save_cl_top.mirage 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. ##################
  2. # Performance Model Version
  3. 45
  4. ####################
  5. # COMBs
  6. # number of combinations
  7. 4
  8. ####################
  9. # COMB_0
  10. # number of types devices
  11. 1
  12. ####################
  13. # DEV_0
  14. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  15. 0
  16. ####################
  17. # DEV_0
  18. # device id
  19. 0
  20. ####################
  21. # DEV_0
  22. # number of cores
  23. 1
  24. ##########
  25. # number of implementations
  26. 1
  27. #####
  28. # Model for cpu0_impl0 (Comb0)
  29. # number of entries
  30. 3
  31. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  32. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  33. # a b c
  34. nan nan nan
  35. # not multiple-regression-base
  36. 0
  37. # hash size flops mean (us) dev (us) sum sum2 n
  38. fb4b8624 4427800 0.000000e+00 1.161593e+01 2.312881e+00 1.684310e+04 2.034051e+05 1450
  39. 4af260f6 14678040 0.000000e+00 2.793439e+01 6.208645e+00 2.807406e+04 8.229715e+05 1005
  40. f2ff9ae5 34480152 0.000000e+00 5.388292e+01 1.191766e+01 4.930288e+04 2.786541e+06 915
  41. ####################
  42. # COMB_1
  43. # number of types devices
  44. 1
  45. ####################
  46. # DEV_0
  47. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  48. 1
  49. ####################
  50. # DEV_0
  51. # device id
  52. 0
  53. ####################
  54. # DEV_0
  55. # number of cores
  56. 1
  57. ##########
  58. # number of implementations
  59. 1
  60. #####
  61. # Model for cuda0_impl0 (Comb1)
  62. # number of entries
  63. 3
  64. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  65. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  66. # a b c
  67. nan nan nan
  68. # not multiple-regression-base
  69. 0
  70. # hash size flops mean (us) dev (us) sum sum2 n
  71. fb4b8624 4427800 0.000000e+00 3.349897e+01 6.495369e+00 7.939257e+03 2.759560e+05 237
  72. 4af260f6 14678040 0.000000e+00 3.814493e+01 8.460348e+00 1.609716e+04 6.442306e+05 422
  73. f2ff9ae5 34480152 0.000000e+00 3.894616e+01 8.022125e+00 1.339748e+04 5.439182e+05 344
  74. ####################
  75. # COMB_2
  76. # number of types devices
  77. 1
  78. ####################
  79. # DEV_0
  80. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  81. 1
  82. ####################
  83. # DEV_0
  84. # device id
  85. 1
  86. ####################
  87. # DEV_0
  88. # number of cores
  89. 1
  90. ##########
  91. # number of implementations
  92. 1
  93. #####
  94. # Model for cuda1_impl0 (Comb2)
  95. # number of entries
  96. 3
  97. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  98. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  99. # a b c
  100. nan nan nan
  101. # not multiple-regression-base
  102. 0
  103. # hash size flops mean (us) dev (us) sum sum2 n
  104. fb4b8624 4427800 0.000000e+00 4.505725e+01 1.044174e+01 7.209160e+02 3.422697e+04 16
  105. 4af260f6 14678040 0.000000e+00 3.820932e+01 8.787776e+00 1.138638e+04 4.580788e+05 298
  106. f2ff9ae5 34480152 0.000000e+00 4.714002e+01 1.060923e+01 1.343491e+04 6.654002e+05 285
  107. ####################
  108. # COMB_3
  109. # number of types devices
  110. 1
  111. ####################
  112. # DEV_0
  113. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  114. 1
  115. ####################
  116. # DEV_0
  117. # device id
  118. 2
  119. ####################
  120. # DEV_0
  121. # number of cores
  122. 1
  123. ##########
  124. # number of implementations
  125. 1
  126. #####
  127. # Model for cuda2_impl0 (Comb3)
  128. # number of entries
  129. 3
  130. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  131. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  132. # a b c
  133. nan nan nan
  134. # not multiple-regression-base
  135. 0
  136. # hash size flops mean (us) dev (us) sum sum2 n
  137. fb4b8624 4427800 0.000000e+00 2.397521e+01 2.109607e+00 5.754050e+02 1.390227e+04 24
  138. 4af260f6 14678040 0.000000e+00 3.827520e+01 8.943097e+00 9.453975e+03 3.816076e+05 247
  139. f2ff9ae5 34480152 0.000000e+00 5.567087e+01 1.159966e+01 8.127947e+03 4.721345e+05 146