0
  22. # number of cores
  23. 1
  24. ##########
  25. # number of implementations
  26. 1
  27. #####
  28. # Model for cpu0_impl0 (Comb8)
  29. # number of entries
  30. 3
  31. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  32. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  33. # a b c
  34. nan nan nan
  35. # not multiple-regression-base
  36. 0
  37. # hash size flops mean (us) dev (us) sum sum2 n
  38. 617e5fe6 7372800 0.000000e+00 2.127055e+05 1.216918e+04 3.190582e+06 6.808756e+11 15
  39. afdd228b 3276800 0.000000e+00 6.346686e+04 7.329654e+02 6.346686e+05 4.028580e+10 10
  40. cea37d6d 819200 0.000000e+00 7.969263e+03 1.770463e+02 1.354775e+05 1.080188e+09 17
  41. ####################
  42. # COMB_4
  43. # number of types devices
  44. 1
  45. ####################
  46. # DEV_0
  47. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  48. 1
  49. ####################
  50. # DEV_0
  51. # device id
  52. 0
  53. ####################
  54. # DEV_0
  55. # number of cores
  56. 1
  57. ##########
  58. # number of implementations
  59. 1
  60. #####
  61. # Model for cuda0_impl0 (Comb4)
  62. # number of entries
  63. 3
  64. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  65. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  66. # a b c
  67. nan nan nan
  68. # not multiple-regression-base
  69. 0
  70. # hash size flops mean (us) dev (us) sum sum2 n
  71. 617e5fe6 7372800 0.000000e+00 8.656100e+04 6.943816e+03 1.471537e+06 1.281974e+11 17
  72. afdd228b 3276800 0.000000e+00 3.567215e+04 3.302464e+03 3.567215e+05 1.283409e+10 10
  73. cea37d6d 819200 0.000000e+00 1.101988e+04 5.146633e+02 1.101988e+05 1.217027e+09 10
  74. ####################
  75. # COMB_3
  76. # number of types devices
  77. 1
  78. ####################
  79. # DEV_0
  80. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  81. 1
  82. ####################
  83. # DEV_0
  84. # device id
  85. 7
  86. ####################
  87. # DEV_0
  88. # number of cores
  89. 1
  90. ##########
  91. # number of implementations
  92. 1
  93. #####
  94. # Model for cuda7_impl0 (Comb3)
  95. # number of entries
  96. 3
  97. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  98. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  99. # a b c
  100. nan nan nan
  101. # not multiple-regression-base
  102. 0
  103. # hash size flops mean (us) dev (us) sum sum2 n
  104. afdd228b 3276800 0.000000e+00 3.935885e+04 6.351673e+03 3.935885e+05 1.589463e+10 10
  105. cea37d6d 819200 0.000000e+00 1.194615e+04 1.359754e+03 1.194615e+05 1.445595e+09 10
  106. 617e5fe6 7372800 0.000000e+00 8.781176e+04 9.198610e+03 1.317176e+06 1.169328e+11 15
  107. ####################
  108. # COMB_1
  109. # number of types devices
  110. 1
  111. ####################
  112. # DEV_0
  113. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  114. 1
  115. ####################
  116. # DEV_0
  117. # device id
  118. 3
  119. ####################
  120. # DEV_0
  121. # number of cores
  122. 1
  123. ##########
  124. # number of implementations
  125. 1
  126. #####
  127. # Model for cuda3_impl0 (Comb1)
  128. # number of entries
  129. 3
  130. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  131. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  132. # a b c
  133. nan nan nan
  134. # not multiple-regression-base
  135. 0
  136. # hash size flops mean (us) dev (us) sum sum2 n
  137. 617e5fe6 7372800 0.000000e+00 8.754335e+04 8.654029e+03 1.575780e+06 1.392972e+11 18
  138. afdd228b 3276800 0.000000e+00 3.542725e+04 1.501284e+03 3.542725e+05 1.257344e+10 10
  139. cea37d6d 819200 0.000000e+00 1.193774e+04 1.685032e+03 1.193774e+05 1.453490e+09 10
  140. ####################
  141. # COMB_0
  142. # number of types devices
  143. 1
  144. ####################
  145. # DEV_0
  146. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  147. 1
  148. ####################
  149. # DEV_0
  150. # device id
  151. 4
  152. ####################
  153. # DEV_0
  154. # number of cores
  155. 1
  156. ##########
  157. # number of implementations
  158. 1
  159. #####
  160. # Model for cuda4_impl0 (Comb0)
  161. # number of entries
  162. 3
  163. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  164. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  165. # a b c
  166. nan nan nan
  167. # not multiple-regression-base
  168. 0
  169. # hash size flops mean (us) dev (us) sum sum2 n
  170. 617e5fe6 7372800 0.000000e+00 8.763521e+04 5.876858e+03 9.639873e+05 8.485914e+10 11
  171. afdd228b 3276800 0.000000e+00 3.909159e+04 6.650440e+03 4.300075e+05 1.729619e+10 11
  172. cea37d6d 819200 0.000000e+00 1.211577e+04 1.649480e+03 1.211577e+05 1.495126e+09 10
  173. ####################
  174. # COMB_2
  175. # number of types devices
  176. 1
  177. ####################
  178. # DEV_0
  179. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  180. 1
  181. ####################
  182. # DEV_0
  183. # device id
  184. 1
  185. ####################
  186. # DEV_0
  187. # number of cores
  188. 1
  189. ##########
  190. # number of implementations
  191. 1
  192. #####
  193. # Model for cuda1_impl0 (Comb2)
  194. # number of entries
  195. 3
  196. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  197. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  198. # a b c
  199. nan nan nan
  200. # not multiple-regression-base
  201. 0
  202. # hash size flops mean (us) dev (us) sum sum2 n
  203. 617e5fe6 7372800 0.000000e+00 8.616388e+04 4.981316e+03 1.550950e+06 1.340825e+11 18
  204. afdd228b 3276800 0.000000e+00 3.647899e+04 2.965394e+03 4.377479e+05 1.607412e+10 12
  205. cea37d6d 819200 0.000000e+00 1.073272e+04 1.010096e+02 1.073272e+05 1.152015e+09 10
  206. ####################
  207. # COMB_6
  208. # number of types devices
  209. 1
  210. ####################
  211. # DEV_0
  212. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  213. 1
  214. ####################
  215. # DEV_0
  216. # device id
  217. 6
  218. ####################
  219. # DEV_0
  220. # number of cores
  221. 1
  222. ##########
  223. # number of implementations
  224. 1
  225. #####
  226. # Model for cuda6_impl0 (Comb6)
  227. # number of entries
  228. 3
  229. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  230. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  231. # a b c
  232. nan nan nan
  233. # not multiple-regression-base
  234. 0
  235. # hash size flops mean (us) dev (us) sum sum2 n
  236. 617e5fe6 7372800 0.000000e+00 8.786078e+04 7.200822e+03 1.317912e+06 1.165705e+11 15
  237. afdd228b 3276800 0.000000e+00 3.795195e+04 3.399141e+03 3.795195e+05 1.451905e+10 10
  238. cea37d6d 819200 0.000000e+00 1.163527e+04 1.023060e+03 1.163527e+05 1.364262e+09 10
  239. ####################
  240. # COMB_7
  241. # number of types devices
  242. 1
  243. ####################
  244. # DEV_0
  245. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  246. 1
  247. ####################
  248. # DEV_0
  249. # device id
  250. 5
  251. ####################
  252. # DEV_0
  253. # number of cores
  254. 1
  255. ##########
  256. # number of implementations
  257. 1
  258. #####
  259. # Model for cuda5_impl0 (Comb7)
  260. # number of entries
  261. 3
  262. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  263. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  264. # a b c
  265. nan nan nan
  266. # not multiple-regression-base
  267. 0
  268. # hash size flops mean (us) dev (us) sum sum2 n
  269. 617e5fe6 7372800 0.000000e+00 8.814631e+04 6.725805e+03 1.498487e+06 1.328551e+11 17
  270. cea37d6d 819200 0.000000e+00 1.170806e+04 1.094676e+03 1.170806e+05 1.382770e+09 10
  271. afdd228b 3276800 0.000000e+00 4.283079e+04 7.621190e+03 4.283079e+05 1.892559e+10 10
  272. ####################
  273. # COMB_5
  274. # number of types devices
  275. 1
  276. ####################
  277. # DEV_0
  278. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  279. 1
  280. ####################
  281. # DEV_0
  282. # device id
  283. 2
  284. ####################
  285. # DEV_0
  286. # number of cores
  287. 1
  288. ##########
  289. # number of implementations
  290. 1
  291. #####
  292. # Model for cuda2_impl0 (Comb5)
  293. # number of entries
  294. 3
  295. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  296. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  297. # a b c
  298. nan nan nan
  299. # not multiple-regression-base
  300. 0
  301. # hash size flops mean (us) dev (us) sum sum2 n
  302. 617e5fe6 7372800 0.000000e+00 9.172766e+04 1.075608e+04 1.375915e+06 1.279449e+11 15
  303. cea37d6d 819200 0.000000e+00 1.117240e+04 8.447401e+02 1.117240e+05 1.255362e+09 10
  304. afdd228b 3276800 0.000000e+00 3.472448e+04 1.278416e+03 3.819693e+05 1.328166e+10 11