| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 | /* dptcon.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int dptcon_(integer *n, doublereal *d__, doublereal *e, 	doublereal *anorm, doublereal *rcond, doublereal *work, integer *info){    /* System generated locals */    integer i__1;    doublereal d__1;    /* Local variables */    integer i__, ix;    extern integer idamax_(integer *, doublereal *, integer *);    extern /* Subroutine */ int xerbla_(char *, integer *);    doublereal ainvnm;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DPTCON computes the reciprocal of the condition number (in the *//*  1-norm) of a real symmetric positive definite tridiagonal matrix *//*  using the factorization A = L*D*L**T or A = U**T*D*U computed by *//*  DPTTRF. *//*  Norm(inv(A)) is computed by a direct method, and the reciprocal of *//*  the condition number is computed as *//*               RCOND = 1 / (ANORM * norm(inv(A))). *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  D       (input) DOUBLE PRECISION array, dimension (N) *//*          The n diagonal elements of the diagonal matrix D from the *//*          factorization of A, as computed by DPTTRF. *//*  E       (input) DOUBLE PRECISION array, dimension (N-1) *//*          The (n-1) off-diagonal elements of the unit bidiagonal factor *//*          U or L from the factorization of A,  as computed by DPTTRF. *//*  ANORM   (input) DOUBLE PRECISION *//*          The 1-norm of the original matrix A. *//*  RCOND   (output) DOUBLE PRECISION *//*          The reciprocal of the condition number of the matrix A, *//*          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the *//*          1-norm of inv(A) computed in this routine. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  Further Details *//*  =============== *//*  The method used is described in Nicholas J. Higham, "Efficient *//*  Algorithms for Computing the Condition Number of a Tridiagonal *//*  Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments. */    /* Parameter adjustments */    --work;    --e;    --d__;    /* Function Body */    *info = 0;    if (*n < 0) {	*info = -1;    } else if (*anorm < 0.) {	*info = -4;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DPTCON", &i__1);	return 0;    }/*     Quick return if possible */    *rcond = 0.;    if (*n == 0) {	*rcond = 1.;	return 0;    } else if (*anorm == 0.) {	return 0;    }/*     Check that D(1:N) is positive. */    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {	if (d__[i__] <= 0.) {	    return 0;	}/* L10: */    }/*     Solve M(A) * x = e, where M(A) = (m(i,j)) is given by *//*        m(i,j) =  abs(A(i,j)), i = j, *//*        m(i,j) = -abs(A(i,j)), i .ne. j, *//*     and e = [ 1, 1, ..., 1 ]'.  Note M(A) = M(L)*D*M(L)'. *//*     Solve M(L) * x = e. */    work[1] = 1.;    i__1 = *n;    for (i__ = 2; i__ <= i__1; ++i__) {	work[i__] = work[i__ - 1] * (d__1 = e[i__ - 1], abs(d__1)) + 1.;/* L20: */    }/*     Solve D * M(L)' * x = b. */    work[*n] /= d__[*n];    for (i__ = *n - 1; i__ >= 1; --i__) {	work[i__] = work[i__] / d__[i__] + work[i__ + 1] * (d__1 = e[i__], 		abs(d__1));/* L30: */    }/*     Compute AINVNM = max(x(i)), 1<=i<=n. */    ix = idamax_(n, &work[1], &c__1);    ainvnm = (d__1 = work[ix], abs(d__1));/*     Compute the reciprocal condition number. */    if (ainvnm != 0.) {	*rcond = 1. / ainvnm / *anorm;    }    return 0;/*     End of DPTCON */} /* dptcon_ */
 |