| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516 | /* dgels.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static doublereal c_b33 = 0.;static integer c__0 = 0;/* Subroutine */ int dgels_(char *trans, integer *m, integer *n, integer *	nrhs, doublereal *a, integer *lda, doublereal *b, integer *ldb, 	doublereal *work, integer *lwork, integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;    /* Local variables */    integer i__, j, nb, mn;    doublereal anrm, bnrm;    integer brow;    logical tpsd;    integer iascl, ibscl;    extern logical lsame_(char *, char *);    integer wsize;    doublereal rwork[1];    extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);    extern doublereal dlamch_(char *), dlange_(char *, integer *, 	    integer *, doublereal *, integer *, doublereal *);    extern /* Subroutine */ int dgelqf_(integer *, integer *, doublereal *, 	    integer *, doublereal *, doublereal *, integer *, integer *), 	    dlascl_(char *, integer *, integer *, doublereal *, doublereal *, 	    integer *, integer *, doublereal *, integer *, integer *),	     dgeqrf_(integer *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *, integer *), dlaset_(char *, 	     integer *, integer *, doublereal *, doublereal *, doublereal *, 	    integer *), xerbla_(char *, integer *);    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    integer scllen;    doublereal bignum;    extern /* Subroutine */ int dormlq_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *, integer *), 	    dormqr_(char *, char *, integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *, integer *);    doublereal smlnum;    logical lquery;    extern /* Subroutine */ int dtrtrs_(char *, char *, char *, integer *, 	    integer *, doublereal *, integer *, doublereal *, integer *, 	    integer *);/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGELS solves overdetermined or underdetermined real linear systems *//*  involving an M-by-N matrix A, or its transpose, using a QR or LQ *//*  factorization of A.  It is assumed that A has full rank. *//*  The following options are provided: *//*  1. If TRANS = 'N' and m >= n:  find the least squares solution of *//*     an overdetermined system, i.e., solve the least squares problem *//*                  minimize || B - A*X ||. *//*  2. If TRANS = 'N' and m < n:  find the minimum norm solution of *//*     an underdetermined system A * X = B. *//*  3. If TRANS = 'T' and m >= n:  find the minimum norm solution of *//*     an undetermined system A**T * X = B. *//*  4. If TRANS = 'T' and m < n:  find the least squares solution of *//*     an overdetermined system, i.e., solve the least squares problem *//*                  minimize || B - A**T * X ||. *//*  Several right hand side vectors b and solution vectors x can be *//*  handled in a single call; they are stored as the columns of the *//*  M-by-NRHS right hand side matrix B and the N-by-NRHS solution *//*  matrix X. *//*  Arguments *//*  ========= *//*  TRANS   (input) CHARACTER*1 *//*          = 'N': the linear system involves A; *//*          = 'T': the linear system involves A**T. *//*  M       (input) INTEGER *//*          The number of rows of the matrix A.  M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix A.  N >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of *//*          columns of the matrices B and X. NRHS >=0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the M-by-N matrix A. *//*          On exit, *//*            if M >= N, A is overwritten by details of its QR *//*                       factorization as returned by DGEQRF; *//*            if M <  N, A is overwritten by details of its LQ *//*                       factorization as returned by DGELQF. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,M). *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          On entry, the matrix B of right hand side vectors, stored *//*          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS *//*          if TRANS = 'T'. *//*          On exit, if INFO = 0, B is overwritten by the solution *//*          vectors, stored columnwise: *//*          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least *//*          squares solution vectors; the residual sum of squares for the *//*          solution in each column is given by the sum of squares of *//*          elements N+1 to M in that column; *//*          if TRANS = 'N' and m < n, rows 1 to N of B contain the *//*          minimum norm solution vectors; *//*          if TRANS = 'T' and m >= n, rows 1 to M of B contain the *//*          minimum norm solution vectors; *//*          if TRANS = 'T' and m < n, rows 1 to M of B contain the *//*          least squares solution vectors; the residual sum of squares *//*          for the solution in each column is given by the sum of *//*          squares of elements M+1 to N in that column. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B. LDB >= MAX(1,M,N). *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. *//*          LWORK >= max( 1, MN + max( MN, NRHS ) ). *//*          For optimal performance, *//*          LWORK >= max( 1, MN + max( MN, NRHS )*NB ). *//*          where MN = min(M,N) and NB is the optimum block size. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO =  i, the i-th diagonal element of the *//*                triangular factor of A is zero, so that A does not have *//*                full rank; the least squares solution could not be *//*                computed. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    --work;    /* Function Body */    *info = 0;    mn = min(*m,*n);    lquery = *lwork == -1;    if (! (lsame_(trans, "N") || lsame_(trans, "T"))) {	*info = -1;    } else if (*m < 0) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*nrhs < 0) {	*info = -4;    } else if (*lda < max(1,*m)) {	*info = -6;    } else /* if(complicated condition) */ {/* Computing MAX */	i__1 = max(1,*m);	if (*ldb < max(i__1,*n)) {	    *info = -8;	} else /* if(complicated condition) */ {/* Computing MAX */	    i__1 = 1, i__2 = mn + max(mn,*nrhs);	    if (*lwork < max(i__1,i__2) && ! lquery) {		*info = -10;	    }	}    }/*     Figure out optimal block size */    if (*info == 0 || *info == -10) {	tpsd = TRUE_;	if (lsame_(trans, "N")) {	    tpsd = FALSE_;	}	if (*m >= *n) {	    nb = ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1);	    if (tpsd) {/* Computing MAX */		i__1 = nb, i__2 = ilaenv_(&c__1, "DORMQR", "LN", m, nrhs, n, &			c_n1);		nb = max(i__1,i__2);	    } else {/* Computing MAX */		i__1 = nb, i__2 = ilaenv_(&c__1, "DORMQR", "LT", m, nrhs, n, &			c_n1);		nb = max(i__1,i__2);	    }	} else {	    nb = ilaenv_(&c__1, "DGELQF", " ", m, n, &c_n1, &c_n1);	    if (tpsd) {/* Computing MAX */		i__1 = nb, i__2 = ilaenv_(&c__1, "DORMLQ", "LT", n, nrhs, m, &			c_n1);		nb = max(i__1,i__2);	    } else {/* Computing MAX */		i__1 = nb, i__2 = ilaenv_(&c__1, "DORMLQ", "LN", n, nrhs, m, &			c_n1);		nb = max(i__1,i__2);	    }	}/* Computing MAX */	i__1 = 1, i__2 = mn + max(mn,*nrhs) * nb;	wsize = max(i__1,i__2);	work[1] = (doublereal) wsize;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DGELS ", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible *//* Computing MIN */    i__1 = min(*m,*n);    if (min(i__1,*nrhs) == 0) {	i__1 = max(*m,*n);	dlaset_("Full", &i__1, nrhs, &c_b33, &c_b33, &b[b_offset], ldb);	return 0;    }/*     Get machine parameters */    smlnum = dlamch_("S") / dlamch_("P");    bignum = 1. / smlnum;    dlabad_(&smlnum, &bignum);/*     Scale A, B if max element outside range [SMLNUM,BIGNUM] */    anrm = dlange_("M", m, n, &a[a_offset], lda, rwork);    iascl = 0;    if (anrm > 0. && anrm < smlnum) {/*        Scale matrix norm up to SMLNUM */	dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 		info);	iascl = 1;    } else if (anrm > bignum) {/*        Scale matrix norm down to BIGNUM */	dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 		info);	iascl = 2;    } else if (anrm == 0.) {/*        Matrix all zero. Return zero solution. */	i__1 = max(*m,*n);	dlaset_("F", &i__1, nrhs, &c_b33, &c_b33, &b[b_offset], ldb);	goto L50;    }    brow = *m;    if (tpsd) {	brow = *n;    }    bnrm = dlange_("M", &brow, nrhs, &b[b_offset], ldb, rwork);    ibscl = 0;    if (bnrm > 0. && bnrm < smlnum) {/*        Scale matrix norm up to SMLNUM */	dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, &brow, nrhs, &b[b_offset], 		ldb, info);	ibscl = 1;    } else if (bnrm > bignum) {/*        Scale matrix norm down to BIGNUM */	dlascl_("G", &c__0, &c__0, &bnrm, &bignum, &brow, nrhs, &b[b_offset], 		ldb, info);	ibscl = 2;    }    if (*m >= *n) {/*        compute QR factorization of A */	i__1 = *lwork - mn;	dgeqrf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info)		;/*        workspace at least N, optimally N*NB */	if (! tpsd) {/*           Least-Squares Problem min || A * X - B || *//*           B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */	    i__1 = *lwork - mn;	    dormqr_("Left", "Transpose", m, nrhs, n, &a[a_offset], lda, &work[		    1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);/*           workspace at least NRHS, optimally NRHS*NB *//*           B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) */	    dtrtrs_("Upper", "No transpose", "Non-unit", n, nrhs, &a[a_offset], lda, &b[b_offset], ldb, info);	    if (*info > 0) {		return 0;	    }	    scllen = *n;	} else {/*           Overdetermined system of equations A' * X = B *//*           B(1:N,1:NRHS) := inv(R') * B(1:N,1:NRHS) */	    dtrtrs_("Upper", "Transpose", "Non-unit", n, nrhs, &a[a_offset], 		    lda, &b[b_offset], ldb, info);	    if (*info > 0) {		return 0;	    }/*           B(N+1:M,1:NRHS) = ZERO */	    i__1 = *nrhs;	    for (j = 1; j <= i__1; ++j) {		i__2 = *m;		for (i__ = *n + 1; i__ <= i__2; ++i__) {		    b[i__ + j * b_dim1] = 0.;/* L10: */		}/* L20: */	    }/*           B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS) */	    i__1 = *lwork - mn;	    dormqr_("Left", "No transpose", m, nrhs, n, &a[a_offset], lda, &		    work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);/*           workspace at least NRHS, optimally NRHS*NB */	    scllen = *m;	}    } else {/*        Compute LQ factorization of A */	i__1 = *lwork - mn;	dgelqf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info)		;/*        workspace at least M, optimally M*NB. */	if (! tpsd) {/*           underdetermined system of equations A * X = B *//*           B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) */	    dtrtrs_("Lower", "No transpose", "Non-unit", m, nrhs, &a[a_offset], lda, &b[b_offset], ldb, info);	    if (*info > 0) {		return 0;	    }/*           B(M+1:N,1:NRHS) = 0 */	    i__1 = *nrhs;	    for (j = 1; j <= i__1; ++j) {		i__2 = *n;		for (i__ = *m + 1; i__ <= i__2; ++i__) {		    b[i__ + j * b_dim1] = 0.;/* L30: */		}/* L40: */	    }/*           B(1:N,1:NRHS) := Q(1:N,:)' * B(1:M,1:NRHS) */	    i__1 = *lwork - mn;	    dormlq_("Left", "Transpose", n, nrhs, m, &a[a_offset], lda, &work[		    1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);/*           workspace at least NRHS, optimally NRHS*NB */	    scllen = *n;	} else {/*           overdetermined system min || A' * X - B || *//*           B(1:N,1:NRHS) := Q * B(1:N,1:NRHS) */	    i__1 = *lwork - mn;	    dormlq_("Left", "No transpose", n, nrhs, m, &a[a_offset], lda, &		    work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);/*           workspace at least NRHS, optimally NRHS*NB *//*           B(1:M,1:NRHS) := inv(L') * B(1:M,1:NRHS) */	    dtrtrs_("Lower", "Transpose", "Non-unit", m, nrhs, &a[a_offset], 		    lda, &b[b_offset], ldb, info);	    if (*info > 0) {		return 0;	    }	    scllen = *m;	}    }/*     Undo scaling */    if (iascl == 1) {	dlascl_("G", &c__0, &c__0, &anrm, &smlnum, &scllen, nrhs, &b[b_offset], ldb, info);    } else if (iascl == 2) {	dlascl_("G", &c__0, &c__0, &anrm, &bignum, &scllen, nrhs, &b[b_offset], ldb, info);    }    if (ibscl == 1) {	dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, &scllen, nrhs, &b[b_offset], ldb, info);    } else if (ibscl == 2) {	dlascl_("G", &c__0, &c__0, &bignum, &bnrm, &scllen, nrhs, &b[b_offset], ldb, info);    }L50:    work[1] = (doublereal) wsize;    return 0;/*     End of DGELS */} /* dgels_ */
 |