chol_model_22.idgraf 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. ##################
  2. # Performance Model Version
  3. 45
  4. ####################
  5. # COMBs
  6. # number of combinations
  7. 9
  8. ####################
  9. # COMB_0
  10. # number of types devices
  11. 1
  12. ####################
  13. # DEV_0
  14. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  15. 0
  16. ####################
  17. # DEV_0
  18. # device id
  19. 0
  20. ####################
  21. # DEV_0
  22. # number of cores
  23. 1
  24. ##########
  25. # number of implementations
  26. 1
  27. #####
  28. # Model for cpu0_impl0 (Comb0)
  29. # number of entries
  30. 3
  31. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  32. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  33. # a b c
  34. nan nan nan
  35. # not multiple-regression-base
  36. 0
  37. # hash size flops mean (us) dev (us) sum sum2 n
  38. 24c84a50 11059200 1.769472e+09 8.987520e+04 9.682708e+02 2.085105e+07 1.874210e+12 232
  39. d46431bb 1228800 6.553600e+07 3.465410e+03 7.427679e+01 2.737674e+06 9.491521e+09 790
  40. f0ac7beb 4915200 5.242880e+08 2.744657e+04 5.713498e+02 7.575252e+06 2.080048e+11 276
  41. ####################
  42. # COMB_4
  43. # number of types devices
  44. 1
  45. ####################
  46. # DEV_0
  47. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  48. 1
  49. ####################
  50. # DEV_0
  51. # device id
  52. 1
  53. ####################
  54. # DEV_0
  55. # number of cores
  56. 1
  57. ##########
  58. # number of implementations
  59. 1
  60. #####
  61. # Model for cuda1_impl0 (Comb4)
  62. # number of entries
  63. 3
  64. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  65. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  66. # a b c
  67. nan nan nan
  68. # not multiple-regression-base
  69. 0
  70. # hash size flops mean (us) dev (us) sum sum2 n
  71. 24c84a50 11059200 1.769472e+09 2.825219e+03 1.227364e+02 1.106356e+07 3.131597e+10 3916
  72. d46431bb 1228800 6.553600e+07 2.060677e+02 2.909125e+01 5.497887e+05 1.155516e+08 2668
  73. f0ac7beb 4915200 5.242880e+08 9.076961e+02 5.977819e+01 3.441076e+06 3.136998e+09 3791
  74. ####################
  75. # COMB_2
  76. # number of types devices
  77. 1
  78. ####################
  79. # DEV_0
  80. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  81. 1
  82. ####################
  83. # DEV_0
  84. # device id
  85. 3
  86. ####################
  87. # DEV_0
  88. # number of cores
  89. 1
  90. ##########
  91. # number of implementations
  92. 1
  93. #####
  94. # Model for cuda3_impl0 (Comb2)
  95. # number of entries
  96. 3
  97. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  98. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  99. # a b c
  100. nan nan nan
  101. # not multiple-regression-base
  102. 0
  103. # hash size flops mean (us) dev (us) sum sum2 n
  104. 24c84a50 11059200 1.769472e+09 2.823818e+03 1.560928e+02 1.063450e+07 3.012164e+10 3766
  105. d46431bb 1228800 6.553600e+07 1.632767e+02 2.137437e+01 5.224853e+05 8.677162e+07 3200
  106. f0ac7beb 4915200 5.242880e+08 9.226606e+02 6.080500e+01 3.410153e+06 3.160079e+09 3696
  107. ####################
  108. # COMB_3
  109. # number of types devices
  110. 1
  111. ####################
  112. # DEV_0
  113. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  114. 1
  115. ####################
  116. # DEV_0
  117. # device id
  118. 2
  119. ####################
  120. # DEV_0
  121. # number of cores
  122. 1
  123. ##########
  124. # number of implementations
  125. 1
  126. #####
  127. # Model for cuda2_impl0 (Comb3)
  128. # number of entries
  129. 3
  130. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  131. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  132. # a b c
  133. nan nan nan
  134. # not multiple-regression-base
  135. 0
  136. # hash size flops mean (us) dev (us) sum sum2 n
  137. 24c84a50 11059200 1.769472e+09 2.821988e+03 1.631366e+02 1.046111e+07 2.961977e+10 3707
  138. d46431bb 1228800 6.553600e+07 1.661504e+02 2.199315e+01 5.172263e+05 8.744312e+07 3113
  139. f0ac7beb 4915200 5.242880e+08 9.172785e+02 5.967474e+01 3.492079e+06 3.216766e+09 3807
  140. ####################
  141. # COMB_1
  142. # number of types devices
  143. 1
  144. ####################
  145. # DEV_0
  146. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  147. 1
  148. ####################
  149. # DEV_0
  150. # device id
  151. 0
  152. ####################
  153. # DEV_0
  154. # number of cores
  155. 1
  156. ##########
  157. # number of implementations
  158. 1
  159. #####
  160. # Model for cuda0_impl0 (Comb1)
  161. # number of entries
  162. 3
  163. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  164. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  165. # a b c
  166. nan nan nan
  167. # not multiple-regression-base
  168. 0
  169. # hash size flops mean (us) dev (us) sum sum2 n
  170. 24c84a50 11059200 1.769472e+09 2.817019e+03 1.506473e+02 1.119202e+07 3.161828e+10 3973
  171. d46431bb 1228800 6.553600e+07 2.042642e+02 2.707555e+01 5.498791e+05 1.142941e+08 2692
  172. f0ac7beb 4915200 5.242880e+08 9.044446e+02 5.780357e+01 3.477590e+06 3.158134e+09 3845
  173. ####################
  174. # COMB_7
  175. # number of types devices
  176. 1
  177. ####################
  178. # DEV_0
  179. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  180. 1
  181. ####################
  182. # DEV_0
  183. # device id
  184. 4
  185. ####################
  186. # DEV_0
  187. # number of cores
  188. 1
  189. ##########
  190. # number of implementations
  191. 1
  192. #####
  193. # Model for cuda4_impl0 (Comb7)
  194. # number of entries
  195. 3
  196. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  197. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  198. # a b c
  199. nan nan nan
  200. # not multiple-regression-base
  201. 0
  202. # hash size flops mean (us) dev (us) sum sum2 n
  203. 24c84a50 11059200 1.769472e+09 2.816710e+03 1.414989e+02 1.032888e+07 2.916687e+10 3667
  204. d46431bb 1228800 6.553600e+07 1.639497e+02 2.257894e+01 4.474187e+05 7.474542e+07 2729
  205. f0ac7beb 4915200 5.242880e+08 9.331501e+02 5.611510e+01 3.235231e+06 3.029874e+09 3467
  206. ####################
  207. # COMB_5
  208. # number of types devices
  209. 1
  210. ####################
  211. # DEV_0
  212. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  213. 1
  214. ####################
  215. # DEV_0
  216. # device id
  217. 6
  218. ####################
  219. # DEV_0
  220. # number of cores
  221. 1
  222. ##########
  223. # number of implementations
  224. 1
  225. #####
  226. # Model for cuda6_impl0 (Comb5)
  227. # number of entries
  228. 3
  229. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  230. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  231. # a b c
  232. nan nan nan
  233. # not multiple-regression-base
  234. 0
  235. # hash size flops mean (us) dev (us) sum sum2 n
  236. 24c84a50 11059200 1.769472e+09 2.815225e+03 1.445443e+02 1.009821e+07 2.850368e+10 3587
  237. d46431bb 1228800 6.553600e+07 1.659035e+02 2.475202e+01 4.006569e+05 6.794997e+07 2415
  238. f0ac7beb 4915200 5.242880e+08 9.137585e+02 6.301297e+01 3.125968e+06 2.869963e+09 3421
  239. ####################
  240. # COMB_8
  241. # number of types devices
  242. 1
  243. ####################
  244. # DEV_0
  245. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  246. 1
  247. ####################
  248. # DEV_0
  249. # device id
  250. 5
  251. ####################
  252. # DEV_0
  253. # number of cores
  254. 1
  255. ##########
  256. # number of implementations
  257. 1
  258. #####
  259. # Model for cuda5_impl0 (Comb8)
  260. # number of entries
  261. 3
  262. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  263. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  264. # a b c
  265. nan nan nan
  266. # not multiple-regression-base
  267. 0
  268. # hash size flops mean (us) dev (us) sum sum2 n
  269. 24c84a50 11059200 1.769472e+09 2.807699e+03 1.292512e+02 1.006279e+07 2.831317e+10 3584
  270. d46431bb 1228800 6.553600e+07 1.680450e+02 2.634123e+01 3.922170e+05 6.752957e+07 2334
  271. f0ac7beb 4915200 5.242880e+08 8.912551e+02 5.629783e+01 3.090873e+06 2.765747e+09 3468
  272. ####################
  273. # COMB_6
  274. # number of types devices
  275. 1
  276. ####################
  277. # DEV_0
  278. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  279. 1
  280. ####################
  281. # DEV_0
  282. # device id
  283. 7
  284. ####################
  285. # DEV_0
  286. # number of cores
  287. 1
  288. ##########
  289. # number of implementations
  290. 1
  291. #####
  292. # Model for cuda7_impl0 (Comb6)
  293. # number of entries
  294. 3
  295. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  296. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  297. # a b c
  298. nan nan nan
  299. # not multiple-regression-base
  300. 0
  301. # hash size flops mean (us) dev (us) sum sum2 n
  302. 24c84a50 11059200 1.769472e+09 2.827622e+03 1.304764e+02 1.027841e+07 2.912533e+10 3635
  303. d46431bb 1228800 6.553600e+07 1.666216e+02 2.357918e+01 4.083895e+05 6.940921e+07 2451
  304. f0ac7beb 4915200 5.242880e+08 9.077285e+02 5.688987e+01 3.089908e+06 2.815814e+09 3404