| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406 | /* dggsvd.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int dggsvd_(char *jobu, char *jobv, char *jobq, integer *m, 	integer *n, integer *p, integer *k, integer *l, doublereal *a, 	integer *lda, doublereal *b, integer *ldb, doublereal *alpha, 	doublereal *beta, doublereal *u, integer *ldu, doublereal *v, integer 	*ldv, doublereal *q, integer *ldq, doublereal *work, integer *iwork, 	integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1, 	    u_offset, v_dim1, v_offset, i__1, i__2;    /* Local variables */    integer i__, j;    doublereal ulp;    integer ibnd;    doublereal tola;    integer isub;    doublereal tolb, unfl, temp, smax;    extern logical lsame_(char *, char *);    doublereal anorm, bnorm;    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    logical wantq, wantu, wantv;    extern doublereal dlamch_(char *), dlange_(char *, integer *, 	    integer *, doublereal *, integer *, doublereal *);    extern /* Subroutine */ int dtgsja_(char *, char *, char *, integer *, 	    integer *, integer *, integer *, integer *, doublereal *, integer 	    *, doublereal *, integer *, doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *, integer *, doublereal *, 	     integer *, doublereal *, integer *, doublereal *, integer *, 	    integer *);    integer ncycle;    extern /* Subroutine */ int xerbla_(char *, integer *), dggsvp_(	    char *, char *, char *, integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, integer *, integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, integer *, integer *, 	    doublereal *, doublereal *, integer *);/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGGSVD computes the generalized singular value decomposition (GSVD) *//*  of an M-by-N real matrix A and P-by-N real matrix B: *//*      U'*A*Q = D1*( 0 R ),    V'*B*Q = D2*( 0 R ) *//*  where U, V and Q are orthogonal matrices, and Z' is the transpose *//*  of Z.  Let K+L = the effective numerical rank of the matrix (A',B')', *//*  then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and *//*  D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the *//*  following structures, respectively: *//*  If M-K-L >= 0, *//*                      K  L *//*         D1 =     K ( I  0 ) *//*                  L ( 0  C ) *//*              M-K-L ( 0  0 ) *//*                    K  L *//*         D2 =   L ( 0  S ) *//*              P-L ( 0  0 ) *//*                  N-K-L  K    L *//*    ( 0 R ) = K (  0   R11  R12 ) *//*              L (  0    0   R22 ) *//*  where *//*    C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), *//*    S = diag( BETA(K+1),  ... , BETA(K+L) ), *//*    C**2 + S**2 = I. *//*    R is stored in A(1:K+L,N-K-L+1:N) on exit. *//*  If M-K-L < 0, *//*                    K M-K K+L-M *//*         D1 =   K ( I  0    0   ) *//*              M-K ( 0  C    0   ) *//*                      K M-K K+L-M *//*         D2 =   M-K ( 0  S    0  ) *//*              K+L-M ( 0  0    I  ) *//*                P-L ( 0  0    0  ) *//*                     N-K-L  K   M-K  K+L-M *//*    ( 0 R ) =     K ( 0    R11  R12  R13  ) *//*                M-K ( 0     0   R22  R23  ) *//*              K+L-M ( 0     0    0   R33  ) *//*  where *//*    C = diag( ALPHA(K+1), ... , ALPHA(M) ), *//*    S = diag( BETA(K+1),  ... , BETA(M) ), *//*    C**2 + S**2 = I. *//*    (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored *//*    ( 0  R22 R23 ) *//*    in B(M-K+1:L,N+M-K-L+1:N) on exit. *//*  The routine computes C, S, R, and optionally the orthogonal *//*  transformation matrices U, V and Q. *//*  In particular, if B is an N-by-N nonsingular matrix, then the GSVD of *//*  A and B implicitly gives the SVD of A*inv(B): *//*                       A*inv(B) = U*(D1*inv(D2))*V'. *//*  If ( A',B')' has orthonormal columns, then the GSVD of A and B is *//*  also equal to the CS decomposition of A and B. Furthermore, the GSVD *//*  can be used to derive the solution of the eigenvalue problem: *//*                       A'*A x = lambda* B'*B x. *//*  In some literature, the GSVD of A and B is presented in the form *//*                   U'*A*X = ( 0 D1 ),   V'*B*X = ( 0 D2 ) *//*  where U and V are orthogonal and X is nonsingular, D1 and D2 are *//*  ``diagonal''.  The former GSVD form can be converted to the latter *//*  form by taking the nonsingular matrix X as *//*                       X = Q*( I   0    ) *//*                             ( 0 inv(R) ). *//*  Arguments *//*  ========= *//*  JOBU    (input) CHARACTER*1 *//*          = 'U':  Orthogonal matrix U is computed; *//*          = 'N':  U is not computed. *//*  JOBV    (input) CHARACTER*1 *//*          = 'V':  Orthogonal matrix V is computed; *//*          = 'N':  V is not computed. *//*  JOBQ    (input) CHARACTER*1 *//*          = 'Q':  Orthogonal matrix Q is computed; *//*          = 'N':  Q is not computed. *//*  M       (input) INTEGER *//*          The number of rows of the matrix A.  M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrices A and B.  N >= 0. *//*  P       (input) INTEGER *//*          The number of rows of the matrix B.  P >= 0. *//*  K       (output) INTEGER *//*  L       (output) INTEGER *//*          On exit, K and L specify the dimension of the subblocks *//*          described in the Purpose section. *//*          K + L = effective numerical rank of (A',B')'. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the M-by-N matrix A. *//*          On exit, A contains the triangular matrix R, or part of R. *//*          See Purpose for details. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A. LDA >= max(1,M). *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N) *//*          On entry, the P-by-N matrix B. *//*          On exit, B contains the triangular matrix R if M-K-L < 0. *//*          See Purpose for details. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B. LDB >= max(1,P). *//*  ALPHA   (output) DOUBLE PRECISION array, dimension (N) *//*  BETA    (output) DOUBLE PRECISION array, dimension (N) *//*          On exit, ALPHA and BETA contain the generalized singular *//*          value pairs of A and B; *//*            ALPHA(1:K) = 1, *//*            BETA(1:K)  = 0, *//*          and if M-K-L >= 0, *//*            ALPHA(K+1:K+L) = C, *//*            BETA(K+1:K+L)  = S, *//*          or if M-K-L < 0, *//*            ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0 *//*            BETA(K+1:M) =S, BETA(M+1:K+L) =1 *//*          and *//*            ALPHA(K+L+1:N) = 0 *//*            BETA(K+L+1:N)  = 0 *//*  U       (output) DOUBLE PRECISION array, dimension (LDU,M) *//*          If JOBU = 'U', U contains the M-by-M orthogonal matrix U. *//*          If JOBU = 'N', U is not referenced. *//*  LDU     (input) INTEGER *//*          The leading dimension of the array U. LDU >= max(1,M) if *//*          JOBU = 'U'; LDU >= 1 otherwise. *//*  V       (output) DOUBLE PRECISION array, dimension (LDV,P) *//*          If JOBV = 'V', V contains the P-by-P orthogonal matrix V. *//*          If JOBV = 'N', V is not referenced. *//*  LDV     (input) INTEGER *//*          The leading dimension of the array V. LDV >= max(1,P) if *//*          JOBV = 'V'; LDV >= 1 otherwise. *//*  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N) *//*          If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q. *//*          If JOBQ = 'N', Q is not referenced. *//*  LDQ     (input) INTEGER *//*          The leading dimension of the array Q. LDQ >= max(1,N) if *//*          JOBQ = 'Q'; LDQ >= 1 otherwise. *//*  WORK    (workspace) DOUBLE PRECISION array, *//*                      dimension (max(3*N,M,P)+N) *//*  IWORK   (workspace/output) INTEGER array, dimension (N) *//*          On exit, IWORK stores the sorting information. More *//*          precisely, the following loop will sort ALPHA *//*             for I = K+1, min(M,K+L) *//*                 swap ALPHA(I) and ALPHA(IWORK(I)) *//*             endfor *//*          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N). *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          > 0:  if INFO = 1, the Jacobi-type procedure failed to *//*                converge.  For further details, see subroutine DTGSJA. *//*  Internal Parameters *//*  =================== *//*  TOLA    DOUBLE PRECISION *//*  TOLB    DOUBLE PRECISION *//*          TOLA and TOLB are the thresholds to determine the effective *//*          rank of (A',B')'. Generally, they are set to *//*                   TOLA = MAX(M,N)*norm(A)*MAZHEPS, *//*                   TOLB = MAX(P,N)*norm(B)*MAZHEPS. *//*          The size of TOLA and TOLB may affect the size of backward *//*          errors of the decomposition. *//*  Further Details *//*  =============== *//*  2-96 Based on modifications by *//*     Ming Gu and Huan Ren, Computer Science Division, University of *//*     California at Berkeley, USA *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    --alpha;    --beta;    u_dim1 = *ldu;    u_offset = 1 + u_dim1;    u -= u_offset;    v_dim1 = *ldv;    v_offset = 1 + v_dim1;    v -= v_offset;    q_dim1 = *ldq;    q_offset = 1 + q_dim1;    q -= q_offset;    --work;    --iwork;    /* Function Body */    wantu = lsame_(jobu, "U");    wantv = lsame_(jobv, "V");    wantq = lsame_(jobq, "Q");    *info = 0;    if (! (wantu || lsame_(jobu, "N"))) {	*info = -1;    } else if (! (wantv || lsame_(jobv, "N"))) {	*info = -2;    } else if (! (wantq || lsame_(jobq, "N"))) {	*info = -3;    } else if (*m < 0) {	*info = -4;    } else if (*n < 0) {	*info = -5;    } else if (*p < 0) {	*info = -6;    } else if (*lda < max(1,*m)) {	*info = -10;    } else if (*ldb < max(1,*p)) {	*info = -12;    } else if (*ldu < 1 || wantu && *ldu < *m) {	*info = -16;    } else if (*ldv < 1 || wantv && *ldv < *p) {	*info = -18;    } else if (*ldq < 1 || wantq && *ldq < *n) {	*info = -20;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DGGSVD", &i__1);	return 0;    }/*     Compute the Frobenius norm of matrices A and B */    anorm = dlange_("1", m, n, &a[a_offset], lda, &work[1]);    bnorm = dlange_("1", p, n, &b[b_offset], ldb, &work[1]);/*     Get machine precision and set up threshold for determining *//*     the effective numerical rank of the matrices A and B. */    ulp = dlamch_("Precision");    unfl = dlamch_("Safe Minimum");    tola = max(*m,*n) * max(anorm,unfl) * ulp;    tolb = max(*p,*n) * max(bnorm,unfl) * ulp;/*     Preprocessing */    dggsvp_(jobu, jobv, jobq, m, p, n, &a[a_offset], lda, &b[b_offset], ldb, &	    tola, &tolb, k, l, &u[u_offset], ldu, &v[v_offset], ldv, &q[	    q_offset], ldq, &iwork[1], &work[1], &work[*n + 1], info);/*     Compute the GSVD of two upper "triangular" matrices */    dtgsja_(jobu, jobv, jobq, m, p, n, k, l, &a[a_offset], lda, &b[b_offset], 	    ldb, &tola, &tolb, &alpha[1], &beta[1], &u[u_offset], ldu, &v[	    v_offset], ldv, &q[q_offset], ldq, &work[1], &ncycle, info);/*     Sort the singular values and store the pivot indices in IWORK *//*     Copy ALPHA to WORK, then sort ALPHA in WORK */    dcopy_(n, &alpha[1], &c__1, &work[1], &c__1);/* Computing MIN */    i__1 = *l, i__2 = *m - *k;    ibnd = min(i__1,i__2);    i__1 = ibnd;    for (i__ = 1; i__ <= i__1; ++i__) {/*        Scan for largest ALPHA(K+I) */	isub = i__;	smax = work[*k + i__];	i__2 = ibnd;	for (j = i__ + 1; j <= i__2; ++j) {	    temp = work[*k + j];	    if (temp > smax) {		isub = j;		smax = temp;	    }/* L10: */	}	if (isub != i__) {	    work[*k + isub] = work[*k + i__];	    work[*k + i__] = smax;	    iwork[*k + i__] = *k + isub;	} else {	    iwork[*k + i__] = *k + i__;	}/* L20: */    }    return 0;/*     End of DGGSVD */} /* dggsvd_ */
 |