starpu.texi 189 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU Handbook
  5. @c %**end of header
  6. @include version.texi
  7. @setchapternewpage odd
  8. @dircategory Development
  9. @direntry
  10. * StarPU: (starpu). StarPU Handbook
  11. @end direntry
  12. @titlepage
  13. @title StarPU Handbook
  14. @subtitle for StarPU @value{VERSION}
  15. @page
  16. @vskip 0pt plus 1fill
  17. @comment For the @value{version-GCC} Version*
  18. @end titlepage
  19. @c @summarycontents
  20. @contents
  21. @page
  22. @node Top
  23. @top Preface
  24. @cindex Preface
  25. This manual documents the usage of StarPU version @value{VERSION}. It
  26. was last updated on @value{UPDATED}.
  27. @comment
  28. @comment When you add a new menu item, please keep the right hand
  29. @comment aligned to the same column. Do not use tabs. This provides
  30. @comment better formatting.
  31. @comment
  32. @menu
  33. * Introduction:: A basic introduction to using StarPU
  34. * Installing StarPU:: How to configure, build and install StarPU
  35. * Using StarPU:: How to run StarPU application
  36. * Basic Examples:: Basic examples of the use of StarPU
  37. * Performance optimization:: How to optimize performance with StarPU
  38. * Performance feedback:: Performance debugging tools
  39. * StarPU MPI support:: How to combine StarPU with MPI
  40. * Configuring StarPU:: How to configure StarPU
  41. * StarPU API:: The API to use StarPU
  42. * Advanced Topics:: Advanced use of StarPU
  43. * Full source code for the 'Scaling a Vector' example::
  44. * Function Index:: Index of C functions.
  45. @end menu
  46. @c ---------------------------------------------------------------------
  47. @c Introduction to StarPU
  48. @c ---------------------------------------------------------------------
  49. @node Introduction
  50. @chapter Introduction to StarPU
  51. @menu
  52. * Motivation:: Why StarPU ?
  53. * StarPU in a Nutshell:: The Fundamentals of StarPU
  54. @end menu
  55. @node Motivation
  56. @section Motivation
  57. @c complex machines with heterogeneous cores/devices
  58. The use of specialized hardware such as accelerators or coprocessors offers an
  59. interesting approach to overcome the physical limits encountered by processor
  60. architects. As a result, many machines are now equipped with one or several
  61. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  62. efforts have been devoted to offload computation onto such accelerators, very
  63. little attention as been paid to portability concerns on the one hand, and to the
  64. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  65. StarPU is a runtime system that offers support for heterogeneous multicore
  66. architectures, it not only offers a unified view of the computational resources
  67. (i.e. CPUs and accelerators at the same time), but it also takes care of
  68. efficiently mapping and executing tasks onto an heterogeneous machine while
  69. transparently handling low-level issues such as data transfers in a portable
  70. fashion.
  71. @c this leads to a complicated distributed memory design
  72. @c which is not (easily) manageable by hand
  73. @c added value/benefits of StarPU
  74. @c - portability
  75. @c - scheduling, perf. portability
  76. @node StarPU in a Nutshell
  77. @section StarPU in a Nutshell
  78. @menu
  79. * Codelet and Tasks::
  80. * StarPU Data Management Library::
  81. * Glossary::
  82. * Research Papers::
  83. @end menu
  84. From a programming point of view, StarPU is not a new language but a library
  85. that executes tasks explicitly submitted by the application. The data that a
  86. task manipulates are automatically transferred onto the accelerator so that the
  87. programmer does not have to take care of complex data movements. StarPU also
  88. takes particular care of scheduling those tasks efficiently and allows
  89. scheduling experts to implement custom scheduling policies in a portable
  90. fashion.
  91. @c explain the notion of codelet and task (i.e. g(A, B)
  92. @node Codelet and Tasks
  93. @subsection Codelet and Tasks
  94. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  95. computational kernel that can possibly be implemented on multiple architectures
  96. such as a CPU, a CUDA device or a Cell's SPU.
  97. @c TODO insert illustration f : f_spu, f_cpu, ...
  98. Another important data structure is the @b{task}. Executing a StarPU task
  99. consists in applying a codelet on a data set, on one of the architectures on
  100. which the codelet is implemented. A task thus describes the codelet that it
  101. uses, but also which data are accessed, and how they are
  102. accessed during the computation (read and/or write).
  103. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  104. operation. The task structure can also specify a @b{callback} function that is
  105. called once StarPU has properly executed the task. It also contains optional
  106. fields that the application may use to give hints to the scheduler (such as
  107. priority levels).
  108. By default, task dependencies are inferred from data dependency (sequential
  109. coherence) by StarPU. The application can however disable sequential coherency
  110. for some data, and dependencies be expressed by hand.
  111. A task may be identified by a unique 64-bit number chosen by the application
  112. which we refer as a @b{tag}.
  113. Task dependencies can be enforced by hand either by the means of callback functions, by
  114. submitting other tasks, or by expressing dependencies
  115. between tags (which can thus correspond to tasks that have not been submitted
  116. yet).
  117. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  118. @c DSM
  119. @node StarPU Data Management Library
  120. @subsection StarPU Data Management Library
  121. Because StarPU schedules tasks at runtime, data transfers have to be
  122. done automatically and ``just-in-time'' between processing units,
  123. relieving the application programmer from explicit data transfers.
  124. Moreover, to avoid unnecessary transfers, StarPU keeps data
  125. where it was last needed, even if was modified there, and it
  126. allows multiple copies of the same data to reside at the same time on
  127. several processing units as long as it is not modified.
  128. @node Glossary
  129. @subsection Glossary
  130. A @b{codelet} records pointers to various implementations of the same
  131. theoretical function.
  132. A @b{memory node} can be either the main RAM or GPU-embedded memory.
  133. A @b{bus} is a link between memory nodes.
  134. A @b{data handle} keeps track of replicates of the same data (@b{registered} by the
  135. application) over various memory nodes. The data management library manages
  136. keeping them coherent.
  137. The @b{home} memory node of a data handle is the memory node from which the data
  138. was registered (usually the main memory node).
  139. A @b{task} represents a scheduled execution of a codelet on some data handles.
  140. A @b{tag} is a rendez-vous point. Tasks typically have their own tag, and can
  141. depend on other tags. The value is chosen by the application.
  142. A @b{worker} execute tasks. There is typically one per CPU computation core and
  143. one per accelerator (for which a whole CPU core is dedicated).
  144. A @b{driver} drives a given kind of workers. There are currently CPU, CUDA,
  145. OpenCL and Gordon drivers. They usually start several workers to actually drive
  146. them.
  147. A @b{performance model} is a (dynamic or static) model of the performance of a
  148. given codelet. Codelets can have execution time performance model as well as
  149. power consumption performance models.
  150. A data @b{interface} describes the layout of the data: for a vector, a pointer
  151. for the start, the number of elements and the size of elements ; for a matrix, a
  152. pointer for the start, the number of elements per row, the offset between rows,
  153. and the size of each element ; etc. To access their data, codelet functions are
  154. given interfaces for the local memory node replicates of the data handles of the
  155. scheduled task.
  156. @b{Partitioning} data means dividing the data of a given data handle (called
  157. @b{father}) into a series of @b{children} data handles which designate various
  158. portions of the former.
  159. A @b{filter} is the function which computes children data handles from a father
  160. data handle, and thus describes how the partitioning should be done (horizontal,
  161. vertical, etc.)
  162. @b{Acquiring} a data handle can be done from the main application, to safely
  163. access the data of a data handle from its home node, without having to
  164. unregister it.
  165. @node Research Papers
  166. @subsection Research Papers
  167. Research papers about StarPU can be found at
  168. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  169. Notably a good overview in the research report
  170. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  171. @c ---------------------------------------------------------------------
  172. @c Installing StarPU
  173. @c ---------------------------------------------------------------------
  174. @node Installing StarPU
  175. @chapter Installing StarPU
  176. @menu
  177. * Downloading StarPU::
  178. * Configuration of StarPU::
  179. * Building and Installing StarPU::
  180. @end menu
  181. StarPU can be built and installed by the standard means of the GNU
  182. autotools. The following chapter is intended to briefly remind how these tools
  183. can be used to install StarPU.
  184. @node Downloading StarPU
  185. @section Downloading StarPU
  186. @menu
  187. * Getting Sources::
  188. * Optional dependencies::
  189. @end menu
  190. @node Getting Sources
  191. @subsection Getting Sources
  192. The simplest way to get StarPU sources is to download the latest official
  193. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  194. or the latest nightly snapshot from
  195. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  196. how to get the very latest version from the subversion repository itself, it
  197. should be needed only if you need the very latest changes (i.e. less than a
  198. day!)
  199. The source code is managed by a Subversion server hosted by the
  200. InriaGforge. To get the source code, you need:
  201. @itemize
  202. @item
  203. To install the client side of the software Subversion if it is
  204. not already available on your system. The software can be obtained from
  205. @indicateurl{http://subversion.tigris.org} . If you are running
  206. on Windows, you will probably prefer to use TortoiseSVN from
  207. @indicateurl{http://tortoisesvn.tigris.org/} .
  208. @item
  209. You can check out the project's SVN repository through anonymous
  210. access. This will provide you with a read access to the
  211. repository.
  212. If you need to have write access on the StarPU project, you can also choose to
  213. become a member of the project @code{starpu}. For this, you first need to get
  214. an account to the gForge server. You can then send a request to join the project
  215. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  216. @item
  217. More information on how to get a gForge account, to become a member of
  218. a project, or on any other related task can be obtained from the
  219. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  220. thing is to upload your public SSH key on the gForge server (see the
  221. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  222. instructions).
  223. @end itemize
  224. You can now check out the latest version from the Subversion server:
  225. @itemize
  226. @item
  227. using the anonymous access via svn:
  228. @example
  229. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  230. @end example
  231. @item
  232. using the anonymous access via https:
  233. @example
  234. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  235. @end example
  236. The password is @code{anonsvn}.
  237. @item
  238. using your gForge account
  239. @example
  240. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  241. @end example
  242. @end itemize
  243. The following step requires the availability of @code{autoconf} and
  244. @code{automake} to generate the @code{./configure} script. This is
  245. done by calling @code{./autogen.sh}. The required version for
  246. @code{autoconf} is 2.60 or higher. You will also need @code{makeinfo}.
  247. @example
  248. % ./autogen.sh
  249. @end example
  250. If the autotools are not available on your machine or not recent
  251. enough, you can choose to download the latest nightly tarball, which
  252. is provided with a @code{configure} script.
  253. @example
  254. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  255. @end example
  256. @node Optional dependencies
  257. @subsection Optional dependencies
  258. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  259. but strongly recommended. It allows to increase performance, and to
  260. perform some topology aware scheduling.
  261. @code{hwloc} is available in major distributions and for most OSes and can be
  262. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  263. @node Configuration of StarPU
  264. @section Configuration of StarPU
  265. @menu
  266. * Generating Makefiles and configuration scripts::
  267. * Running the configuration::
  268. @end menu
  269. @node Generating Makefiles and configuration scripts
  270. @subsection Generating Makefiles and configuration scripts
  271. This step is not necessary when using the tarball releases of StarPU. If you
  272. are using the source code from the svn repository, you first need to generate
  273. the configure scripts and the Makefiles.
  274. @example
  275. % ./autogen.sh
  276. @end example
  277. @node Running the configuration
  278. @subsection Running the configuration
  279. @example
  280. % ./configure
  281. @end example
  282. Details about options that are useful to give to @code{./configure} are given in
  283. @ref{Compilation configuration}.
  284. @node Building and Installing StarPU
  285. @section Building and Installing StarPU
  286. @menu
  287. * Building::
  288. * Sanity Checks::
  289. * Installing::
  290. @end menu
  291. @node Building
  292. @subsection Building
  293. @example
  294. % make
  295. @end example
  296. @node Sanity Checks
  297. @subsection Sanity Checks
  298. In order to make sure that StarPU is working properly on the system, it is also
  299. possible to run a test suite.
  300. @example
  301. % make check
  302. @end example
  303. @node Installing
  304. @subsection Installing
  305. In order to install StarPU at the location that was specified during
  306. configuration:
  307. @example
  308. % make install
  309. @end example
  310. @c ---------------------------------------------------------------------
  311. @c Using StarPU
  312. @c ---------------------------------------------------------------------
  313. @node Using StarPU
  314. @chapter Using StarPU
  315. @menu
  316. * Setting flags for compiling and linking applications::
  317. * Running a basic StarPU application::
  318. * Kernel threads started by StarPU::
  319. * Using accelerators::
  320. @end menu
  321. @node Setting flags for compiling and linking applications
  322. @section Setting flags for compiling and linking applications
  323. Compiling and linking an application against StarPU may require to use
  324. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  325. To this end, it is possible to use the @code{pkg-config} tool.
  326. If StarPU was not installed at some standard location, the path of StarPU's
  327. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  328. that @code{pkg-config} can find it. For example if StarPU was installed in
  329. @code{$prefix_dir}:
  330. @example
  331. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  332. @end example
  333. The flags required to compile or link against StarPU are then
  334. accessible with the following commands:
  335. @example
  336. % pkg-config --cflags libstarpu # options for the compiler
  337. % pkg-config --libs libstarpu # options for the linker
  338. @end example
  339. @node Running a basic StarPU application
  340. @section Running a basic StarPU application
  341. Basic examples using StarPU are built in the directory
  342. @code{examples/basic_examples/} (and installed in
  343. @code{$prefix_dir/lib/starpu/examples/}). You can for example run the example
  344. @code{vector_scal}.
  345. @example
  346. % ./examples/basic_examples/vector_scal
  347. BEFORE : First element was 1.000000
  348. AFTER First element is 3.140000
  349. %
  350. @end example
  351. When StarPU is used for the first time, the directory
  352. @code{$HOME/.starpu/} is created, performance models will be stored in
  353. that directory.
  354. Please note that buses are benchmarked when StarPU is launched for the
  355. first time. This may take a few minutes, or less if @code{hwloc} is
  356. installed. This step is done only once per user and per machine.
  357. @node Kernel threads started by StarPU
  358. @section Kernel threads started by StarPU
  359. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  360. them per GPU. The application is not supposed to do computations in its own
  361. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  362. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  363. worker).
  364. @node Using accelerators
  365. @section Using accelerators
  366. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  367. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  368. This design choice was necessary as OpenCL and CUDA can not run at the
  369. same time on the same NVIDIA GPU, as there is currently no interoperability
  370. between them.
  371. Details on how to specify devices running OpenCL and the ones running
  372. CUDA are given in @ref{Enabling OpenCL}.
  373. @c ---------------------------------------------------------------------
  374. @c Basic Examples
  375. @c ---------------------------------------------------------------------
  376. @node Basic Examples
  377. @chapter Basic Examples
  378. @menu
  379. * Compiling and linking options::
  380. * Hello World:: Submitting Tasks
  381. * Scaling a Vector:: Manipulating Data
  382. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  383. * Task and Worker Profiling::
  384. * Partitioning Data:: Partitioning Data
  385. * Performance model example::
  386. * Theoretical lower bound on execution time::
  387. * Insert Task Utility::
  388. * More examples:: More examples shipped with StarPU
  389. * Debugging:: When things go wrong.
  390. @end menu
  391. @node Compiling and linking options
  392. @section Compiling and linking options
  393. Let's suppose StarPU has been installed in the directory
  394. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  395. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  396. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  397. libraries at runtime.
  398. @example
  399. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  400. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  401. @end example
  402. The Makefile could for instance contain the following lines to define which
  403. options must be given to the compiler and to the linker:
  404. @cartouche
  405. @example
  406. CFLAGS += $$(pkg-config --cflags libstarpu)
  407. LDFLAGS += $$(pkg-config --libs libstarpu)
  408. @end example
  409. @end cartouche
  410. @node Hello World
  411. @section Hello World
  412. @menu
  413. * Required Headers::
  414. * Defining a Codelet::
  415. * Submitting a Task::
  416. * Execution of Hello World::
  417. @end menu
  418. In this section, we show how to implement a simple program that submits a task to StarPU.
  419. @node Required Headers
  420. @subsection Required Headers
  421. The @code{starpu.h} header should be included in any code using StarPU.
  422. @cartouche
  423. @smallexample
  424. #include <starpu.h>
  425. @end smallexample
  426. @end cartouche
  427. @node Defining a Codelet
  428. @subsection Defining a Codelet
  429. @cartouche
  430. @smallexample
  431. struct params @{
  432. int i;
  433. float f;
  434. @};
  435. void cpu_func(void *buffers[], void *cl_arg)
  436. @{
  437. struct params *params = cl_arg;
  438. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  439. @}
  440. starpu_codelet cl =
  441. @{
  442. .where = STARPU_CPU,
  443. .cpu_func = cpu_func,
  444. .nbuffers = 0
  445. @};
  446. @end smallexample
  447. @end cartouche
  448. A codelet is a structure that represents a computational kernel. Such a codelet
  449. may contain an implementation of the same kernel on different architectures
  450. (e.g. CUDA, Cell's SPU, x86, ...).
  451. The @code{nbuffers} field specifies the number of data buffers that are
  452. manipulated by the codelet: here the codelet does not access or modify any data
  453. that is controlled by our data management library. Note that the argument
  454. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  455. structure) does not count as a buffer since it is not managed by our data
  456. management library, but just contain trivial parameters.
  457. @c TODO need a crossref to the proper description of "where" see bla for more ...
  458. We create a codelet which may only be executed on the CPUs. The @code{where}
  459. field is a bitmask that defines where the codelet may be executed. Here, the
  460. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  461. (@pxref{Codelets and Tasks} for more details on this field).
  462. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  463. which @emph{must} have the following prototype:
  464. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  465. In this example, we can ignore the first argument of this function which gives a
  466. description of the input and output buffers (e.g. the size and the location of
  467. the matrices) since there is none.
  468. The second argument is a pointer to a buffer passed as an
  469. argument to the codelet by the means of the @code{cl_arg} field of the
  470. @code{starpu_task} structure.
  471. @c TODO rewrite so that it is a little clearer ?
  472. Be aware that this may be a pointer to a
  473. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  474. if the codelet modifies this buffer, there is no guarantee that the initial
  475. buffer will be modified as well: this for instance implies that the buffer
  476. cannot be used as a synchronization medium. If synchronization is needed, data
  477. has to be registered to StarPU, see @ref{Scaling a Vector}.
  478. @node Submitting a Task
  479. @subsection Submitting a Task
  480. @cartouche
  481. @smallexample
  482. void callback_func(void *callback_arg)
  483. @{
  484. printf("Callback function (arg %x)\n", callback_arg);
  485. @}
  486. int main(int argc, char **argv)
  487. @{
  488. /* @b{initialize StarPU} */
  489. starpu_init(NULL);
  490. struct starpu_task *task = starpu_task_create();
  491. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  492. struct params params = @{ 1, 2.0f @};
  493. task->cl_arg = &params;
  494. task->cl_arg_size = sizeof(params);
  495. task->callback_func = callback_func;
  496. task->callback_arg = 0x42;
  497. /* @b{starpu_task_submit will be a blocking call} */
  498. task->synchronous = 1;
  499. /* @b{submit the task to StarPU} */
  500. starpu_task_submit(task);
  501. /* @b{terminate StarPU} */
  502. starpu_shutdown();
  503. return 0;
  504. @}
  505. @end smallexample
  506. @end cartouche
  507. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  508. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  509. be submitted after the termination of StarPU by a call to
  510. @code{starpu_shutdown}.
  511. In the example above, a task structure is allocated by a call to
  512. @code{starpu_task_create}. This function only allocates and fills the
  513. corresponding structure with the default settings (@pxref{Codelets and
  514. Tasks, starpu_task_create}), but it does not submit the task to StarPU.
  515. @c not really clear ;)
  516. The @code{cl} field is a pointer to the codelet which the task will
  517. execute: in other words, the codelet structure describes which computational
  518. kernel should be offloaded on the different architectures, and the task
  519. structure is a wrapper containing a codelet and the piece of data on which the
  520. codelet should operate.
  521. The optional @code{cl_arg} field is a pointer to a buffer (of size
  522. @code{cl_arg_size}) with some parameters for the kernel
  523. described by the codelet. For instance, if a codelet implements a computational
  524. kernel that multiplies its input vector by a constant, the constant could be
  525. specified by the means of this buffer, instead of registering it as a StarPU
  526. data. It must however be noted that StarPU avoids making copy whenever possible
  527. and rather passes the pointer as such, so the buffer which is pointed at must
  528. kept allocated until the task terminates, and if several tasks are submitted
  529. with various parameters, each of them must be given a pointer to their own
  530. buffer.
  531. Once a task has been executed, an optional callback function is be called.
  532. While the computational kernel could be offloaded on various architectures, the
  533. callback function is always executed on a CPU. The @code{callback_arg}
  534. pointer is passed as an argument of the callback. The prototype of a callback
  535. function must be:
  536. @code{void (*callback_function)(void *);}
  537. If the @code{synchronous} field is non-zero, task submission will be
  538. synchronous: the @code{starpu_task_submit} function will not return until the
  539. task was executed. Note that the @code{starpu_shutdown} method does not
  540. guarantee that asynchronous tasks have been executed before it returns,
  541. @code{starpu_task_wait_for_all} can be used to that effect, or data can be
  542. unregistered (@code{starpu_data_unregister(vector_handle);}), which will
  543. implicitly wait for all the tasks scheduled to work on it, unless explicitly
  544. disabled thanks to @code{starpu_data_set_default_sequential_consistency_flag} or
  545. @code{starpu_data_set_sequential_consistency_flag}.
  546. @node Execution of Hello World
  547. @subsection Execution of Hello World
  548. @smallexample
  549. % make hello_world
  550. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  551. % ./hello_world
  552. Hello world (params = @{1, 2.000000@} )
  553. Callback function (arg 42)
  554. @end smallexample
  555. @node Scaling a Vector
  556. @section Manipulating Data: Scaling a Vector
  557. The previous example has shown how to submit tasks. In this section,
  558. we show how StarPU tasks can manipulate data. The full source code for
  559. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  560. @menu
  561. * Source code of Vector Scaling::
  562. * Execution of Vector Scaling::
  563. @end menu
  564. @node Source code of Vector Scaling
  565. @subsection Source code of Vector Scaling
  566. Programmers can describe the data layout of their application so that StarPU is
  567. responsible for enforcing data coherency and availability across the machine.
  568. Instead of handling complex (and non-portable) mechanisms to perform data
  569. movements, programmers only declare which piece of data is accessed and/or
  570. modified by a task, and StarPU makes sure that when a computational kernel
  571. starts somewhere (e.g. on a GPU), its data are available locally.
  572. Before submitting those tasks, the programmer first needs to declare the
  573. different pieces of data to StarPU using the @code{starpu_*_data_register}
  574. functions. To ease the development of applications for StarPU, it is possible
  575. to describe multiple types of data layout. A type of data layout is called an
  576. @b{interface}. There are different predefined interfaces available in StarPU:
  577. here we will consider the @b{vector interface}.
  578. The following lines show how to declare an array of @code{NX} elements of type
  579. @code{float} using the vector interface:
  580. @cartouche
  581. @smallexample
  582. float vector[NX];
  583. starpu_data_handle vector_handle;
  584. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  585. sizeof(vector[0]));
  586. @end smallexample
  587. @end cartouche
  588. The first argument, called the @b{data handle}, is an opaque pointer which
  589. designates the array in StarPU. This is also the structure which is used to
  590. describe which data is used by a task. The second argument is the node number
  591. where the data originally resides. Here it is 0 since the @code{vector} array is in
  592. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  593. the number of elements in the vector and the size of each element.
  594. The following shows how to construct a StarPU task that will manipulate the
  595. vector and a constant factor.
  596. @cartouche
  597. @smallexample
  598. float factor = 3.14;
  599. struct starpu_task *task = starpu_task_create();
  600. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  601. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  602. task->buffers[0].mode = STARPU_RW;
  603. task->cl_arg = &factor;
  604. task->cl_arg_size = sizeof(factor);
  605. task->synchronous = 1;
  606. starpu_task_submit(task);
  607. @end smallexample
  608. @end cartouche
  609. Since the factor is a mere constant float value parameter,
  610. it does not need a preliminary registration, and
  611. can just be passed through the @code{cl_arg} pointer like in the previous
  612. example. The vector parameter is described by its handle.
  613. There are two fields in each element of the @code{buffers} array.
  614. @code{handle} is the handle of the data, and @code{mode} specifies how the
  615. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  616. write-only and @code{STARPU_RW} for read and write access).
  617. The definition of the codelet can be written as follows:
  618. @cartouche
  619. @smallexample
  620. void scal_cpu_func(void *buffers[], void *cl_arg)
  621. @{
  622. unsigned i;
  623. float *factor = cl_arg;
  624. /* length of the vector */
  625. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  626. /* CPU copy of the vector pointer */
  627. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  628. for (i = 0; i < n; i++)
  629. val[i] *= *factor;
  630. @}
  631. starpu_codelet cl = @{
  632. .where = STARPU_CPU,
  633. .cpu_func = scal_cpu_func,
  634. .nbuffers = 1
  635. @};
  636. @end smallexample
  637. @end cartouche
  638. The first argument is an array that gives
  639. a description of all the buffers passed in the @code{task->buffers}@ array. The
  640. size of this array is given by the @code{nbuffers} field of the codelet
  641. structure. For the sake of genericity, this array contains pointers to the
  642. different interfaces describing each buffer. In the case of the @b{vector
  643. interface}, the location of the vector (resp. its length) is accessible in the
  644. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  645. read-write fashion, any modification will automatically affect future accesses
  646. to this vector made by other tasks.
  647. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  648. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  649. constant factor from this pointer.
  650. @node Execution of Vector Scaling
  651. @subsection Execution of Vector Scaling
  652. @smallexample
  653. % make vector_scal
  654. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  655. % ./vector_scal
  656. 0.000000 3.000000 6.000000 9.000000 12.000000
  657. @end smallexample
  658. @node Vector Scaling on an Hybrid CPU/GPU Machine
  659. @section Vector Scaling on an Hybrid CPU/GPU Machine
  660. Contrary to the previous examples, the task submitted in this example may not
  661. only be executed by the CPUs, but also by a CUDA device.
  662. @menu
  663. * Definition of the CUDA Kernel::
  664. * Definition of the OpenCL Kernel::
  665. * Definition of the Main Code::
  666. * Execution of Hybrid Vector Scaling::
  667. @end menu
  668. @node Definition of the CUDA Kernel
  669. @subsection Definition of the CUDA Kernel
  670. The CUDA implementation can be written as follows. It needs to be compiled with
  671. a CUDA compiler such as nvcc, the NVIDIA CUDA compiler driver. It must be noted
  672. that the vector pointer returned by STARPU_VECTOR_GET_PTR is here a pointer in GPU
  673. memory, so that it can be passed as such to the @code{vector_mult_cuda} kernel
  674. call.
  675. @cartouche
  676. @smallexample
  677. #include <starpu.h>
  678. #include <starpu_cuda.h>
  679. static __global__ void vector_mult_cuda(float *val, unsigned n,
  680. float factor)
  681. @{
  682. unsigned i = blockIdx.x*blockDim.x + threadIdx.x;
  683. if (i < n)
  684. val[i] *= factor;
  685. @}
  686. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  687. @{
  688. float *factor = (float *)_args;
  689. /* length of the vector */
  690. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  691. /* CUDA copy of the vector pointer */
  692. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  693. unsigned threads_per_block = 64;
  694. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  695. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  696. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  697. @}
  698. @end smallexample
  699. @end cartouche
  700. @node Definition of the OpenCL Kernel
  701. @subsection Definition of the OpenCL Kernel
  702. The OpenCL implementation can be written as follows. StarPU provides
  703. tools to compile a OpenCL kernel stored in a file.
  704. @cartouche
  705. @smallexample
  706. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  707. @{
  708. const int i = get_global_id(0);
  709. if (i < nx) @{
  710. val[i] *= factor;
  711. @}
  712. @}
  713. @end smallexample
  714. @end cartouche
  715. Similarly to CUDA, the pointer returned by @code{STARPU_VECTOR_GET_PTR} is here
  716. a device pointer, so that it is passed as such to the OpenCL kernel.
  717. @cartouche
  718. @smallexample
  719. #include <starpu.h>
  720. @i{#include <starpu_opencl.h>}
  721. @i{extern struct starpu_opencl_program programs;}
  722. void scal_opencl_func(void *buffers[], void *_args)
  723. @{
  724. float *factor = _args;
  725. @i{ int id, devid, err;}
  726. @i{ cl_kernel kernel;}
  727. @i{ cl_command_queue queue;}
  728. @i{ cl_event event;}
  729. /* length of the vector */
  730. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  731. /* OpenCL copy of the vector pointer */
  732. cl_mem val = (cl_mem) STARPU_VECTOR_GET_PTR(buffers[0]);
  733. @i{ id = starpu_worker_get_id();}
  734. @i{ devid = starpu_worker_get_devid(id);}
  735. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  736. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  737. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  738. @i{ err = clSetKernelArg(kernel, 0, sizeof(val), &val);}
  739. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  740. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  741. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  742. @i{ @{}
  743. @i{ size_t global=1;}
  744. @i{ size_t local=1;}
  745. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  746. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  747. @i{ @}}
  748. @i{ clFinish(queue);}
  749. @i{ starpu_opencl_collect_stats(event);}
  750. @i{ clReleaseEvent(event);}
  751. @i{ starpu_opencl_release_kernel(kernel);}
  752. @}
  753. @end smallexample
  754. @end cartouche
  755. @node Definition of the Main Code
  756. @subsection Definition of the Main Code
  757. The CPU implementation is the same as in the previous section.
  758. Here is the source of the main application. You can notice the value of the
  759. field @code{where} for the codelet. We specify
  760. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  761. can be executed either on a CPU or on a CUDA or an OpenCL device.
  762. @cartouche
  763. @smallexample
  764. #include <starpu.h>
  765. #define NX 2048
  766. extern void scal_cuda_func(void *buffers[], void *_args);
  767. extern void scal_cpu_func(void *buffers[], void *_args);
  768. extern void scal_opencl_func(void *buffers[], void *_args);
  769. /* @b{Definition of the codelet} */
  770. static starpu_codelet cl = @{
  771. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  772. /* @b{on a CUDA device, or on an OpenCL device} */
  773. .cuda_func = scal_cuda_func,
  774. .cpu_func = scal_cpu_func,
  775. .opencl_func = scal_opencl_func,
  776. .nbuffers = 1
  777. @}
  778. #ifdef STARPU_USE_OPENCL
  779. /* @b{The compiled version of the OpenCL program} */
  780. struct starpu_opencl_program programs;
  781. #endif
  782. int main(int argc, char **argv)
  783. @{
  784. float *vector;
  785. int i, ret;
  786. float factor=3.0;
  787. struct starpu_task *task;
  788. starpu_data_handle vector_handle;
  789. starpu_init(NULL); /* @b{Initialising StarPU} */
  790. #ifdef STARPU_USE_OPENCL
  791. starpu_opencl_load_opencl_from_file(
  792. "examples/basic_examples/vector_scal_opencl_codelet.cl",
  793. &programs, NULL);
  794. #endif
  795. vector = malloc(NX*sizeof(vector[0]));
  796. assert(vector);
  797. for(i=0 ; i<NX ; i++) vector[i] = i;
  798. @end smallexample
  799. @end cartouche
  800. @cartouche
  801. @smallexample
  802. /* @b{Registering data within StarPU} */
  803. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  804. NX, sizeof(vector[0]));
  805. /* @b{Definition of the task} */
  806. task = starpu_task_create();
  807. task->cl = &cl;
  808. task->buffers[0].handle = vector_handle;
  809. task->buffers[0].mode = STARPU_RW;
  810. task->cl_arg = &factor;
  811. task->cl_arg_size = sizeof(factor);
  812. @end smallexample
  813. @end cartouche
  814. @cartouche
  815. @smallexample
  816. /* @b{Submitting the task} */
  817. ret = starpu_task_submit(task);
  818. if (ret == -ENODEV) @{
  819. fprintf(stderr, "No worker may execute this task\n");
  820. return 1;
  821. @}
  822. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  823. /* @b{Waiting for its termination} */
  824. starpu_task_wait_for_all();
  825. /* @b{Update the vector in RAM} */
  826. starpu_data_acquire(vector_handle, STARPU_R);
  827. @end smallexample
  828. @end cartouche
  829. @cartouche
  830. @smallexample
  831. /* @b{Access the data} */
  832. for(i=0 ; i<NX; i++) @{
  833. fprintf(stderr, "%f ", vector[i]);
  834. @}
  835. fprintf(stderr, "\n");
  836. /* @b{Release the RAM view of the data before unregistering it and shutting down StarPU} */
  837. starpu_data_release(vector_handle);
  838. starpu_data_unregister(vector_handle);
  839. starpu_shutdown();
  840. return 0;
  841. @}
  842. @end smallexample
  843. @end cartouche
  844. @node Execution of Hybrid Vector Scaling
  845. @subsection Execution of Hybrid Vector Scaling
  846. The Makefile given at the beginning of the section must be extended to
  847. give the rules to compile the CUDA source code. Note that the source
  848. file of the OpenCL kernel does not need to be compiled now, it will
  849. be compiled at run-time when calling the function
  850. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  851. @cartouche
  852. @smallexample
  853. CFLAGS += $(shell pkg-config --cflags libstarpu)
  854. LDFLAGS += $(shell pkg-config --libs libstarpu)
  855. CC = gcc
  856. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  857. %.o: %.cu
  858. nvcc $(CFLAGS) $< -c $@
  859. clean:
  860. rm -f vector_scal *.o
  861. @end smallexample
  862. @end cartouche
  863. @smallexample
  864. % make
  865. @end smallexample
  866. and to execute it, with the default configuration:
  867. @smallexample
  868. % ./vector_scal
  869. 0.000000 3.000000 6.000000 9.000000 12.000000
  870. @end smallexample
  871. or for example, by disabling CPU devices:
  872. @smallexample
  873. % STARPU_NCPUS=0 ./vector_scal
  874. 0.000000 3.000000 6.000000 9.000000 12.000000
  875. @end smallexample
  876. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  877. see @ref{Using accelerators}):
  878. @smallexample
  879. % STARPU_NCUDA=0 ./vector_scal
  880. 0.000000 3.000000 6.000000 9.000000 12.000000
  881. @end smallexample
  882. @node Task and Worker Profiling
  883. @section Task and Worker Profiling
  884. A full example showing how to use the profiling API is available in
  885. the StarPU sources in the directory @code{examples/profiling/}.
  886. @cartouche
  887. @smallexample
  888. struct starpu_task *task = starpu_task_create();
  889. task->cl = &cl;
  890. task->synchronous = 1;
  891. /* We will destroy the task structure by hand so that we can
  892. * query the profiling info before the task is destroyed. */
  893. task->destroy = 0;
  894. /* Submit and wait for completion (since synchronous was set to 1) */
  895. starpu_task_submit(task);
  896. /* The task is finished, get profiling information */
  897. struct starpu_task_profiling_info *info = task->profiling_info;
  898. /* How much time did it take before the task started ? */
  899. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  900. /* How long was the task execution ? */
  901. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  902. /* We don't need the task structure anymore */
  903. starpu_task_destroy(task);
  904. @end smallexample
  905. @end cartouche
  906. @cartouche
  907. @smallexample
  908. /* Display the occupancy of all workers during the test */
  909. int worker;
  910. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  911. @{
  912. struct starpu_worker_profiling_info worker_info;
  913. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  914. STARPU_ASSERT(!ret);
  915. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  916. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  917. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  918. float executing_ratio = 100.0*executing_time/total_time;
  919. float sleeping_ratio = 100.0*sleeping_time/total_time;
  920. char workername[128];
  921. starpu_worker_get_name(worker, workername, 128);
  922. fprintf(stderr, "Worker %s:\n", workername);
  923. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  924. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  925. executing_ratio);
  926. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  927. sleeping_ratio);
  928. @}
  929. @end smallexample
  930. @end cartouche
  931. @node Partitioning Data
  932. @section Partitioning Data
  933. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  934. @cartouche
  935. @smallexample
  936. int vector[NX];
  937. starpu_data_handle handle;
  938. /* Declare data to StarPU */
  939. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  940. /* Partition the vector in PARTS sub-vectors */
  941. starpu_filter f =
  942. @{
  943. .filter_func = starpu_block_filter_func_vector,
  944. .nchildren = PARTS
  945. @};
  946. starpu_data_partition(handle, &f);
  947. @end smallexample
  948. @end cartouche
  949. @cartouche
  950. @smallexample
  951. /* Submit a task on each sub-vector */
  952. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  953. /* Get subdata number i (there is only 1 dimension) */
  954. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  955. struct starpu_task *task = starpu_task_create();
  956. task->buffers[0].handle = sub_handle;
  957. task->buffers[0].mode = STARPU_RW;
  958. task->cl = &cl;
  959. task->synchronous = 1;
  960. task->cl_arg = &factor;
  961. task->cl_arg_size = sizeof(factor);
  962. starpu_task_submit(task);
  963. @}
  964. @end smallexample
  965. @end cartouche
  966. Partitioning can be applied several times, see
  967. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  968. @node Performance model example
  969. @section Performance model example
  970. To achieve good scheduling, StarPU scheduling policies need to be able to
  971. estimate in advance the duration of a task. This is done by giving to codelets a
  972. performance model. There are several kinds of performance models.
  973. @itemize
  974. @item
  975. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  976. see for instance
  977. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  978. @item
  979. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  980. given set of data input/output sizes, the performance will always be about the
  981. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  982. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  983. few different sets of data input/output sizes. StarPU will then keep record of
  984. the average time of previous executions on the various processing units, and use
  985. it as an estimation. History is done per task size, by using a hash of the input
  986. and ouput sizes as an index.
  987. It will also save it in @code{~/.starpu/sampling/codelets}
  988. for further executions, and can be observed by using the
  989. @code{starpu_perfmodel_display} command, or drawn by using
  990. the @code{starpu_perfmodel_plot}. The models are indexed by machine name. To
  991. share the models between machines (e.g. for a homogeneous cluster), use
  992. @code{export STARPU_HOSTNAME=some_global_name}. The following is a small code
  993. example.
  994. If e.g. the code is recompiled with other compilation options, or several
  995. variants of the code are used, the symbol string should be changed to reflect
  996. that, in order to recalibrate a new model from zero. The symbol string can even
  997. be constructed dynamically at execution time, as long as this is done before
  998. submitting any task using it.
  999. @cartouche
  1000. @smallexample
  1001. static struct starpu_perfmodel_t mult_perf_model = @{
  1002. .type = STARPU_HISTORY_BASED,
  1003. .symbol = "mult_perf_model"
  1004. @};
  1005. starpu_codelet cl = @{
  1006. .where = STARPU_CPU,
  1007. .cpu_func = cpu_mult,
  1008. .nbuffers = 3,
  1009. /* for the scheduling policy to be able to use performance models */
  1010. .model = &mult_perf_model
  1011. @};
  1012. @end smallexample
  1013. @end cartouche
  1014. @item
  1015. Measured at runtime and refined by regression (STARPU_REGRESSION_*_BASED
  1016. model type). This still assumes performance regularity, but can work
  1017. with various data input sizes, by applying regression over observed
  1018. execution times. STARPU_REGRESSION_BASED uses an a*n^b regression
  1019. form, STARPU_NL_REGRESSION_BASED uses an a*n^b+c (more precise than
  1020. STARPU_REGRESSION_BASED, but costs a lot more to compute). For instance,
  1021. @code{tests/perfmodels/regression_based.c} uses a regression-based performance
  1022. model for the @code{memset} operation.
  1023. @item
  1024. Provided explicitly by the application (STARPU_PER_ARCH model type): the
  1025. @code{.per_arch[i].cost_model} fields have to be filled with pointers to
  1026. functions which return the expected duration of the task in micro-seconds, one
  1027. per architecture.
  1028. @end itemize
  1029. How to use schedulers which can benefit from such performance model is explained
  1030. in @ref{Task scheduling policy}.
  1031. The same can be done for task power consumption estimation, by setting the
  1032. @code{power_model} field the same way as the @code{model} field. Note: for
  1033. now, the application has to give to the power consumption performance model
  1034. a name which is different from the execution time performance model.
  1035. The application can request time estimations from the StarPU performance
  1036. models by filling a task structure as usual without actually submitting
  1037. it. The data handles can be created by calling @code{starpu_data_register}
  1038. functions with a @code{NULL} pointer (and need to be unregistered as usual)
  1039. and the desired data sizes. The @code{starpu_task_expected_length} and
  1040. @code{starpu_task_expected_power} functions can then be called to get an
  1041. estimation of the task duration on a given arch. @code{starpu_task_destroy}
  1042. needs to be called to destroy the dummy task afterwards. See
  1043. @code{tests/perfmodels/regression_based.c} for an example.
  1044. @node Theoretical lower bound on execution time
  1045. @section Theoretical lower bound on execution time
  1046. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  1047. bound for the execution time of a whole set of tasks. See for
  1048. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  1049. call @code{starpu_bound_start}, and after complete execution, call
  1050. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  1051. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  1052. problem corresponding to the schedule of your tasks. Run it through
  1053. @code{lp_solve} or any other linear programming solver, and that will give you a
  1054. lower bound for the total execution time of your tasks. If StarPU was compiled
  1055. with the glpk library installed, @code{starpu_bound_compute} can be used to
  1056. solve it immediately and get the optimized minimum. Its @code{integer}
  1057. parameter allows to decide whether integer resolution should be computed
  1058. and returned.
  1059. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  1060. dependencies into account. It must be understood that the linear programming
  1061. problem size is quadratic with the number of tasks and thus the time to solve it
  1062. will be very long, it could be minutes for just a few dozen tasks. You should
  1063. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  1064. problem to MPS format and then use a better solver, @code{glpsol} might be
  1065. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  1066. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  1067. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  1068. of @code{lp_solve}. For instance, we often just use
  1069. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  1070. the @code{-gr} option can also be quite useful.
  1071. Setting @code{deps} to 0 will only take into account the actual computations
  1072. on processing units. It however still properly takes into account the varying
  1073. performances of kernels and processing units, which is quite more accurate than
  1074. just comparing StarPU performances with the fastest of the kernels being used.
  1075. The @code{prio} parameter tells StarPU whether to simulate taking into account
  1076. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  1077. tasks before less prioritized tasks, to check to which extend this results
  1078. to a less optimal solution. This increases even more computation time.
  1079. Note that for simplicity, all this however doesn't take into account data
  1080. transfers, which are assumed to be completely overlapped.
  1081. @node Insert Task Utility
  1082. @section Insert Task Utility
  1083. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  1084. the creation and submission of tasks.
  1085. @deftypefun int starpu_insert_task (starpu_codelet *@var{cl}, ...)
  1086. Create and submit a task corresponding to @var{cl} with the following
  1087. arguments. The argument list must be zero-terminated.
  1088. The arguments following the codelets can be of the following types:
  1089. @itemize
  1090. @item
  1091. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH}, @code{STARPU_REDUX} an access mode followed by a data handle;
  1092. @item
  1093. @code{STARPU_VALUE} followed by a pointer to a constant value and
  1094. the size of the constant;
  1095. @item
  1096. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  1097. @item
  1098. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  1099. argument to the callback function;
  1100. @item
  1101. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  1102. @end itemize
  1103. Parameters to be passed to the codelet implementation are defined
  1104. through the type @code{STARPU_VALUE}. The function
  1105. @code{starpu_unpack_cl_args} must be called within the codelet
  1106. implementation to retrieve them.
  1107. @end deftypefun
  1108. Here the implementation of the codelet:
  1109. @smallexample
  1110. void func_cpu(void *descr[], void *_args)
  1111. @{
  1112. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  1113. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  1114. int ifactor;
  1115. float ffactor;
  1116. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  1117. *x0 = *x0 * ifactor;
  1118. *x1 = *x1 * ffactor;
  1119. @}
  1120. starpu_codelet mycodelet = @{
  1121. .where = STARPU_CPU,
  1122. .cpu_func = func_cpu,
  1123. .nbuffers = 2
  1124. @};
  1125. @end smallexample
  1126. And the call to the @code{starpu_insert_task} wrapper:
  1127. @smallexample
  1128. starpu_insert_task(&mycodelet,
  1129. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1130. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1131. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  1132. 0);
  1133. @end smallexample
  1134. The call to @code{starpu_insert_task} is equivalent to the following
  1135. code:
  1136. @smallexample
  1137. struct starpu_task *task = starpu_task_create();
  1138. task->cl = &mycodelet;
  1139. task->buffers[0].handle = data_handles[0];
  1140. task->buffers[0].mode = STARPU_RW;
  1141. task->buffers[1].handle = data_handles[1];
  1142. task->buffers[1].mode = STARPU_RW;
  1143. char *arg_buffer;
  1144. size_t arg_buffer_size;
  1145. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  1146. STARPU_VALUE, &ifactor, sizeof(ifactor),
  1147. STARPU_VALUE, &ffactor, sizeof(ffactor),
  1148. 0);
  1149. task->cl_arg = arg_buffer;
  1150. task->cl_arg_size = arg_buffer_size;
  1151. int ret = starpu_task_submit(task);
  1152. @end smallexample
  1153. If some part of the task insertion depends on the value of some computation,
  1154. the @code{STARPU_DATA_ACQUIRE_CB} macro can be very convenient. For
  1155. instance, assuming that the index variable @code{i} was registered as handle
  1156. @code{i_handle}:
  1157. @smallexample
  1158. /* Compute which portion we will work on, e.g. pivot */
  1159. starpu_insert_task(&which_index, STARPU_W, i_handle, 0);
  1160. /* And submit the corresponding task */
  1161. STARPU_DATA_ACQUIRE_CB(i_handle, STARPU_R, starpu_insert_task(&work, STARPU_RW, A_handle[i], 0));
  1162. @end smallexample
  1163. The @code{STARPU_DATA_ACQUIRE_CB} macro submits an asynchronous request for
  1164. acquiring data @code{i} for the main application, and will execute the code
  1165. given as third parameter when it is acquired. In other words, as soon as the
  1166. value of @code{i} computed by the @code{which_index} codelet can be read, the
  1167. portion of code passed as third parameter of @code{STARPU_DATA_ACQUIRE_CB} will
  1168. be executed, and is allowed to read from @code{i} to use it e.g. as an
  1169. index. Note that this macro is only avaible when compiling StarPU with
  1170. the compiler @code{gcc}.
  1171. @node Debugging
  1172. @section Debugging
  1173. StarPU provides several tools to help debugging aplications. Execution traces
  1174. can be generated and displayed graphically, see @ref{Generating traces}. Some
  1175. gdb helpers are also provided to show the whole StarPU state:
  1176. @smallexample
  1177. (gdb) source tools/gdbinit
  1178. (gdb) help starpu
  1179. @end smallexample
  1180. @node More examples
  1181. @section More examples
  1182. More examples are available in the StarPU sources in the @code{examples/}
  1183. directory. Simple examples include:
  1184. @table @asis
  1185. @item @code{incrementer/}:
  1186. Trivial incrementation test.
  1187. @item @code{basic_examples/}:
  1188. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  1189. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  1190. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  1191. interface, and an example using the variable data interface.
  1192. @item @code{matvecmult/}:
  1193. OpenCL example from NVidia, adapted to StarPU.
  1194. @item @code{axpy/}:
  1195. AXPY CUBLAS operation adapted to StarPU.
  1196. @item @code{fortran/}:
  1197. Example of Fortran bindings.
  1198. @end table
  1199. More advanced examples include:
  1200. @table @asis
  1201. @item @code{filters/}:
  1202. Examples using filters, as shown in @ref{Partitioning Data}.
  1203. @item @code{lu/}:
  1204. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1205. @item @code{cholesky/}:
  1206. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1207. @end table
  1208. @c ---------------------------------------------------------------------
  1209. @c Performance options
  1210. @c ---------------------------------------------------------------------
  1211. @node Performance optimization
  1212. @chapter How to optimize performance with StarPU
  1213. TODO: improve!
  1214. @menu
  1215. * Data management::
  1216. * Task submission::
  1217. * Task priorities::
  1218. * Task scheduling policy::
  1219. * Performance model calibration::
  1220. * Task distribution vs Data transfer::
  1221. * Data prefetch::
  1222. * Power-based scheduling::
  1223. * Profiling::
  1224. * CUDA-specific optimizations::
  1225. @end menu
  1226. Simply encapsulating application kernels into tasks already permits to
  1227. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1228. few additional changes are needed.
  1229. @node Data management
  1230. @section Data management
  1231. When the application allocates data, whenever possible it should use the
  1232. @code{starpu_malloc} function, which will ask CUDA or
  1233. OpenCL to make the allocation itself and pin the corresponding allocated
  1234. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1235. transfer to overlap with computations.
  1236. By default, StarPU leaves replicates of data wherever they were used, in case they
  1237. will be re-used by other tasks, thus saving the data transfer time. When some
  1238. task modifies some data, all the other replicates are invalidated, and only the
  1239. processing unit which ran that task will have a valid replicate of the data. If the application knows
  1240. that this data will not be re-used by further tasks, it should advise StarPU to
  1241. immediately replicate it to a desired list of memory nodes (given through a
  1242. bitmask). This can be understood like the write-through mode of CPU caches.
  1243. @example
  1244. starpu_data_set_wt_mask(img_handle, 1<<0);
  1245. @end example
  1246. will for instance request to always transfer a replicate into the main memory (node
  1247. 0), as bit 0 of the write-through bitmask is being set.
  1248. @node Task submission
  1249. @section Task submission
  1250. To let StarPU make online optimizations, tasks should be submitted
  1251. asynchronously as much as possible. Ideally, all the tasks should be
  1252. submitted, and mere calls to @code{starpu_task_wait_for_all} or
  1253. @code{starpu_data_unregister} be done to wait for
  1254. termination. StarPU will then be able to rework the whole schedule, overlap
  1255. computation with communication, manage accelerator local memory usage, etc.
  1256. @node Task priorities
  1257. @section Task priorities
  1258. By default, StarPU will consider the tasks in the order they are submitted by
  1259. the application. If the application programmer knows that some tasks should
  1260. be performed in priority (for instance because their output is needed by many
  1261. other tasks and may thus be a bottleneck if not executed early enough), the
  1262. @code{priority} field of the task structure should be set to transmit the
  1263. priority information to StarPU.
  1264. @node Task scheduling policy
  1265. @section Task scheduling policy
  1266. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1267. because it provides correct load balance even if the application codelets do not
  1268. have performance models. If your application codelets have performance models
  1269. (@pxref{Performance model example} for examples showing how to do it),
  1270. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1271. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1272. the list of available schedulers.
  1273. The @b{eager} scheduler uses a central task queue, from which workers draw tasks
  1274. to work on. This however does not permit to prefetch data since the scheduling
  1275. decision is taken late. If a task has a non-0 priority, it is put at the front of the queue.
  1276. The @b{prio} scheduler also uses a central task queue, but sorts tasks by
  1277. priority (between -5 and 5).
  1278. The @b{random} scheduler distributes tasks randomly according to assumed worker
  1279. overall performance.
  1280. The @b{ws} (work stealing) scheduler schedules tasks on the local worker by
  1281. default. When a worker becomes idle, it steals a task from the most loaded
  1282. worker.
  1283. The @b{dm} (deque model) scheduler uses task execution performance models into account to
  1284. perform an HEFT-similar scheduling strategy: it schedules tasks where their
  1285. termination time will be minimal.
  1286. The @b{dmda} (deque model data aware) scheduler is similar to dm, it also takes
  1287. into account data transfer time.
  1288. The @b{dmdar} (deque model data aware ready) scheduler is similar to dmda,
  1289. it also sorts tasks on per-worker queues by number of already-available data
  1290. buffers.
  1291. The @b{dmdas} (deque model data aware sorted) scheduler is similar to dmda, it
  1292. also supports arbitrary priority values.
  1293. The @b{heft} (HEFT) scheduler is similar to dmda, it also supports task bundles.
  1294. The @b{pheft} (parallel HEFT) scheduler is similar to heft, it also supports
  1295. parallel tasks (still experimental).
  1296. The @b{pgreedy} (parallel greedy) scheduler is similar to greedy, it also
  1297. supports parallel tasks (still experimental).
  1298. @node Performance model calibration
  1299. @section Performance model calibration
  1300. Most schedulers are based on an estimation of codelet duration on each kind
  1301. of processing unit. For this to be possible, the application programmer needs
  1302. to configure a performance model for the codelets of the application (see
  1303. @ref{Performance model example} for instance). History-based performance models
  1304. use on-line calibration. StarPU will automatically calibrate codelets
  1305. which have never been calibrated yet, and save the result in
  1306. @code{~/.starpu/sampling/codelets}.
  1307. The models are indexed by machine name. To share the models between machines (e.g. for a homogeneous cluster), use @code{export STARPU_HOSTNAME=some_global_name}. To force continuing calibration, use
  1308. @code{export STARPU_CALIBRATE=1} . This may be necessary if your application
  1309. has not-so-stable performance. StarPU will force calibration (and thus ignore
  1310. the current result) until 10 (STARPU_CALIBRATION_MINIMUM) measurements have been
  1311. made on each architecture, to avoid badly scheduling tasks just because the
  1312. first measurements were not so good. Details on the current performance model status
  1313. can be obtained from the @code{starpu_perfmodel_display} command: the @code{-l}
  1314. option lists the available performance models, and the @code{-s} option permits
  1315. to choose the performance model to be displayed. The result looks like:
  1316. @example
  1317. $ starpu_perfmodel_display -s starpu_dlu_lu_model_22
  1318. performance model for cpu
  1319. # hash size mean dev n
  1320. 880805ba 98304 2.731309e+02 6.010210e+01 1240
  1321. b50b6605 393216 1.469926e+03 1.088828e+02 1240
  1322. 5c6c3401 1572864 1.125983e+04 3.265296e+03 1240
  1323. @end example
  1324. Which shows that for the LU 22 kernel with a 1.5MiB matrix, the average
  1325. execution time on CPUs was about 12ms, with a 2ms standard deviation, over
  1326. 1240 samples. It is a good idea to check this before doing actual performance
  1327. measurements.
  1328. A graph can be drawn by using the @code{starpu_perfmodel_plot}:
  1329. @example
  1330. $ starpu_perfmodel_plot -s starpu_dlu_lu_model_22
  1331. 98304 393216 1572864
  1332. $ gnuplot starpu_starpu_dlu_lu_model_22.gp
  1333. $ gv starpu_starpu_dlu_lu_model_22.eps
  1334. @end example
  1335. If a kernel source code was modified (e.g. performance improvement), the
  1336. calibration information is stale and should be dropped, to re-calibrate from
  1337. start. This can be done by using @code{export STARPU_CALIBRATE=2}.
  1338. Note: due to CUDA limitations, to be able to measure kernel duration,
  1339. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1340. disables data transfer / computation overlapping, and should thus not be used
  1341. for eventual benchmarks. Note 2: history-based performance models get calibrated
  1342. only if a performance-model-based scheduler is chosen.
  1343. @node Task distribution vs Data transfer
  1344. @section Task distribution vs Data transfer
  1345. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1346. thus needs to find a balance between both. The target function that the
  1347. @code{dmda} scheduler of StarPU
  1348. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1349. @code{T_execution} is the estimated execution time of the codelet (usually
  1350. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1351. latter is estimated based on bus calibration before execution start,
  1352. i.e. with an idle machine, thus without contention. You can force bus re-calibration by running
  1353. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1354. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance,
  1355. since during real application execution, contention makes transfer times bigger.
  1356. This is of course imprecise, but in practice, a rough estimation already gives
  1357. the good results that a precise estimation would give.
  1358. @node Data prefetch
  1359. @section Data prefetch
  1360. The @code{heft}, @code{dmda} and @code{pheft} scheduling policies perform data prefetch (see @ref{STARPU_PREFETCH}):
  1361. as soon as a scheduling decision is taken for a task, requests are issued to
  1362. transfer its required data to the target processing unit, if needeed, so that
  1363. when the processing unit actually starts the task, its data will hopefully be
  1364. already available and it will not have to wait for the transfer to finish.
  1365. The application may want to perform some manual prefetching, for several reasons
  1366. such as excluding initial data transfers from performance measurements, or
  1367. setting up an initial statically-computed data distribution on the machine
  1368. before submitting tasks, which will thus guide StarPU toward an initial task
  1369. distribution (since StarPU will try to avoid further transfers).
  1370. This can be achieved by giving the @code{starpu_data_prefetch_on_node} function
  1371. the handle and the desired target memory node.
  1372. @node Power-based scheduling
  1373. @section Power-based scheduling
  1374. If the application can provide some power performance model (through
  1375. the @code{power_model} field of the codelet structure), StarPU will
  1376. take it into account when distributing tasks. The target function that
  1377. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1378. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1379. is the estimated task consumption in Joules. To tune this parameter, use
  1380. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1381. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1382. @code{alpha} and @code{beta} to zero permits to only take into account power consumption.
  1383. This is however not sufficient to correctly optimize power: the scheduler would
  1384. simply tend to run all computations on the most energy-conservative processing
  1385. unit. To account for the consumption of the whole machine (including idle
  1386. processing units), the idle power of the machine should be given by setting
  1387. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1388. be obtained from the machine power supplier.
  1389. The power actually consumed by the total execution can be displayed by setting
  1390. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1391. @node Profiling
  1392. @section Profiling
  1393. A quick view of how many tasks each worker has executed can be obtained by setting
  1394. @code{export STARPU_WORKER_STATS=1} This is a convenient way to check that
  1395. execution did happen on accelerators without penalizing performance with
  1396. the profiling overhead.
  1397. A quick view of how much data transfers have been issued can be obtained by setting
  1398. @code{export STARPU_BUS_STATS=1} .
  1399. More detailed profiling information can be enabled by using @code{export STARPU_PROFILING=1} or by
  1400. calling @code{starpu_profiling_status_set} from the source code.
  1401. Statistics on the execution can then be obtained by using @code{export
  1402. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} .
  1403. More details on performance feedback are provided by the next chapter.
  1404. @node CUDA-specific optimizations
  1405. @section CUDA-specific optimizations
  1406. Due to CUDA limitations, StarPU will have a hard time overlapping its own
  1407. communications and the codelet computations if the application does not use a
  1408. dedicated CUDA stream for its computations. StarPU provides one by the use of
  1409. @code{starpu_cuda_get_local_stream()} which should be used by all CUDA codelet
  1410. operations. For instance:
  1411. @example
  1412. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1413. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1414. @end example
  1415. StarPU already does appropriate calls for the CUBLAS library.
  1416. Unfortunately, some CUDA libraries do not have stream variants of
  1417. kernels. That will lower the potential for overlapping.
  1418. @c ---------------------------------------------------------------------
  1419. @c Performance feedback
  1420. @c ---------------------------------------------------------------------
  1421. @node Performance feedback
  1422. @chapter Performance feedback
  1423. @menu
  1424. * On-line:: On-line performance feedback
  1425. * Off-line:: Off-line performance feedback
  1426. * Codelet performance:: Performance of codelets
  1427. @end menu
  1428. @node On-line
  1429. @section On-line performance feedback
  1430. @menu
  1431. * Enabling monitoring:: Enabling on-line performance monitoring
  1432. * Task feedback:: Per-task feedback
  1433. * Codelet feedback:: Per-codelet feedback
  1434. * Worker feedback:: Per-worker feedback
  1435. * Bus feedback:: Bus-related feedback
  1436. * StarPU-Top:: StarPU-Top interface
  1437. @end menu
  1438. @node Enabling monitoring
  1439. @subsection Enabling on-line performance monitoring
  1440. In order to enable online performance monitoring, the application can call
  1441. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1442. detect whether monitoring is already enabled or not by calling
  1443. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1444. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1445. can also be set to 1 to achieve the same effect.
  1446. Likewise, performance monitoring is stopped by calling
  1447. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1448. does not reset the performance counters so that the application may consult
  1449. them later on.
  1450. More details about the performance monitoring API are available in section
  1451. @ref{Profiling API}.
  1452. @node Task feedback
  1453. @subsection Per-task feedback
  1454. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1455. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1456. structure when a task terminates.
  1457. This structure is automatically destroyed when the task structure is destroyed,
  1458. either automatically or by calling @code{starpu_task_destroy}.
  1459. The @code{starpu_task_profiling_info} structure indicates the date when the
  1460. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1461. terminated (@code{end_time}), relative to the initialization of
  1462. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1463. that has executed the task (@code{workerid}).
  1464. These date are stored as @code{timespec} structures which the user may convert
  1465. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1466. function.
  1467. It it worth noting that the application may directly access this structure from
  1468. the callback executed at the end of the task. The @code{starpu_task} structure
  1469. associated to the callback currently being executed is indeed accessible with
  1470. the @code{starpu_get_current_task()} function.
  1471. @node Codelet feedback
  1472. @subsection Per-codelet feedback
  1473. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1474. an array of counters. The i-th entry of the array is incremented every time a
  1475. task implementing the codelet is executed on the i-th worker.
  1476. This array is not reinitialized when profiling is enabled or disabled.
  1477. @node Worker feedback
  1478. @subsection Per-worker feedback
  1479. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1480. function is a @code{starpu_worker_profiling_info} structure that gives
  1481. statistics about the specified worker. This structure specifies when StarPU
  1482. started collecting profiling information for that worker (@code{start_time}),
  1483. the duration of the profiling measurement interval (@code{total_time}), the
  1484. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1485. because there is no task to execute at all (@code{sleeping_time}), and the
  1486. number of tasks that were executed while profiling was enabled.
  1487. These values give an estimation of the proportion of time spent do real work,
  1488. and the time spent either sleeping because there are not enough executable
  1489. tasks or simply wasted in pure StarPU overhead.
  1490. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1491. information associated to a worker.
  1492. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1493. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1494. generate a graphic showing the evolution of these values during the time, for
  1495. the different workers.
  1496. @node Bus feedback
  1497. @subsection Bus-related feedback
  1498. TODO
  1499. @c how to enable/disable performance monitoring
  1500. @c what kind of information do we get ?
  1501. @node StarPU-Top
  1502. @subsection StarPU-Top interface
  1503. StarPU-Top is an interface which remotely displays the on-line state of a StarPU
  1504. application and permits the user to change parameters on the fly.
  1505. Variables to be monitored can be registered by calling the
  1506. @code{starputop_add_data_boolean}, @code{starputop_add_data_integer},
  1507. @code{starputop_add_data_float} functions, e.g.:
  1508. @example
  1509. starputop_data *data = starputop_add_data_integer("mynum", 0, 100, 1);
  1510. @end example
  1511. The application should then call @code{starputop_init_and_wait} to give its name
  1512. and wait for StarPU-Top to get a start request from the user. The name is used
  1513. by StarPU-Top to quickly reload a previously-saved layout of parameter display.
  1514. @example
  1515. starputop_init_and_wait("the application");
  1516. @end example
  1517. The new values can then be provided thanks to
  1518. @code{starputop_update_data_boolean}, @code{starputop_update_data_integer},
  1519. @code{starputop_update_data_float}, e.g.:
  1520. @example
  1521. starputop_update_data_integer(data, mynum);
  1522. @end example
  1523. Updateable parameters can be registered thanks to @code{starputop_register_parameter_boolean}, @code{starputop_register_parameter_integer}, @code{starputop_register_parameter_float}, e.g.:
  1524. @example
  1525. float apha;
  1526. starputop_register_parameter_float("alpha", &alpha, 0, 10, modif_hook);
  1527. @end example
  1528. @code{modif_hook} is a function which will be called when the parameter is being modified, it can for instance print the new value:
  1529. @example
  1530. void modif_hook(struct starputop_param_t *d) @{
  1531. fprintf(stderr,"%s has been modified: %f\n", d->name, alpha);
  1532. @}
  1533. @end example
  1534. Task schedulers should notify StarPU-Top when it has decided when a task will be
  1535. scheduled, so that it can show it in its Gantt chart, for instance:
  1536. @example
  1537. starputop_task_prevision(task, workerid, begin, end);
  1538. @end example
  1539. Starting StarPU-Top and the application can be done two ways:
  1540. @itemize
  1541. @item The application is started by hand on some machine (and thus already
  1542. waiting for the start event). In the Preference dialog of StarPU-Top, the SSH
  1543. checkbox should be unchecked, and the hostname and port (default is 2011) on
  1544. which the application is already running should be specified. Clicking on the
  1545. connection button will thus connect to the already-running application.
  1546. @item StarPU-Top is started first, and clicking on the connection button will
  1547. start the application itself (possibly on a remote machine). The SSH checkbox
  1548. should be checked, and a command line provided, e.g.:
  1549. @example
  1550. ssh myserver STARPU_SCHED=heft ./application
  1551. @end example
  1552. If port 2011 of the remote machine can not be accessed directly, an ssh port bridge should be added:
  1553. @example
  1554. ssh -L 2011:localhost:2011 myserver STARPU_SCHED=heft ./application
  1555. @end example
  1556. and "localhost" should be used as IP Address to connect to.
  1557. @end itemize
  1558. @node Off-line
  1559. @section Off-line performance feedback
  1560. @menu
  1561. * Generating traces:: Generating traces with FxT
  1562. * Gantt diagram:: Creating a Gantt Diagram
  1563. * DAG:: Creating a DAG with graphviz
  1564. * starpu-top:: Monitoring activity
  1565. @end menu
  1566. @node Generating traces
  1567. @subsection Generating traces with FxT
  1568. StarPU can use the FxT library (see
  1569. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1570. with a limited runtime overhead.
  1571. You can either get a tarball:
  1572. @example
  1573. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.2.tar.gz
  1574. @end example
  1575. or use the FxT library from CVS (autotools are required):
  1576. @example
  1577. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1578. % ./bootstrap
  1579. @end example
  1580. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1581. done following the standard procedure:
  1582. @example
  1583. % ./configure --prefix=$FXTDIR
  1584. % make
  1585. % make install
  1586. @end example
  1587. In order to have StarPU to generate traces, StarPU should be configured with
  1588. the @code{--with-fxt} option:
  1589. @example
  1590. $ ./configure --with-fxt=$FXTDIR
  1591. @end example
  1592. Or you can simply point the @code{PKG_CONFIG_PATH} to
  1593. @code{$FXTDIR/lib/pkgconfig} and pass @code{--with-fxt} to @code{./configure}
  1594. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1595. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1596. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1597. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1598. @code{/tmp/} directory by default, or by the directory specified by
  1599. the @code{STARPU_FXT_PREFIX} environment variable.
  1600. @node Gantt diagram
  1601. @subsection Creating a Gantt Diagram
  1602. When the FxT trace file @code{filename} has been generated, it is possible to
  1603. generate a trace in the Paje format by calling:
  1604. @example
  1605. % starpu_fxt_tool -i filename
  1606. @end example
  1607. Or alternatively, setting the @code{STARPU_GENERATE_TRACE} environment variable
  1608. to 1 before application execution will make StarPU do it automatically at
  1609. application shutdown.
  1610. This will create a @code{paje.trace} file in the current directory that can be
  1611. inspected with the ViTE trace visualizing open-source tool. More information
  1612. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1613. possible to open the @code{paje.trace} file with ViTE by using the following
  1614. command:
  1615. @example
  1616. % vite paje.trace
  1617. @end example
  1618. @node DAG
  1619. @subsection Creating a DAG with graphviz
  1620. When the FxT trace file @code{filename} has been generated, it is possible to
  1621. generate a task graph in the DOT format by calling:
  1622. @example
  1623. $ starpu_fxt_tool -i filename
  1624. @end example
  1625. This will create a @code{dag.dot} file in the current directory. This file is a
  1626. task graph described using the DOT language. It is possible to get a
  1627. graphical output of the graph by using the graphviz library:
  1628. @example
  1629. $ dot -Tpdf dag.dot -o output.pdf
  1630. @end example
  1631. @node starpu-top
  1632. @subsection Monitoring activity
  1633. When the FxT trace file @code{filename} has been generated, it is possible to
  1634. generate a activity trace by calling:
  1635. @example
  1636. $ starpu_fxt_tool -i filename
  1637. @end example
  1638. This will create an @code{activity.data} file in the current
  1639. directory. A profile of the application showing the activity of StarPU
  1640. during the execution of the program can be generated:
  1641. @example
  1642. $ starpu_top.sh activity.data
  1643. @end example
  1644. This will create a file named @code{activity.eps} in the current directory.
  1645. This picture is composed of two parts.
  1646. The first part shows the activity of the different workers. The green sections
  1647. indicate which proportion of the time was spent executed kernels on the
  1648. processing unit. The red sections indicate the proportion of time spent in
  1649. StartPU: an important overhead may indicate that the granularity may be too
  1650. low, and that bigger tasks may be appropriate to use the processing unit more
  1651. efficiently. The black sections indicate that the processing unit was blocked
  1652. because there was no task to process: this may indicate a lack of parallelism
  1653. which may be alleviated by creating more tasks when it is possible.
  1654. The second part of the @code{activity.eps} picture is a graph showing the
  1655. evolution of the number of tasks available in the system during the execution.
  1656. Ready tasks are shown in black, and tasks that are submitted but not
  1657. schedulable yet are shown in grey.
  1658. @node Codelet performance
  1659. @section Performance of codelets
  1660. The performance model of codelets can be examined by using the
  1661. @code{starpu_perfmodel_display} tool:
  1662. @example
  1663. $ starpu_perfmodel_display -l
  1664. file: <malloc_pinned.hannibal>
  1665. file: <starpu_slu_lu_model_21.hannibal>
  1666. file: <starpu_slu_lu_model_11.hannibal>
  1667. file: <starpu_slu_lu_model_22.hannibal>
  1668. file: <starpu_slu_lu_model_12.hannibal>
  1669. @end example
  1670. Here, the codelets of the lu example are available. We can examine the
  1671. performance of the 22 kernel:
  1672. @example
  1673. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1674. performance model for cpu
  1675. # hash size mean dev n
  1676. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1677. performance model for cuda_0
  1678. # hash size mean dev n
  1679. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1680. performance model for cuda_1
  1681. # hash size mean dev n
  1682. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1683. performance model for cuda_2
  1684. # hash size mean dev n
  1685. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1686. @end example
  1687. We can see that for the given size, over a sample of a few hundreds of
  1688. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1689. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1690. CPUs.
  1691. The @code{starpu_regression_display} tool does the same for regression-based
  1692. performance models. It also writes a @code{.gp} file in the current directory,
  1693. to be run in the @code{gnuplot} tool, which shows the corresponding curve.
  1694. @c ---------------------------------------------------------------------
  1695. @c MPI support
  1696. @c ---------------------------------------------------------------------
  1697. @node StarPU MPI support
  1698. @chapter StarPU MPI support
  1699. The integration of MPI transfers within task parallelism is done in a
  1700. very natural way by the means of asynchronous interactions between the
  1701. application and StarPU. This is implemented in a separate libstarpumpi library
  1702. which basically provides "StarPU" equivalents of @code{MPI_*} functions, where
  1703. @code{void *} buffers are replaced with @code{starpu_data_handle}s, and all
  1704. GPU-RAM-NIC transfers are handled efficiently by StarPU-MPI.
  1705. @menu
  1706. * The API::
  1707. * Simple Example::
  1708. * MPI Insert Task Utility::
  1709. * MPI Collective Operations::
  1710. @end menu
  1711. @node The API
  1712. @section The API
  1713. @subsection Initialisation
  1714. @deftypefun int starpu_mpi_initialize (void)
  1715. Initializes the starpumpi library. This must be called between calling
  1716. @code{starpu_init} and other @code{starpu_mpi} functions. This
  1717. function does not call @code{MPI_Init}, it should be called beforehand.
  1718. @end deftypefun
  1719. @deftypefun int starpu_mpi_initialize_extended (int *@var{rank}, int *@var{world_size})
  1720. Initializes the starpumpi library. This must be called between calling
  1721. @code{starpu_init} and other @code{starpu_mpi} functions.
  1722. This function calls @code{MPI_Init}, and therefore should be prefered
  1723. to the previous one for MPI implementations which are not thread-safe.
  1724. Returns the current MPI node rank and world size.
  1725. @end deftypefun
  1726. @deftypefun int starpu_mpi_shutdown (void)
  1727. Cleans the starpumpi library. This must be called between calling
  1728. @code{starpu_mpi} functions and @code{starpu_shutdown}.
  1729. @code{MPI_Finalize} will be called if StarPU-MPI has been initialized
  1730. by calling @code{starpu_mpi_initialize_extended}.
  1731. @end deftypefun
  1732. @subsection Communication
  1733. @deftypefun int starpu_mpi_send (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1734. @end deftypefun
  1735. @deftypefun int starpu_mpi_recv (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, MPI_Status *@var{status})
  1736. @end deftypefun
  1737. @deftypefun int starpu_mpi_isend (starpu_data_handle @var{data_handle}, starpu_mpi_req *@var{req}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1738. @end deftypefun
  1739. @deftypefun int starpu_mpi_irecv (starpu_data_handle @var{data_handle}, starpu_mpi_req *@var{req}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm})
  1740. @end deftypefun
  1741. @deftypefun int starpu_mpi_isend_detached (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  1742. @end deftypefun
  1743. @deftypefun int starpu_mpi_irecv_detached (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  1744. @end deftypefun
  1745. @deftypefun int starpu_mpi_wait (starpu_mpi_req *@var{req}, MPI_Status *@var{status})
  1746. @end deftypefun
  1747. @deftypefun int starpu_mpi_test (starpu_mpi_req *@var{req}, int *@var{flag}, MPI_Status *@var{status})
  1748. @end deftypefun
  1749. @deftypefun int starpu_mpi_barrier (MPI_Comm @var{comm})
  1750. @end deftypefun
  1751. @deftypefun int starpu_mpi_isend_detached_unlock_tag (starpu_data_handle @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  1752. When the transfer is completed, the tag is unlocked
  1753. @end deftypefun
  1754. @deftypefun int starpu_mpi_irecv_detached_unlock_tag (starpu_data_handle @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  1755. @end deftypefun
  1756. @deftypefun int starpu_mpi_isend_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle *@var{data_handle}, int *@var{dest}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  1757. Asynchronously send an array of buffers, and unlocks the tag once all
  1758. of them are transmitted.
  1759. @end deftypefun
  1760. @deftypefun int starpu_mpi_irecv_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle *@var{data_handle}, int *@var{source}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  1761. @end deftypefun
  1762. @page
  1763. @node Simple Example
  1764. @section Simple Example
  1765. @cartouche
  1766. @smallexample
  1767. void increment_token(void)
  1768. @{
  1769. struct starpu_task *task = starpu_task_create();
  1770. task->cl = &increment_cl;
  1771. task->buffers[0].handle = token_handle;
  1772. task->buffers[0].mode = STARPU_RW;
  1773. starpu_task_submit(task);
  1774. @}
  1775. @end smallexample
  1776. @end cartouche
  1777. @cartouche
  1778. @smallexample
  1779. int main(int argc, char **argv)
  1780. @{
  1781. int rank, size;
  1782. starpu_init(NULL);
  1783. starpu_mpi_initialize_extended(&rank, &size);
  1784. starpu_vector_data_register(&token_handle, 0, (uintptr_t)&token, 1, sizeof(unsigned));
  1785. unsigned nloops = NITER;
  1786. unsigned loop;
  1787. unsigned last_loop = nloops - 1;
  1788. unsigned last_rank = size - 1;
  1789. @end smallexample
  1790. @end cartouche
  1791. @cartouche
  1792. @smallexample
  1793. for (loop = 0; loop < nloops; loop++) @{
  1794. int tag = loop*size + rank;
  1795. if (loop == 0 && rank == 0)
  1796. @{
  1797. token = 0;
  1798. fprintf(stdout, "Start with token value %d\n", token);
  1799. @}
  1800. else
  1801. @{
  1802. starpu_mpi_irecv_detached(token_handle, (rank+size-1)%size, tag,
  1803. MPI_COMM_WORLD, NULL, NULL);
  1804. @}
  1805. increment_token();
  1806. if (loop == last_loop && rank == last_rank)
  1807. @{
  1808. starpu_data_acquire(token_handle, STARPU_R);
  1809. fprintf(stdout, "Finished : token value %d\n", token);
  1810. starpu_data_release(token_handle);
  1811. @}
  1812. else
  1813. @{
  1814. starpu_mpi_isend_detached(token_handle, (rank+1)%size, tag+1,
  1815. MPI_COMM_WORLD, NULL, NULL);
  1816. @}
  1817. @}
  1818. starpu_task_wait_for_all();
  1819. @end smallexample
  1820. @end cartouche
  1821. @cartouche
  1822. @smallexample
  1823. starpu_mpi_shutdown();
  1824. starpu_shutdown();
  1825. if (rank == last_rank)
  1826. @{
  1827. fprintf(stderr, "[%d] token = %d == %d * %d ?\n", rank, token, nloops, size);
  1828. STARPU_ASSERT(token == nloops*size);
  1829. @}
  1830. @end smallexample
  1831. @end cartouche
  1832. @page
  1833. @node MPI Insert Task Utility
  1834. @section MPI Insert Task Utility
  1835. @deftypefun void starpu_mpi_insert_task (MPI_Comm @var{comm}, starpu_codelet *@var{cl}, ...)
  1836. Create and submit a task corresponding to @var{cl} with the following
  1837. arguments. The argument list must be zero-terminated.
  1838. The arguments following the codelets are the same types as for the
  1839. function @code{starpu_insert_task} defined in @ref{Insert Task
  1840. Utility}. The extra argument @code{STARPU_EXECUTE_ON_NODE} followed by an
  1841. integer allows to specify the node to execute the codelet. It is also
  1842. possible to specify that the node owning a specific data will execute
  1843. the codelet, by using @code{STARPU_EXECUTE_ON_DATA} followed by a data
  1844. handle.
  1845. The algorithm is as follows:
  1846. @enumerate
  1847. @item Find out whether we are to execute the codelet because we own the
  1848. data to be written to. If different tasks own data to be written to,
  1849. the argument @code{STARPU_EXECUTE_ON_NODE} or
  1850. @code{STARPU_EXECUTE_ON_DATA} should be used to specify the executing
  1851. task @code{ET}.
  1852. @item Send and receive data as requested. Tasks owning data which need
  1853. to be read by the executing task @code{ET} are sending them to @code{ET}.
  1854. @item Execute the codelet. This is done by the task selected in the
  1855. 1st step of the algorithm.
  1856. @item In the case when different tasks own data to be written to, send
  1857. W data back to their owners.
  1858. @end enumerate
  1859. The algorithm also includes a cache mechanism that allows not to send
  1860. data twice to the same task, unless the data has been modified.
  1861. @end deftypefun
  1862. @deftypefun void starpu_mpi_get_data_on_node (MPI_Comm @var{comm}, starpu_data_handle @var{data_handle}, int @var{node})
  1863. @end deftypefun
  1864. @page
  1865. Here an example showing how to use @code{starpu_mpi_insert_task}. One
  1866. first needs to define a distribution function which specifies the
  1867. locality of the data. Note that that distribution information needs to
  1868. be given to StarPU by calling @code{starpu_data_set_rank}.
  1869. @cartouche
  1870. @smallexample
  1871. /* Returns the MPI node number where data is */
  1872. int my_distrib(int x, int y, int nb_nodes) @{
  1873. /* Cyclic distrib */
  1874. return ((int)(x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * sqrt(nb_nodes))) % nb_nodes;
  1875. // /* Linear distrib */
  1876. // return x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * X;
  1877. @}
  1878. @end smallexample
  1879. @end cartouche
  1880. Now the data can be registered within StarPU. Data which are not
  1881. owned but will be needed for computations can be registered through
  1882. the lazy allocation mechanism, i.e. with a @code{home_node} set to -1.
  1883. StarPU will automatically allocate the memory when it is used for the
  1884. first time.
  1885. @cartouche
  1886. @smallexample
  1887. unsigned matrix[X][Y];
  1888. starpu_data_handle data_handles[X][Y];
  1889. for(x = 0; x < X; x++) @{
  1890. for (y = 0; y < Y; y++) @{
  1891. int mpi_rank = my_distrib(x, y, size);
  1892. if (mpi_rank == rank)
  1893. /* Owning data */
  1894. starpu_variable_data_register(&data_handles[x][y], 0,
  1895. (uintptr_t)&(matrix[x][y]), sizeof(unsigned));
  1896. else if (rank == mpi_rank+1 || rank == mpi_rank-1)
  1897. /* I don't own that index, but will need it for my computations */
  1898. starpu_variable_data_register(&data_handles[x][y], -1,
  1899. (uintptr_t)NULL, sizeof(unsigned));
  1900. else
  1901. /* I know it's useless to allocate anything for this */
  1902. data_handles[x][y] = NULL;
  1903. if (data_handles[x][y])
  1904. starpu_data_set_rank(data_handles[x][y], mpi_rank);
  1905. @}
  1906. @}
  1907. @end smallexample
  1908. @end cartouche
  1909. Now @code{starpu_mpi_insert_task()} can be called for the different
  1910. steps of the application.
  1911. @cartouche
  1912. @smallexample
  1913. for(loop=0 ; loop<niter; loop++)
  1914. for (x = 1; x < X-1; x++)
  1915. for (y = 1; y < Y-1; y++)
  1916. starpu_mpi_insert_task(MPI_COMM_WORLD, &stencil5_cl,
  1917. STARPU_RW, data_handles[x][y],
  1918. STARPU_R, data_handles[x-1][y],
  1919. STARPU_R, data_handles[x+1][y],
  1920. STARPU_R, data_handles[x][y-1],
  1921. STARPU_R, data_handles[x][y+1],
  1922. 0);
  1923. starpu_task_wait_for_all();
  1924. @end smallexample
  1925. @end cartouche
  1926. @node MPI Collective Operations
  1927. @section MPI Collective Operations
  1928. @deftypefun int starpu_mpi_scatter_detached (starpu_data_handle *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm})
  1929. Scatter data among processes of the communicator based on the ownership of
  1930. the data. For each data of the array @var{data_handles}, the
  1931. process @var{root} sends the data to the process owning this data.
  1932. Processes receiving data must have valid data handles to receive them.
  1933. @end deftypefun
  1934. @deftypefun int starpu_mpi_gather_detached (starpu_data_handle *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm})
  1935. Gather data from the different processes of the communicator onto the
  1936. process @var{root}. Each process owning data handle in the array
  1937. @var{data_handles} will send them to the process @var{root}. The
  1938. process @var{root} must have valid data handles to receive the data.
  1939. @end deftypefun
  1940. @page
  1941. @cartouche
  1942. @smallexample
  1943. if (rank == root)
  1944. @{
  1945. /* Allocate the vector */
  1946. vector = malloc(nblocks * sizeof(float *));
  1947. for(x=0 ; x<nblocks ; x++)
  1948. @{
  1949. starpu_malloc((void **)&vector[x], block_size*sizeof(float));
  1950. @}
  1951. @}
  1952. /* Allocate data handles and register data to StarPU */
  1953. data_handles = malloc(nblocks*sizeof(starpu_data_handle *));
  1954. for(x = 0; x < nblocks ; x++)
  1955. @{
  1956. int mpi_rank = my_distrib(x, nodes);
  1957. if (rank == root) @{
  1958. starpu_vector_data_register(&data_handles[x], 0, (uintptr_t)vector[x],
  1959. blocks_size, sizeof(float));
  1960. @}
  1961. else if ((mpi_rank == rank) || ((rank == mpi_rank+1 || rank == mpi_rank-1))) @{
  1962. /* I own that index, or i will need it for my computations */
  1963. starpu_vector_data_register(&data_handles[x], -1, (uintptr_t)NULL,
  1964. block_size, sizeof(float));
  1965. @}
  1966. else @{
  1967. /* I know it's useless to allocate anything for this */
  1968. data_handles[x] = NULL;
  1969. @}
  1970. if (data_handles[x]) @{
  1971. starpu_data_set_rank(data_handles[x], mpi_rank);
  1972. @}
  1973. @}
  1974. /* Scatter the matrix among the nodes */
  1975. starpu_mpi_scatter_detached(data_handles, nblocks, root, MPI_COMM_WORLD);
  1976. /* Calculation */
  1977. for(x = 0; x < nblocks ; x++) @{
  1978. if (data_handles[x]) @{
  1979. int owner = starpu_data_get_rank(data_handles[x]);
  1980. if (owner == rank) @{
  1981. starpu_insert_task(&cl, STARPU_RW, data_handles[x], 0);
  1982. @}
  1983. @}
  1984. @}
  1985. /* Gather the matrix on main node */
  1986. starpu_mpi_gather_detached(data_handles, nblocks, 0, MPI_COMM_WORLD);
  1987. @end smallexample
  1988. @end cartouche
  1989. @c ---------------------------------------------------------------------
  1990. @c Configuration options
  1991. @c ---------------------------------------------------------------------
  1992. @node Configuring StarPU
  1993. @chapter Configuring StarPU
  1994. @menu
  1995. * Compilation configuration::
  1996. * Execution configuration through environment variables::
  1997. @end menu
  1998. @node Compilation configuration
  1999. @section Compilation configuration
  2000. The following arguments can be given to the @code{configure} script.
  2001. @menu
  2002. * Common configuration::
  2003. * Configuring workers::
  2004. * Advanced configuration::
  2005. @end menu
  2006. @node Common configuration
  2007. @subsection Common configuration
  2008. @menu
  2009. * --enable-debug::
  2010. * --enable-fast::
  2011. * --enable-verbose::
  2012. * --enable-coverage::
  2013. @end menu
  2014. @node --enable-debug
  2015. @subsubsection @code{--enable-debug}
  2016. @table @asis
  2017. @item @emph{Description}:
  2018. Enable debugging messages.
  2019. @end table
  2020. @node --enable-fast
  2021. @subsubsection @code{--enable-fast}
  2022. @table @asis
  2023. @item @emph{Description}:
  2024. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  2025. @end table
  2026. @node --enable-verbose
  2027. @subsubsection @code{--enable-verbose}
  2028. @table @asis
  2029. @item @emph{Description}:
  2030. Augment the verbosity of the debugging messages. This can be disabled
  2031. at runtime by setting the environment variable @code{STARPU_SILENT} to
  2032. any value.
  2033. @smallexample
  2034. % STARPU_SILENT=1 ./vector_scal
  2035. @end smallexample
  2036. @end table
  2037. @node --enable-coverage
  2038. @subsubsection @code{--enable-coverage}
  2039. @table @asis
  2040. @item @emph{Description}:
  2041. Enable flags for the @code{gcov} coverage tool.
  2042. @end table
  2043. @node Configuring workers
  2044. @subsection Configuring workers
  2045. @menu
  2046. * --enable-maxcpus::
  2047. * --disable-cpu::
  2048. * --enable-maxcudadev::
  2049. * --disable-cuda::
  2050. * --with-cuda-dir::
  2051. * --with-cuda-include-dir::
  2052. * --with-cuda-lib-dir::
  2053. * --enable-maxopencldev::
  2054. * --disable-opencl::
  2055. * --with-opencl-dir::
  2056. * --with-opencl-include-dir::
  2057. * --with-opencl-lib-dir::
  2058. * --enable-gordon::
  2059. * --with-gordon-dir::
  2060. @end menu
  2061. @node --enable-maxcpus
  2062. @subsubsection @code{--enable-maxcpus=<number>}
  2063. @table @asis
  2064. @item @emph{Description}:
  2065. Defines the maximum number of CPU cores that StarPU will support, then
  2066. available as the @code{STARPU_MAXCPUS} macro.
  2067. @end table
  2068. @node --disable-cpu
  2069. @subsubsection @code{--disable-cpu}
  2070. @table @asis
  2071. @item @emph{Description}:
  2072. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  2073. @end table
  2074. @node --enable-maxcudadev
  2075. @subsubsection @code{--enable-maxcudadev=<number>}
  2076. @table @asis
  2077. @item @emph{Description}:
  2078. Defines the maximum number of CUDA devices that StarPU will support, then
  2079. available as the @code{STARPU_MAXCUDADEVS} macro.
  2080. @end table
  2081. @node --disable-cuda
  2082. @subsubsection @code{--disable-cuda}
  2083. @table @asis
  2084. @item @emph{Description}:
  2085. Disable the use of CUDA, even if a valid CUDA installation was detected.
  2086. @end table
  2087. @node --with-cuda-dir
  2088. @subsubsection @code{--with-cuda-dir=<path>}
  2089. @table @asis
  2090. @item @emph{Description}:
  2091. Specify the directory where CUDA is installed. This directory should notably contain
  2092. @code{include/cuda.h}.
  2093. @end table
  2094. @node --with-cuda-include-dir
  2095. @subsubsection @code{--with-cuda-include-dir=<path>}
  2096. @table @asis
  2097. @item @emph{Description}:
  2098. Specify the directory where CUDA headers are installed. This directory should
  2099. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  2100. value given to @code{--with-cuda-dir}.
  2101. @end table
  2102. @node --with-cuda-lib-dir
  2103. @subsubsection @code{--with-cuda-lib-dir=<path>}
  2104. @table @asis
  2105. @item @emph{Description}:
  2106. Specify the directory where the CUDA library is installed. This directory should
  2107. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  2108. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  2109. @end table
  2110. @node --enable-maxopencldev
  2111. @subsubsection @code{--enable-maxopencldev=<number>}
  2112. @table @asis
  2113. @item @emph{Description}:
  2114. Defines the maximum number of OpenCL devices that StarPU will support, then
  2115. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  2116. @end table
  2117. @node --disable-opencl
  2118. @subsubsection @code{--disable-opencl}
  2119. @table @asis
  2120. @item @emph{Description}:
  2121. Disable the use of OpenCL, even if the SDK is detected.
  2122. @end table
  2123. @node --with-opencl-dir
  2124. @subsubsection @code{--with-opencl-dir=<path>}
  2125. @table @asis
  2126. @item @emph{Description}:
  2127. Specify the location of the OpenCL SDK. This directory should notably contain
  2128. @code{include/CL/cl.h} (or @code{include/OpenCL/cl.h} on Mac OS).
  2129. @end table
  2130. @node --with-opencl-include-dir
  2131. @subsubsection @code{--with-opencl-include-dir=<path>}
  2132. @table @asis
  2133. @item @emph{Description}:
  2134. Specify the location of OpenCL headers. This directory should notably contain
  2135. @code{CL/cl.h} (or @code{OpenCL/cl.h} on Mac OS). This defaults to
  2136. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  2137. @end table
  2138. @node --with-opencl-lib-dir
  2139. @subsubsection @code{--with-opencl-lib-dir=<path>}
  2140. @table @asis
  2141. @item @emph{Description}:
  2142. Specify the location of the OpenCL library. This directory should notably
  2143. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  2144. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  2145. @end table
  2146. @node --enable-gordon
  2147. @subsubsection @code{--enable-gordon}
  2148. @table @asis
  2149. @item @emph{Description}:
  2150. Enable the use of the Gordon runtime for Cell SPUs.
  2151. @c TODO: rather default to enabled when detected
  2152. @end table
  2153. @node --with-gordon-dir
  2154. @subsubsection @code{--with-gordon-dir=<path>}
  2155. @table @asis
  2156. @item @emph{Description}:
  2157. Specify the location of the Gordon SDK.
  2158. @end table
  2159. @node Advanced configuration
  2160. @subsection Advanced configuration
  2161. @menu
  2162. * --enable-perf-debug::
  2163. * --enable-model-debug::
  2164. * --enable-stats::
  2165. * --enable-maxbuffers::
  2166. * --enable-allocation-cache::
  2167. * --enable-opengl-render::
  2168. * --enable-blas-lib::
  2169. * --with-magma::
  2170. * --with-fxt::
  2171. * --with-perf-model-dir::
  2172. * --with-mpicc::
  2173. * --with-goto-dir::
  2174. * --with-atlas-dir::
  2175. * --with-mkl-cflags::
  2176. * --with-mkl-ldflags::
  2177. @end menu
  2178. @node --enable-perf-debug
  2179. @subsubsection @code{--enable-perf-debug}
  2180. @table @asis
  2181. @item @emph{Description}:
  2182. Enable performance debugging through gprof.
  2183. @end table
  2184. @node --enable-model-debug
  2185. @subsubsection @code{--enable-model-debug}
  2186. @table @asis
  2187. @item @emph{Description}:
  2188. Enable performance model debugging.
  2189. @end table
  2190. @node --enable-stats
  2191. @subsubsection @code{--enable-stats}
  2192. @table @asis
  2193. @item @emph{Description}:
  2194. Enable statistics.
  2195. @end table
  2196. @node --enable-maxbuffers
  2197. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  2198. @table @asis
  2199. @item @emph{Description}:
  2200. Define the maximum number of buffers that tasks will be able to take
  2201. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  2202. @end table
  2203. @node --enable-allocation-cache
  2204. @subsubsection @code{--enable-allocation-cache}
  2205. @table @asis
  2206. @item @emph{Description}:
  2207. Enable the use of a data allocation cache to avoid the cost of it with
  2208. CUDA. Still experimental.
  2209. @end table
  2210. @node --enable-opengl-render
  2211. @subsubsection @code{--enable-opengl-render}
  2212. @table @asis
  2213. @item @emph{Description}:
  2214. Enable the use of OpenGL for the rendering of some examples.
  2215. @c TODO: rather default to enabled when detected
  2216. @end table
  2217. @node --enable-blas-lib
  2218. @subsubsection @code{--enable-blas-lib=<name>}
  2219. @table @asis
  2220. @item @emph{Description}:
  2221. Specify the blas library to be used by some of the examples. The
  2222. library has to be 'atlas' or 'goto'.
  2223. @end table
  2224. @node --with-magma
  2225. @subsubsection @code{--with-magma=<path>}
  2226. @table @asis
  2227. @item @emph{Description}:
  2228. Specify where magma is installed. This directory should notably contain
  2229. @code{include/magmablas.h}.
  2230. @end table
  2231. @node --with-fxt
  2232. @subsubsection @code{--with-fxt=<path>}
  2233. @table @asis
  2234. @item @emph{Description}:
  2235. Specify the location of FxT (for generating traces and rendering them
  2236. using ViTE). This directory should notably contain
  2237. @code{include/fxt/fxt.h}.
  2238. @c TODO add ref to other section
  2239. @end table
  2240. @node --with-perf-model-dir
  2241. @subsubsection @code{--with-perf-model-dir=<dir>}
  2242. @table @asis
  2243. @item @emph{Description}:
  2244. Specify where performance models should be stored (instead of defaulting to the
  2245. current user's home).
  2246. @end table
  2247. @node --with-mpicc
  2248. @subsubsection @code{--with-mpicc=<path to mpicc>}
  2249. @table @asis
  2250. @item @emph{Description}:
  2251. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  2252. @end table
  2253. @node --with-goto-dir
  2254. @subsubsection @code{--with-goto-dir=<dir>}
  2255. @table @asis
  2256. @item @emph{Description}:
  2257. Specify the location of GotoBLAS.
  2258. @end table
  2259. @node --with-atlas-dir
  2260. @subsubsection @code{--with-atlas-dir=<dir>}
  2261. @table @asis
  2262. @item @emph{Description}:
  2263. Specify the location of ATLAS. This directory should notably contain
  2264. @code{include/cblas.h}.
  2265. @end table
  2266. @node --with-mkl-cflags
  2267. @subsubsection @code{--with-mkl-cflags=<cflags>}
  2268. @table @asis
  2269. @item @emph{Description}:
  2270. Specify the compilation flags for the MKL Library.
  2271. @end table
  2272. @node --with-mkl-ldflags
  2273. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  2274. @table @asis
  2275. @item @emph{Description}:
  2276. Specify the linking flags for the MKL Library. Note that the
  2277. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  2278. website provides a script to determine the linking flags.
  2279. @end table
  2280. @c ---------------------------------------------------------------------
  2281. @c Environment variables
  2282. @c ---------------------------------------------------------------------
  2283. @node Execution configuration through environment variables
  2284. @section Execution configuration through environment variables
  2285. @menu
  2286. * Workers:: Configuring workers
  2287. * Scheduling:: Configuring the Scheduling engine
  2288. * Misc:: Miscellaneous and debug
  2289. @end menu
  2290. Note: the values given in @code{starpu_conf} structure passed when
  2291. calling @code{starpu_init} will override the values of the environment
  2292. variables.
  2293. @node Workers
  2294. @subsection Configuring workers
  2295. @menu
  2296. * STARPU_NCPUS:: Number of CPU workers
  2297. * STARPU_NCUDA:: Number of CUDA workers
  2298. * STARPU_NOPENCL:: Number of OpenCL workers
  2299. * STARPU_NGORDON:: Number of SPU workers (Cell)
  2300. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  2301. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  2302. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  2303. @end menu
  2304. @node STARPU_NCPUS
  2305. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  2306. @table @asis
  2307. @item @emph{Description}:
  2308. Specify the number of CPU workers (thus not including workers dedicated to control acceleratores). Note that by default, StarPU will not allocate
  2309. more CPU workers than there are physical CPUs, and that some CPUs are used to control
  2310. the accelerators.
  2311. @end table
  2312. @node STARPU_NCUDA
  2313. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  2314. @table @asis
  2315. @item @emph{Description}:
  2316. Specify the number of CUDA devices that StarPU can use. If
  2317. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  2318. possible to select which CUDA devices should be used by the means of the
  2319. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  2320. create as many CUDA workers as there are CUDA devices.
  2321. @end table
  2322. @node STARPU_NOPENCL
  2323. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  2324. @table @asis
  2325. @item @emph{Description}:
  2326. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  2327. @end table
  2328. @node STARPU_NGORDON
  2329. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  2330. @table @asis
  2331. @item @emph{Description}:
  2332. Specify the number of SPUs that StarPU can use.
  2333. @end table
  2334. @node STARPU_WORKERS_CPUID
  2335. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  2336. @table @asis
  2337. @item @emph{Description}:
  2338. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  2339. specifies on which logical CPU the different workers should be
  2340. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  2341. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  2342. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  2343. determined by the OS, or provided by the @code{hwloc} library in case it is
  2344. available.
  2345. Note that the first workers correspond to the CUDA workers, then come the
  2346. OpenCL and the SPU, and finally the CPU workers. For example if
  2347. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  2348. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  2349. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  2350. the logical CPUs #1 and #3 will be used by the CPU workers.
  2351. If the number of workers is larger than the array given in
  2352. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  2353. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  2354. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  2355. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  2356. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2357. @end table
  2358. @node STARPU_WORKERS_CUDAID
  2359. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  2360. @table @asis
  2361. @item @emph{Description}:
  2362. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  2363. possible to select which CUDA devices should be used by StarPU. On a machine
  2364. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  2365. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  2366. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  2367. the one reported by CUDA).
  2368. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  2369. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2370. @end table
  2371. @node STARPU_WORKERS_OPENCLID
  2372. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  2373. @table @asis
  2374. @item @emph{Description}:
  2375. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  2376. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  2377. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  2378. @end table
  2379. @node Scheduling
  2380. @subsection Configuring the Scheduling engine
  2381. @menu
  2382. * STARPU_SCHED:: Scheduling policy
  2383. * STARPU_CALIBRATE:: Calibrate performance models
  2384. * STARPU_PREFETCH:: Use data prefetch
  2385. * STARPU_SCHED_ALPHA:: Computation factor
  2386. * STARPU_SCHED_BETA:: Communication factor
  2387. @end menu
  2388. @node STARPU_SCHED
  2389. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  2390. @table @asis
  2391. @item @emph{Description}:
  2392. This chooses between the different scheduling policies proposed by StarPU: work
  2393. random, stealing, greedy, with performance models, etc.
  2394. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  2395. @end table
  2396. @node STARPU_CALIBRATE
  2397. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  2398. @table @asis
  2399. @item @emph{Description}:
  2400. If this variable is set to 1, the performance models are calibrated during
  2401. the execution. If it is set to 2, the previous values are dropped to restart
  2402. calibration from scratch. Setting this variable to 0 disable calibration, this
  2403. is the default behaviour.
  2404. Note: this currently only applies to @code{dm}, @code{dmda} and @code{heft} scheduling policies.
  2405. @end table
  2406. @node STARPU_PREFETCH
  2407. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  2408. @table @asis
  2409. @item @emph{Description}:
  2410. This variable indicates whether data prefetching should be enabled (0 means
  2411. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  2412. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  2413. advance, so that data is already present on the GPU when the task starts. As a
  2414. result, computation and data transfers are overlapped.
  2415. Note that prefetching is enabled by default in StarPU.
  2416. @end table
  2417. @node STARPU_SCHED_ALPHA
  2418. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  2419. @table @asis
  2420. @item @emph{Description}:
  2421. To estimate the cost of a task StarPU takes into account the estimated
  2422. computation time (obtained thanks to performance models). The alpha factor is
  2423. the coefficient to be applied to it before adding it to the communication part.
  2424. @end table
  2425. @node STARPU_SCHED_BETA
  2426. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  2427. @table @asis
  2428. @item @emph{Description}:
  2429. To estimate the cost of a task StarPU takes into account the estimated
  2430. data transfer time (obtained thanks to performance models). The beta factor is
  2431. the coefficient to be applied to it before adding it to the computation part.
  2432. @end table
  2433. @node Misc
  2434. @subsection Miscellaneous and debug
  2435. @menu
  2436. * STARPU_SILENT:: Disable verbose mode
  2437. * STARPU_LOGFILENAME:: Select debug file name
  2438. * STARPU_FXT_PREFIX:: FxT trace location
  2439. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  2440. * STARPU_GENERATE_TRACE:: Generate a Paje trace when StarPU is shut down
  2441. @end menu
  2442. @node STARPU_SILENT
  2443. @subsubsection @code{STARPU_SILENT} -- Disable verbose mode
  2444. @table @asis
  2445. @item @emph{Description}:
  2446. This variable allows to disable verbose mode at runtime when StarPU
  2447. has been configured with the option @code{--enable-verbose}.
  2448. @end table
  2449. @node STARPU_LOGFILENAME
  2450. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  2451. @table @asis
  2452. @item @emph{Description}:
  2453. This variable specifies in which file the debugging output should be saved to.
  2454. @end table
  2455. @node STARPU_FXT_PREFIX
  2456. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  2457. @table @asis
  2458. @item @emph{Description}
  2459. This variable specifies in which directory to save the trace generated if FxT is enabled. It needs to have a trailing '/' character.
  2460. @end table
  2461. @node STARPU_LIMIT_GPU_MEM
  2462. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  2463. @table @asis
  2464. @item @emph{Description}
  2465. This variable specifies the maximum number of megabytes that should be
  2466. available to the application on each GPUs. In case this value is smaller than
  2467. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  2468. on the device. This variable is intended to be used for experimental purposes
  2469. as it emulates devices that have a limited amount of memory.
  2470. @end table
  2471. @node STARPU_GENERATE_TRACE
  2472. @subsubsection @code{STARPU_GENERATE_TRACE} -- Generate a Paje trace when StarPU is shut down
  2473. @table @asis
  2474. @item @emph{Description}
  2475. When set to 1, this variable indicates that StarPU should automatically
  2476. generate a Paje trace when starpu_shutdown is called.
  2477. @end table
  2478. @c ---------------------------------------------------------------------
  2479. @c StarPU API
  2480. @c ---------------------------------------------------------------------
  2481. @node StarPU API
  2482. @chapter StarPU API
  2483. @menu
  2484. * Initialization and Termination:: Initialization and Termination methods
  2485. * Workers' Properties:: Methods to enumerate workers' properties
  2486. * Data Library:: Methods to manipulate data
  2487. * Data Interfaces::
  2488. * Data Partition::
  2489. * Codelets and Tasks:: Methods to construct tasks
  2490. * Explicit Dependencies:: Explicit Dependencies
  2491. * Implicit Data Dependencies:: Implicit Data Dependencies
  2492. * Performance Model API::
  2493. * Profiling API:: Profiling API
  2494. * CUDA extensions:: CUDA extensions
  2495. * OpenCL extensions:: OpenCL extensions
  2496. * Cell extensions:: Cell extensions
  2497. * Miscellaneous helpers::
  2498. @end menu
  2499. @node Initialization and Termination
  2500. @section Initialization and Termination
  2501. @menu
  2502. * starpu_init:: Initialize StarPU
  2503. * struct starpu_conf:: StarPU runtime configuration
  2504. * starpu_conf_init:: Initialize starpu_conf structure
  2505. * starpu_shutdown:: Terminate StarPU
  2506. @end menu
  2507. @node starpu_init
  2508. @subsection @code{starpu_init} -- Initialize StarPU
  2509. @table @asis
  2510. @item @emph{Description}:
  2511. This is StarPU initialization method, which must be called prior to any other
  2512. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  2513. policy, number of cores, ...) by passing a non-null argument. Default
  2514. configuration is used if the passed argument is @code{NULL}.
  2515. @item @emph{Return value}:
  2516. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  2517. indicates that no worker was available (so that StarPU was not initialized).
  2518. @item @emph{Prototype}:
  2519. @code{int starpu_init(struct starpu_conf *conf);}
  2520. @end table
  2521. @node struct starpu_conf
  2522. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  2523. @table @asis
  2524. @item @emph{Description}:
  2525. This structure is passed to the @code{starpu_init} function in order
  2526. to configure StarPU.
  2527. When the default value is used, StarPU automatically selects the number
  2528. of processing units and takes the default scheduling policy. This parameter
  2529. overwrites the equivalent environment variables.
  2530. @item @emph{Fields}:
  2531. @table @asis
  2532. @item @code{sched_policy_name} (default = NULL):
  2533. This is the name of the scheduling policy. This can also be specified with the
  2534. @code{STARPU_SCHED} environment variable.
  2535. @item @code{sched_policy} (default = NULL):
  2536. This is the definition of the scheduling policy. This field is ignored
  2537. if @code{sched_policy_name} is set.
  2538. @item @code{ncpus} (default = -1):
  2539. This is the number of CPU cores that StarPU can use. This can also be
  2540. specified with the @code{STARPU_NCPUS} environment variable.
  2541. @item @code{ncuda} (default = -1):
  2542. This is the number of CUDA devices that StarPU can use. This can also be
  2543. specified with the @code{STARPU_NCUDA} environment variable.
  2544. @item @code{nopencl} (default = -1):
  2545. This is the number of OpenCL devices that StarPU can use. This can also be
  2546. specified with the @code{STARPU_NOPENCL} environment variable.
  2547. @item @code{nspus} (default = -1):
  2548. This is the number of Cell SPUs that StarPU can use. This can also be
  2549. specified with the @code{STARPU_NGORDON} environment variable.
  2550. @item @code{use_explicit_workers_bindid} (default = 0)
  2551. If this flag is set, the @code{workers_bindid} array indicates where the
  2552. different workers are bound, otherwise StarPU automatically selects where to
  2553. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  2554. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  2555. ignored if the @code{use_explicit_workers_bindid} flag is set.
  2556. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  2557. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  2558. where to bind the different workers. The i-th entry of the
  2559. @code{workers_bindid} indicates the logical identifier of the processor which
  2560. should execute the i-th worker. Note that the logical ordering of the CPUs is
  2561. either determined by the OS, or provided by the @code{hwloc} library in case it
  2562. is available.
  2563. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  2564. ignored.
  2565. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  2566. If this flag is set, the CUDA workers will be attached to the CUDA devices
  2567. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  2568. CUDA devices in a round-robin fashion.
  2569. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  2570. ignored.
  2571. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  2572. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  2573. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  2574. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  2575. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  2576. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  2577. OpenCL devices in a round-robin fashion.
  2578. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  2579. @item @code{calibrate} (default = 0):
  2580. If this flag is set, StarPU will calibrate the performance models when
  2581. executing tasks. If this value is equal to -1, the default value is used. The
  2582. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  2583. variable when it is set.
  2584. @end table
  2585. @item @code{single_combined_worker} (default = 0):
  2586. By default, StarPU creates various combined workers according to the machine
  2587. structure. Some parallel libraries (e.g. most OpenMP implementations) however do
  2588. not support concurrent calls to parallel code. In such case, setting this flag
  2589. makes StarPU only create one combined worker, containing all
  2590. the CPU workers. The default value is overwritten by the
  2591. @code{STARPU_SINGLE_COMBINED_WORKER} environment variable when it is set.
  2592. @end table
  2593. @node starpu_conf_init
  2594. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  2595. @table @asis
  2596. This function initializes the @code{starpu_conf} structure passed as argument
  2597. with the default values. In case some configuration parameters are already
  2598. specified through environment variables, @code{starpu_conf_init} initializes
  2599. the fields of the structure according to the environment variables. For
  2600. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  2601. @code{.ncuda} field of the structure passed as argument.
  2602. @item @emph{Return value}:
  2603. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2604. indicates that the argument was NULL.
  2605. @item @emph{Prototype}:
  2606. @code{int starpu_conf_init(struct starpu_conf *conf);}
  2607. @end table
  2608. @node starpu_shutdown
  2609. @subsection @code{starpu_shutdown} -- Terminate StarPU
  2610. @deftypefun void starpu_shutdown (void)
  2611. This is StarPU termination method. It must be called at the end of the
  2612. application: statistics and other post-mortem debugging information are not
  2613. guaranteed to be available until this method has been called.
  2614. @end deftypefun
  2615. @node Workers' Properties
  2616. @section Workers' Properties
  2617. @menu
  2618. * starpu_worker_get_count:: Get the number of processing units
  2619. * starpu_worker_get_count_by_type:: Get the number of processing units of a given type
  2620. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  2621. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  2622. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  2623. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  2624. * starpu_worker_get_id:: Get the identifier of the current worker
  2625. * starpu_worker_get_ids_by_type:: Get the list of identifiers of workers with a given type
  2626. * starpu_worker_get_devid:: Get the device identifier of a worker
  2627. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  2628. * starpu_worker_get_name:: Get the name of a worker
  2629. * starpu_worker_get_memory_node:: Get the memory node of a worker
  2630. @end menu
  2631. @node starpu_worker_get_count
  2632. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  2633. @deftypefun unsigned starpu_worker_get_count (void)
  2634. This function returns the number of workers (i.e. processing units executing
  2635. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  2636. @end deftypefun
  2637. @node starpu_worker_get_count_by_type
  2638. @subsection @code{starpu_worker_get_count_by_type} -- Get the number of processing units of a given type
  2639. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  2640. Returns the number of workers of the type indicated by the argument. A positive
  2641. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  2642. the type is not valid otherwise.
  2643. @end deftypefun
  2644. @node starpu_cpu_worker_get_count
  2645. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  2646. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  2647. This function returns the number of CPUs controlled by StarPU. The returned
  2648. value should be at most @code{STARPU_MAXCPUS}.
  2649. @end deftypefun
  2650. @node starpu_cuda_worker_get_count
  2651. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  2652. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  2653. This function returns the number of CUDA devices controlled by StarPU. The returned
  2654. value should be at most @code{STARPU_MAXCUDADEVS}.
  2655. @end deftypefun
  2656. @node starpu_opencl_worker_get_count
  2657. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  2658. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  2659. This function returns the number of OpenCL devices controlled by StarPU. The returned
  2660. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  2661. @end deftypefun
  2662. @node starpu_spu_worker_get_count
  2663. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2664. @deftypefun unsigned starpu_spu_worker_get_count (void)
  2665. This function returns the number of Cell SPUs controlled by StarPU.
  2666. @end deftypefun
  2667. @node starpu_worker_get_id
  2668. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2669. @deftypefun int starpu_worker_get_id (void)
  2670. This function returns the identifier of the worker associated to the calling
  2671. thread. The returned value is either -1 if the current context is not a StarPU
  2672. worker (i.e. when called from the application outside a task or a callback), or
  2673. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2674. @end deftypefun
  2675. @node starpu_worker_get_ids_by_type
  2676. @subsection @code{starpu_worker_get_ids_by_type} -- Get the list of identifiers of workers with a given type
  2677. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  2678. Fill the workerids array with the identifiers of the workers that have the type
  2679. indicated in the first argument. The maxsize argument indicates the size of the
  2680. workids array. The returned value gives the number of identifiers that were put
  2681. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  2682. workers with the appropriate type: in that case, the array is filled with the
  2683. maxsize first elements. To avoid such overflows, the value of maxsize can be
  2684. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  2685. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  2686. @end deftypefun
  2687. @node starpu_worker_get_devid
  2688. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2689. @deftypefun int starpu_worker_get_devid (int @var{id})
  2690. This functions returns the device id of the worker associated to an identifier
  2691. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2692. CUDA worker, this device identifier is the logical device identifier exposed by
  2693. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2694. identifier of a CPU worker is the logical identifier of the core on which the
  2695. worker was bound; this identifier is either provided by the OS or by the
  2696. @code{hwloc} library in case it is available.
  2697. @end deftypefun
  2698. @node starpu_worker_get_type
  2699. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2700. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  2701. This function returns the type of worker associated to an identifier (as
  2702. returned by the @code{starpu_worker_get_id} function). The returned value
  2703. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2704. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2705. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2706. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2707. identifier is unspecified.
  2708. @end deftypefun
  2709. @node starpu_worker_get_name
  2710. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2711. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  2712. StarPU associates a unique human readable string to each processing unit. This
  2713. function copies at most the @var{maxlen} first bytes of the unique string
  2714. associated to a worker identified by its identifier @var{id} into the
  2715. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  2716. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  2717. function on an invalid identifier results in an unspecified behaviour.
  2718. @end deftypefun
  2719. @node starpu_worker_get_memory_node
  2720. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2721. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  2722. This function returns the identifier of the memory node associated to the
  2723. worker identified by @var{workerid}.
  2724. @end deftypefun
  2725. @node Data Library
  2726. @section Data Library
  2727. This section describes the data management facilities provided by StarPU.
  2728. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2729. design their own data interfaces if required.
  2730. @menu
  2731. * starpu_malloc:: Allocate data and pin it
  2732. * starpu_access_mode:: Data access mode
  2733. * unsigned memory_node:: Memory node
  2734. * starpu_data_handle:: StarPU opaque data handle
  2735. * void *interface:: StarPU data interface
  2736. * starpu_data_register:: Register a piece of data to StarPU
  2737. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2738. * starpu_data_unregister_no_coherency:: Unregister a piece of data from StarPU without coherency
  2739. * starpu_data_invalidate:: Invalidate all data replicates
  2740. * starpu_data_acquire:: Access registered data from the application
  2741. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2742. * STARPU_DATA_ACQUIRE_CB:: Access registered data from the application asynchronously, macro
  2743. * starpu_data_release:: Release registered data from the application
  2744. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2745. * starpu_data_prefetch_on_node:: Prefetch data to a given node
  2746. @end menu
  2747. @node starpu_malloc
  2748. @subsection @code{starpu_malloc} -- Allocate data and pin it
  2749. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  2750. This function allocates data of the given size in main memory. It will also try to pin it in
  2751. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  2752. thus permit data transfer and computation overlapping. The allocated buffer must
  2753. be freed thanks to the @code{starpu_free} function.
  2754. @end deftypefun
  2755. @node starpu_access_mode
  2756. @subsection @code{starpu_access_mode} -- Data access mode
  2757. This datatype describes a data access mode. The different available modes are:
  2758. @table @asis
  2759. @table @asis
  2760. @item @code{STARPU_R} read-only mode.
  2761. @item @code{STARPU_W} write-only mode.
  2762. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2763. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2764. @item @code{STARPU_REDUX} reduction mode. TODO: document, as well as @code{starpu_data_set_reduction_methods}
  2765. @end table
  2766. @end table
  2767. @node unsigned memory_node
  2768. @subsection @code{unsigned memory_node} -- Memory node
  2769. @table @asis
  2770. @item @emph{Description}:
  2771. Every worker is associated to a memory node which is a logical abstraction of
  2772. the address space from which the processing unit gets its data. For instance,
  2773. the memory node associated to the different CPU workers represents main memory
  2774. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2775. Every memory node is identified by a logical index which is accessible from the
  2776. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2777. to StarPU, the specified memory node indicates where the piece of data
  2778. initially resides (we also call this memory node the home node of a piece of
  2779. data).
  2780. @end table
  2781. @node starpu_data_handle
  2782. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2783. @table @asis
  2784. @item @emph{Description}:
  2785. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2786. data. Once a piece of data has been registered to StarPU, it is associated to a
  2787. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2788. over the entire machine, so that we can maintain data consistency and locate
  2789. data replicates for instance.
  2790. @end table
  2791. @node void *interface
  2792. @subsection @code{void *interface} -- StarPU data interface
  2793. @table @asis
  2794. @item @emph{Description}:
  2795. Data management is done at a high-level in StarPU: rather than accessing a mere
  2796. list of contiguous buffers, the tasks may manipulate data that are described by
  2797. a high-level construct which we call data interface.
  2798. An example of data interface is the "vector" interface which describes a
  2799. contiguous data array on a spefic memory node. This interface is a simple
  2800. structure containing the number of elements in the array, the size of the
  2801. elements, and the address of the array in the appropriate address space (this
  2802. address may be invalid if there is no valid copy of the array in the memory
  2803. node). More informations on the data interfaces provided by StarPU are
  2804. given in @ref{Data Interfaces}.
  2805. When a piece of data managed by StarPU is used by a task, the task
  2806. implementation is given a pointer to an interface describing a valid copy of
  2807. the data that is accessible from the current processing unit.
  2808. @end table
  2809. @node starpu_data_register
  2810. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2811. @deftypefun void starpu_data_register (starpu_data_handle *@var{handleptr}, uint32_t @var{home_node}, void *@var{interface}, {struct starpu_data_interface_ops_t} *@var{ops})
  2812. Register a piece of data into the handle located at the @var{handleptr}
  2813. address. The @var{interface} buffer contains the initial description of the
  2814. data in the home node. The @var{ops} argument is a pointer to a structure
  2815. describing the different methods used to manipulate this type of interface. See
  2816. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2817. If @code{home_node} is -1, StarPU will automatically
  2818. allocate the memory when it is used for the
  2819. first time in write-only mode. Once such data handle has been automatically
  2820. allocated, it is possible to access it using any access mode.
  2821. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2822. matrix) which can be registered by the means of helper functions (e.g.
  2823. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2824. @end deftypefun
  2825. @node starpu_data_unregister
  2826. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2827. @deftypefun void starpu_data_unregister (starpu_data_handle @var{handle})
  2828. This function unregisters a data handle from StarPU. If the data was
  2829. automatically allocated by StarPU because the home node was -1, all
  2830. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2831. is put back into the home node in the buffer that was initially registered.
  2832. Using a data handle that has been unregistered from StarPU results in an
  2833. undefined behaviour.
  2834. @end deftypefun
  2835. @node starpu_data_unregister_no_coherency
  2836. @subsection @code{starpu_data_unregister_no_coherency} -- Unregister a piece of data from StarPU
  2837. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle @var{handle})
  2838. This is the same as starpu_data_unregister, except that StarPU does not put back
  2839. a valid copy into the home node, in the buffer that was initially registered.
  2840. @end deftypefun
  2841. @node starpu_data_invalidate
  2842. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2843. @deftypefun void starpu_data_invalidate (starpu_data_handle @var{handle})
  2844. Destroy all replicates of the data handle. After data invalidation, the first
  2845. access to the handle must be performed in write-only mode. Accessing an
  2846. invalidated data in read-mode results in undefined behaviour.
  2847. @end deftypefun
  2848. @c TODO create a specific sections about user interaction with the DSM ?
  2849. @node starpu_data_acquire
  2850. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2851. @deftypefun int starpu_data_acquire (starpu_data_handle @var{handle}, starpu_access_mode @var{mode})
  2852. The application must call this function prior to accessing registered data from
  2853. main memory outside tasks. StarPU ensures that the application will get an
  2854. up-to-date copy of the data in main memory located where the data was
  2855. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2856. be consistent with the access mode specified in the @var{mode} argument.
  2857. @code{starpu_data_release} must be called once the application does not need to
  2858. access the piece of data anymore. Note that implicit data
  2859. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  2860. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  2861. the data, unless that they have not been disabled explictly by calling
  2862. @code{starpu_data_set_default_sequential_consistency_flag} or
  2863. @code{starpu_data_set_sequential_consistency_flag}.
  2864. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2865. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2866. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2867. @end deftypefun
  2868. @node starpu_data_acquire_cb
  2869. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2870. @deftypefun int starpu_data_acquire_cb (starpu_data_handle @var{handle}, starpu_access_mode @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  2871. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2872. @code{starpu_data_release}. When the data specified in the first argument is
  2873. available in the appropriate access mode, the callback function is executed.
  2874. The application may access the requested data during the execution of this
  2875. callback. The callback function must call @code{starpu_data_release} once the
  2876. application does not need to access the piece of data anymore.
  2877. Note that implicit data dependencies are also enforced by
  2878. @code{starpu_data_acquire_cb} in case they are enabled.
  2879. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2880. be called from task callbacks. Upon successful completion, this function
  2881. returns 0.
  2882. @end deftypefun
  2883. @node STARPU_DATA_ACQUIRE_CB
  2884. @subsection @code{STARPU_DATA_ACQUIRE_CB} -- Access registered data from the application asynchronously, macro
  2885. @deftypefun STARPU_DATA_ACQUIRE_CB (starpu_data_handle @var{handle}, starpu_access_mode @var{mode}, code)
  2886. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  2887. except that the code to be executed in a callback is directly provided as a
  2888. macro parameter, and the data handle is automatically released after it. This
  2889. permit to easily execute code which depends on the value of some registered
  2890. data. This is non-blocking too and may be called from task callbacks.
  2891. @end deftypefun
  2892. @node starpu_data_release
  2893. @subsection @code{starpu_data_release} -- Release registered data from the application
  2894. @deftypefun void starpu_data_release (starpu_data_handle @var{handle})
  2895. This function releases the piece of data acquired by the application either by
  2896. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2897. @end deftypefun
  2898. @node starpu_data_set_wt_mask
  2899. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2900. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle @var{handle}, uint32_t @var{wt_mask})
  2901. This function sets the write-through mask of a given data, i.e. a bitmask of
  2902. nodes where the data should be always replicated after modification.
  2903. @end deftypefun
  2904. @node starpu_data_prefetch_on_node
  2905. @subsection @code{starpu_data_prefetch_on_node} -- Prefetch data to a given node
  2906. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle @var{handle}, unsigned @var{node}, unsigned @var{async})
  2907. Issue a prefetch request for a given data to a given node, i.e.
  2908. requests that the data be replicated to the given node, so that it is available
  2909. there for tasks. If the @var{async} parameter is 0, the call will block until
  2910. the transfer is achieved, else the call will return as soon as the request is
  2911. scheduled (which may however have to wait for a task completion).
  2912. @end deftypefun
  2913. @node Data Interfaces
  2914. @section Data Interfaces
  2915. @menu
  2916. * Variable Interface::
  2917. * Vector Interface::
  2918. * Matrix Interface::
  2919. * 3D Matrix Interface::
  2920. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2921. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2922. @end menu
  2923. @node Variable Interface
  2924. @subsection Variable Interface
  2925. @table @asis
  2926. @item @emph{Description}:
  2927. This variant of @code{starpu_data_register} uses the variable interface,
  2928. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2929. and @code{elemsize} is the size of the variable.
  2930. @item @emph{Prototype}:
  2931. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2932. uint32_t home_node,
  2933. uintptr_t ptr, size_t elemsize);}
  2934. @item @emph{Example}:
  2935. @cartouche
  2936. @smallexample
  2937. float var;
  2938. starpu_data_handle var_handle;
  2939. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2940. @end smallexample
  2941. @end cartouche
  2942. @end table
  2943. @node Vector Interface
  2944. @subsection Vector Interface
  2945. @table @asis
  2946. @item @emph{Description}:
  2947. This variant of @code{starpu_data_register} uses the vector interface,
  2948. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2949. element in the home node. @code{nx} is the number of elements in the vector.
  2950. @code{elemsize} is the size of each element.
  2951. @item @emph{Prototype}:
  2952. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2953. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2954. @item @emph{Example}:
  2955. @cartouche
  2956. @smallexample
  2957. float vector[NX];
  2958. starpu_data_handle vector_handle;
  2959. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2960. sizeof(vector[0]));
  2961. @end smallexample
  2962. @end cartouche
  2963. @end table
  2964. @node Matrix Interface
  2965. @subsection Matrix Interface
  2966. @table @asis
  2967. @item @emph{Description}:
  2968. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2969. matrices of elements. @code{ptr} is the address of the first element in the home
  2970. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2971. of elements in a row (this can be different from @code{ld} if there are extra
  2972. elements for alignment for instance). @code{ny} is the number of rows.
  2973. @code{elemsize} is the size of each element.
  2974. @item @emph{Prototype}:
  2975. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2976. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2977. uint32_t ny, size_t elemsize);}
  2978. @item @emph{Example}:
  2979. @cartouche
  2980. @smallexample
  2981. float *matrix;
  2982. starpu_data_handle matrix_handle;
  2983. matrix = (float*)malloc(width * height * sizeof(float));
  2984. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2985. width, width, height, sizeof(float));
  2986. @end smallexample
  2987. @end cartouche
  2988. @end table
  2989. @node 3D Matrix Interface
  2990. @subsection 3D Matrix Interface
  2991. @table @asis
  2992. @item @emph{Description}:
  2993. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2994. @code{ptr} is the address of the array of first element in the home node.
  2995. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2996. of rows between z planes. @code{nx} is the number of elements in a row (this
  2997. can be different from @code{ldy} if there are extra elements for alignment
  2998. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2999. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  3000. each element.
  3001. @item @emph{Prototype}:
  3002. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  3003. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  3004. uint32_t ny, uint32_t nz, size_t elemsize);}
  3005. @item @emph{Example}:
  3006. @cartouche
  3007. @smallexample
  3008. float *block;
  3009. starpu_data_handle block_handle;
  3010. block = (float*)malloc(nx*ny*nz*sizeof(float));
  3011. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  3012. nx, nx*ny, nx, ny, nz, sizeof(float));
  3013. @end smallexample
  3014. @end cartouche
  3015. @end table
  3016. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  3017. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  3018. @deftypefun void starpu_bcsr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  3019. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  3020. TODO
  3021. @end deftypefun
  3022. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  3023. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  3024. @deftypefun void starpu_csr_data_register (starpu_data_handle *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  3025. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  3026. TODO
  3027. @end deftypefun
  3028. @node Data Partition
  3029. @section Data Partition
  3030. @menu
  3031. * struct starpu_data_filter:: StarPU filter structure
  3032. * starpu_data_partition:: Partition Data
  3033. * starpu_data_unpartition:: Unpartition Data
  3034. * starpu_data_get_nb_children::
  3035. * starpu_data_get_sub_data::
  3036. * Predefined filter functions::
  3037. @end menu
  3038. @node struct starpu_data_filter
  3039. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  3040. @table @asis
  3041. @item @emph{Description}:
  3042. The filter structure describes a data partitioning operation, to be given to the
  3043. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  3044. @item @emph{Fields}:
  3045. @table @asis
  3046. @item @code{filter_func}:
  3047. This function fills the @code{child_interface} structure with interface
  3048. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  3049. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  3050. @item @code{nchildren}:
  3051. This is the number of parts to partition the data into.
  3052. @item @code{get_nchildren}:
  3053. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  3054. children depends on the actual data (e.g. the number of blocks in a sparse
  3055. matrix).
  3056. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  3057. @item @code{get_child_ops}:
  3058. In case the resulting children use a different data interface, this function
  3059. returns which interface is used by child number @code{id}.
  3060. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  3061. @item @code{filter_arg}:
  3062. Some filters take an addition parameter, but this is usually unused.
  3063. @item @code{filter_arg_ptr}:
  3064. Some filters take an additional array parameter like the sizes of the parts, but
  3065. this is usually unused.
  3066. @end table
  3067. @end table
  3068. @node starpu_data_partition
  3069. @subsection starpu_data_partition -- Partition Data
  3070. @table @asis
  3071. @item @emph{Description}:
  3072. This requests partitioning one StarPU data @code{initial_handle} into several
  3073. subdata according to the filter @code{f}
  3074. @item @emph{Prototype}:
  3075. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  3076. @item @emph{Example}:
  3077. @cartouche
  3078. @smallexample
  3079. struct starpu_data_filter f = @{
  3080. .filter_func = starpu_vertical_block_filter_func,
  3081. .nchildren = nslicesx,
  3082. .get_nchildren = NULL,
  3083. .get_child_ops = NULL
  3084. @};
  3085. starpu_data_partition(A_handle, &f);
  3086. @end smallexample
  3087. @end cartouche
  3088. @end table
  3089. @node starpu_data_unpartition
  3090. @subsection starpu_data_unpartition -- Unpartition data
  3091. @table @asis
  3092. @item @emph{Description}:
  3093. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  3094. collected back into one big piece in the @code{gathering_node} (usually 0).
  3095. @item @emph{Prototype}:
  3096. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  3097. @item @emph{Example}:
  3098. @cartouche
  3099. @smallexample
  3100. starpu_data_unpartition(A_handle, 0);
  3101. @end smallexample
  3102. @end cartouche
  3103. @end table
  3104. @node starpu_data_get_nb_children
  3105. @subsection starpu_data_get_nb_children
  3106. @table @asis
  3107. @item @emph{Description}:
  3108. This function returns the number of children.
  3109. @item @emph{Return value}:
  3110. The number of children.
  3111. @item @emph{Prototype}:
  3112. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  3113. @end table
  3114. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  3115. @node starpu_data_get_sub_data
  3116. @subsection starpu_data_get_sub_data
  3117. @table @asis
  3118. @item @emph{Description}:
  3119. After partitioning a StarPU data by applying a filter,
  3120. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  3121. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  3122. is the number of filters to traverse (in case several filters have been applied,
  3123. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  3124. parameters are the indexes.
  3125. @item @emph{Return value}:
  3126. A handle to the subdata.
  3127. @item @emph{Prototype}:
  3128. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  3129. @item @emph{Example}:
  3130. @cartouche
  3131. @smallexample
  3132. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  3133. @end smallexample
  3134. @end cartouche
  3135. @end table
  3136. @node Predefined filter functions
  3137. @subsection Predefined filter functions
  3138. @menu
  3139. * Partitioning BCSR Data::
  3140. * Partitioning BLAS interface::
  3141. * Partitioning Vector Data::
  3142. * Partitioning Block Data::
  3143. @end menu
  3144. This section gives a partial list of the predefined partitioning functions.
  3145. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  3146. list can be found in @code{starpu_data_filters.h} .
  3147. @node Partitioning BCSR Data
  3148. @subsubsection Partitioning BCSR Data
  3149. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3150. TODO
  3151. @end deftypefun
  3152. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3153. TODO
  3154. @end deftypefun
  3155. @node Partitioning BLAS interface
  3156. @subsubsection Partitioning BLAS interface
  3157. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3158. This partitions a dense Matrix into horizontal blocks.
  3159. @end deftypefun
  3160. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3161. This partitions a dense Matrix into vertical blocks.
  3162. @end deftypefun
  3163. @node Partitioning Vector Data
  3164. @subsubsection Partitioning Vector Data
  3165. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3166. This partitions a vector into blocks of the same size.
  3167. @end deftypefun
  3168. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3169. This partitions a vector into blocks of sizes given in @var{filter_arg_ptr}.
  3170. @end deftypefun
  3171. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3172. This partitions a vector into two blocks, the first block size being given in @var{filter_arg}.
  3173. @end deftypefun
  3174. @node Partitioning Block Data
  3175. @subsubsection Partitioning Block Data
  3176. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  3177. This partitions a 3D matrix along the X axis.
  3178. @end deftypefun
  3179. @node Codelets and Tasks
  3180. @section Codelets and Tasks
  3181. This section describes the interface to manipulate codelets and tasks.
  3182. @deftp {Data Type} {struct starpu_codelet}
  3183. The codelet structure describes a kernel that is possibly implemented on various
  3184. targets. For compatibility, make sure to initialize the whole structure to zero.
  3185. @table @asis
  3186. @item @code{where}
  3187. Indicates which types of processing units are able to execute the codelet.
  3188. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  3189. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  3190. indicates that it is only available on Cell SPUs.
  3191. @item @code{cpu_func} (optional)
  3192. Is a function pointer to the CPU implementation of the codelet. Its prototype
  3193. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  3194. argument being the array of data managed by the data management library, and
  3195. the second argument is a pointer to the argument passed from the @code{cl_arg}
  3196. field of the @code{starpu_task} structure.
  3197. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  3198. the @code{where} field, it must be non-null otherwise.
  3199. @item @code{cuda_func} (optional)
  3200. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  3201. must be a host-function written in the CUDA runtime API}. Its prototype must
  3202. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  3203. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  3204. field, it must be non-null otherwise.
  3205. @item @code{opencl_func} (optional)
  3206. Is a function pointer to the OpenCL implementation of the codelet. Its
  3207. prototype must be:
  3208. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  3209. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  3210. @code{where} field, it must be non-null otherwise.
  3211. @item @code{gordon_func} (optional)
  3212. This is the index of the Cell SPU implementation within the Gordon library.
  3213. See Gordon documentation for more details on how to register a kernel and
  3214. retrieve its index.
  3215. @item @code{nbuffers}
  3216. Specifies the number of arguments taken by the codelet. These arguments are
  3217. managed by the DSM and are accessed from the @code{void *buffers[]}
  3218. array. The constant argument passed with the @code{cl_arg} field of the
  3219. @code{starpu_task} structure is not counted in this number. This value should
  3220. not be above @code{STARPU_NMAXBUFS}.
  3221. @item @code{model} (optional)
  3222. This is a pointer to the task duration performance model associated to this
  3223. codelet. This optional field is ignored when set to @code{NULL}.
  3224. TODO
  3225. @item @code{power_model} (optional)
  3226. This is a pointer to the task power consumption performance model associated
  3227. to this codelet. This optional field is ignored when set to @code{NULL}.
  3228. In the case of parallel codelets, this has to account for all processing units
  3229. involved in the parallel execution.
  3230. TODO
  3231. @end table
  3232. @end deftp
  3233. @deftp {Data Type} {struct starpu_task}
  3234. The @code{starpu_task} structure describes a task that can be offloaded on the various
  3235. processing units managed by StarPU. It instantiates a codelet. It can either be
  3236. allocated dynamically with the @code{starpu_task_create} method, or declared
  3237. statically. In the latter case, the programmer has to zero the
  3238. @code{starpu_task} structure and to fill the different fields properly. The
  3239. indicated default values correspond to the configuration of a task allocated
  3240. with @code{starpu_task_create}.
  3241. @table @asis
  3242. @item @code{cl}
  3243. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  3244. describes where the kernel should be executed, and supplies the appropriate
  3245. implementations. When set to @code{NULL}, no code is executed during the tasks,
  3246. such empty tasks can be useful for synchronization purposes.
  3247. @item @code{buffers}
  3248. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  3249. different pieces of data accessed by the task, and how they should be accessed.
  3250. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  3251. @code{handle} field specifies the handle of the piece of data, and the
  3252. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  3253. of entries in this array must be specified in the @code{nbuffers} field of the
  3254. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  3255. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  3256. option when configuring StarPU.
  3257. @item @code{cl_arg} (optional; default: @code{NULL})
  3258. This pointer is passed to the codelet through the second argument
  3259. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  3260. In the specific case of the Cell processor, see the @code{cl_arg_size}
  3261. argument.
  3262. @item @code{cl_arg_size} (optional, Cell-specific)
  3263. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  3264. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  3265. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  3266. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  3267. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  3268. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  3269. codelets, where the @code{cl_arg} pointer is given as such.
  3270. @item @code{callback_func} (optional) (default: @code{NULL})
  3271. This is a function pointer of prototype @code{void (*f)(void *)} which
  3272. specifies a possible callback. If this pointer is non-null, the callback
  3273. function is executed @emph{on the host} after the execution of the task. The
  3274. callback is passed the value contained in the @code{callback_arg} field. No
  3275. callback is executed if the field is set to @code{NULL}.
  3276. @item @code{callback_arg} (optional) (default: @code{NULL})
  3277. This is the pointer passed to the callback function. This field is ignored if
  3278. the @code{callback_func} is set to @code{NULL}.
  3279. @item @code{use_tag} (optional) (default: @code{0})
  3280. If set, this flag indicates that the task should be associated with the tag
  3281. contained in the @code{tag_id} field. Tag allow the application to synchronize
  3282. with the task and to express task dependencies easily.
  3283. @item @code{tag_id}
  3284. This fields contains the tag associated to the task if the @code{use_tag} field
  3285. was set, it is ignored otherwise.
  3286. @item @code{synchronous}
  3287. If this flag is set, the @code{starpu_task_submit} function is blocking and
  3288. returns only when the task has been executed (or if no worker is able to
  3289. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  3290. @item @code{priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  3291. This field indicates a level of priority for the task. This is an integer value
  3292. that must be set between the return values of the
  3293. @code{starpu_sched_get_min_priority} function for the least important tasks,
  3294. and that of the @code{starpu_sched_get_max_priority} for the most important
  3295. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  3296. are provided for convenience and respectively returns value of
  3297. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  3298. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  3299. order to allow static task initialization. Scheduling strategies that take
  3300. priorities into account can use this parameter to take better scheduling
  3301. decisions, but the scheduling policy may also ignore it.
  3302. @item @code{execute_on_a_specific_worker} (default: @code{0})
  3303. If this flag is set, StarPU will bypass the scheduler and directly affect this
  3304. task to the worker specified by the @code{workerid} field.
  3305. @item @code{workerid} (optional)
  3306. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  3307. which is the identifier of the worker that should process this task (as
  3308. returned by @code{starpu_worker_get_id}). This field is ignored if
  3309. @code{execute_on_a_specific_worker} field is set to 0.
  3310. @item @code{detach} (optional) (default: @code{1})
  3311. If this flag is set, it is not possible to synchronize with the task
  3312. by the means of @code{starpu_task_wait} later on. Internal data structures
  3313. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  3314. flag is not set.
  3315. @item @code{destroy} (optional) (default: @code{1})
  3316. If this flag is set, the task structure will automatically be freed, either
  3317. after the execution of the callback if the task is detached, or during
  3318. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  3319. allocated data structures will not be freed until @code{starpu_task_destroy} is
  3320. called explicitly. Setting this flag for a statically allocated task structure
  3321. will result in undefined behaviour.
  3322. @item @code{predicted} (output field)
  3323. Predicted duration of the task. This field is only set if the scheduling
  3324. strategy used performance models.
  3325. @end table
  3326. @end deftp
  3327. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  3328. Initialize @var{task} with default values. This function is implicitly
  3329. called by @code{starpu_task_create}. By default, tasks initialized with
  3330. @code{starpu_task_init} must be deinitialized explicitly with
  3331. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  3332. constant @code{STARPU_TASK_INITIALIZER}.
  3333. @end deftypefun
  3334. @deftypefun {struct starpu_task *} starpu_task_create (void)
  3335. Allocate a task structure and initialize it with default values. Tasks
  3336. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  3337. task is terminated. If the destroy flag is explicitly unset, the resources used
  3338. by the task are freed by calling
  3339. @code{starpu_task_destroy}.
  3340. @end deftypefun
  3341. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  3342. Release all the structures automatically allocated to execute @var{task}. This is
  3343. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  3344. freed. This should be used for statically allocated tasks for instance.
  3345. @end deftypefun
  3346. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  3347. Free the resource allocated during @code{starpu_task_create} and
  3348. associated with @var{task}. This function can be called automatically
  3349. after the execution of a task by setting the @code{destroy} flag of the
  3350. @code{starpu_task} structure (default behaviour). Calling this function
  3351. on a statically allocated task results in an undefined behaviour.
  3352. @end deftypefun
  3353. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  3354. This function blocks until @var{task} has been executed. It is not possible to
  3355. synchronize with a task more than once. It is not possible to wait for
  3356. synchronous or detached tasks.
  3357. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  3358. indicates that the specified task was either synchronous or detached.
  3359. @end deftypefun
  3360. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  3361. This function submits @var{task} to StarPU. Calling this function does
  3362. not mean that the task will be executed immediately as there can be data or task
  3363. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  3364. scheduling this task with respect to such dependencies.
  3365. This function returns immediately if the @code{synchronous} field of the
  3366. @code{starpu_task} structure was set to 0, and block until the termination of
  3367. the task otherwise. It is also possible to synchronize the application with
  3368. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  3369. function for instance.
  3370. In case of success, this function returns 0, a return value of @code{-ENODEV}
  3371. means that there is no worker able to process this task (e.g. there is no GPU
  3372. available and this task is only implemented for CUDA devices).
  3373. @end deftypefun
  3374. @deftypefun int starpu_task_wait_for_all (void)
  3375. This function blocks until all the tasks that were submitted are terminated.
  3376. @end deftypefun
  3377. @deftypefun {struct starpu_task *} starpu_get_current_task (void)
  3378. This function returns the task currently executed by the worker, or
  3379. NULL if it is called either from a thread that is not a task or simply
  3380. because there is no task being executed at the moment.
  3381. @end deftypefun
  3382. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet_t} *@var{cl})
  3383. Output on @code{stderr} some statistics on the codelet @var{cl}.
  3384. @end deftypefun
  3385. @c Callbacks : what can we put in callbacks ?
  3386. @node Explicit Dependencies
  3387. @section Explicit Dependencies
  3388. @menu
  3389. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  3390. * starpu_tag_t:: Task logical identifier
  3391. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  3392. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  3393. * starpu_tag_wait:: Block until a Tag is terminated
  3394. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  3395. * starpu_tag_remove:: Destroy a Tag
  3396. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  3397. @end menu
  3398. @node starpu_task_declare_deps_array
  3399. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  3400. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  3401. Declare task dependencies between a @var{task} and an array of tasks of length
  3402. @var{ndeps}. This function must be called prior to the submission of the task,
  3403. but it may called after the submission or the execution of the tasks in the
  3404. array provided the tasks are still valid (ie. they were not automatically
  3405. destroyed). Calling this function on a task that was already submitted or with
  3406. an entry of @var{task_array} that is not a valid task anymore results in an
  3407. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  3408. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  3409. same task, in this case, the dependencies are added. It is possible to have
  3410. redundancy in the task dependencies.
  3411. @end deftypefun
  3412. @node starpu_tag_t
  3413. @subsection @code{starpu_tag_t} -- Task logical identifier
  3414. @table @asis
  3415. @item @emph{Description}:
  3416. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  3417. dependencies between tasks by the means of those tags. To do so, fill the
  3418. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  3419. be arbitrary) and set the @code{use_tag} field to 1.
  3420. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  3421. not be started until the tasks which holds the declared dependency tags are
  3422. completed.
  3423. @end table
  3424. @node starpu_tag_declare_deps
  3425. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  3426. @table @asis
  3427. @item @emph{Description}:
  3428. Specify the dependencies of the task identified by tag @code{id}. The first
  3429. argument specifies the tag which is configured, the second argument gives the
  3430. number of tag(s) on which @code{id} depends. The following arguments are the
  3431. tags which have to be terminated to unlock the task.
  3432. This function must be called before the associated task is submitted to StarPU
  3433. with @code{starpu_task_submit}.
  3434. @item @emph{Remark}
  3435. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  3436. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  3437. typically need to be explicitly casted. Using the
  3438. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  3439. @item @emph{Prototype}:
  3440. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  3441. @item @emph{Example}:
  3442. @cartouche
  3443. @example
  3444. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3445. starpu_tag_declare_deps((starpu_tag_t)0x1,
  3446. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  3447. @end example
  3448. @end cartouche
  3449. @end table
  3450. @node starpu_tag_declare_deps_array
  3451. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  3452. @table @asis
  3453. @item @emph{Description}:
  3454. This function is similar to @code{starpu_tag_declare_deps}, except that its
  3455. does not take a variable number of arguments but an array of tags of size
  3456. @code{ndeps}.
  3457. @item @emph{Prototype}:
  3458. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  3459. @item @emph{Example}:
  3460. @cartouche
  3461. @example
  3462. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  3463. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  3464. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  3465. @end example
  3466. @end cartouche
  3467. @end table
  3468. @node starpu_tag_wait
  3469. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  3470. @deftypefun void starpu_tag_wait (starpu_tag_t @var{id})
  3471. This function blocks until the task associated to tag @var{id} has been
  3472. executed. This is a blocking call which must therefore not be called within
  3473. tasks or callbacks, but only from the application directly. It is possible to
  3474. synchronize with the same tag multiple times, as long as the
  3475. @code{starpu_tag_remove} function is not called. Note that it is still
  3476. possible to synchronize with a tag associated to a task which @code{starpu_task}
  3477. data structure was freed (e.g. if the @code{destroy} flag of the
  3478. @code{starpu_task} was enabled).
  3479. @end deftypefun
  3480. @node starpu_tag_wait_array
  3481. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  3482. @deftypefun void starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  3483. This function is similar to @code{starpu_tag_wait} except that it blocks until
  3484. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  3485. terminated.
  3486. @end deftypefun
  3487. @node starpu_tag_remove
  3488. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  3489. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  3490. This function releases the resources associated to tag @var{id}. It can be
  3491. called once the corresponding task has been executed and when there is
  3492. no other tag that depend on this tag anymore.
  3493. @end deftypefun
  3494. @node starpu_tag_notify_from_apps
  3495. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  3496. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  3497. This function explicitly unlocks tag @var{id}. It may be useful in the
  3498. case of applications which execute part of their computation outside StarPU
  3499. tasks (e.g. third-party libraries). It is also provided as a
  3500. convenient tool for the programmer, for instance to entirely construct the task
  3501. DAG before actually giving StarPU the opportunity to execute the tasks.
  3502. @end deftypefun
  3503. @node Implicit Data Dependencies
  3504. @section Implicit Data Dependencies
  3505. @menu
  3506. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  3507. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  3508. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  3509. @end menu
  3510. In this section, we describe how StarPU makes it possible to insert implicit
  3511. task dependencies in order to enforce sequential data consistency. When this
  3512. data consistency is enabled on a specific data handle, any data access will
  3513. appear as sequentially consistent from the application. For instance, if the
  3514. application submits two tasks that access the same piece of data in read-only
  3515. mode, and then a third task that access it in write mode, dependencies will be
  3516. added between the two first tasks and the third one. Implicit data dependencies
  3517. are also inserted in the case of data accesses from the application.
  3518. @node starpu_data_set_default_sequential_consistency_flag
  3519. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  3520. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  3521. Set the default sequential consistency flag. If a non-zero value is passed, a
  3522. sequential data consistency will be enforced for all handles registered after
  3523. this function call, otherwise it is disabled. By default, StarPU enables
  3524. sequential data consistency. It is also possible to select the data consistency
  3525. mode of a specific data handle with the
  3526. @code{starpu_data_set_sequential_consistency_flag} function.
  3527. @end deftypefun
  3528. @node starpu_data_get_default_sequential_consistency_flag
  3529. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  3530. @deftypefun unsigned starpu_data_set_default_sequential_consistency_flag (void)
  3531. This function returns the current default sequential consistency flag.
  3532. @end deftypefun
  3533. @node starpu_data_set_sequential_consistency_flag
  3534. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3535. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle @var{handle}, unsigned @var{flag})
  3536. Select the data consistency mode associated to a data handle. The consistency
  3537. mode set using this function has the priority over the default mode which can
  3538. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3539. @end deftypefun
  3540. @node Performance Model API
  3541. @section Performance Model API
  3542. @menu
  3543. * starpu_load_history_debug::
  3544. * starpu_perfmodel_debugfilepath::
  3545. * starpu_perfmodel_get_arch_name::
  3546. * starpu_force_bus_sampling::
  3547. @end menu
  3548. @node starpu_load_history_debug
  3549. @subsection @code{starpu_load_history_debug}
  3550. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel_t} *@var{model})
  3551. TODO
  3552. @end deftypefun
  3553. @node starpu_perfmodel_debugfilepath
  3554. @subsection @code{starpu_perfmodel_debugfilepath}
  3555. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel_t} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen})
  3556. TODO
  3557. @end deftypefun
  3558. @node starpu_perfmodel_get_arch_name
  3559. @subsection @code{starpu_perfmodel_get_arch_name}
  3560. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen})
  3561. TODO
  3562. @end deftypefun
  3563. @node starpu_force_bus_sampling
  3564. @subsection @code{starpu_force_bus_sampling}
  3565. @deftypefun void starpu_force_bus_sampling (void)
  3566. This forces sampling the bus performance model again.
  3567. @end deftypefun
  3568. @node Profiling API
  3569. @section Profiling API
  3570. @menu
  3571. * starpu_profiling_status_set:: starpu_profiling_status_set
  3572. * starpu_profiling_status_get:: starpu_profiling_status_get
  3573. * struct starpu_task_profiling_info:: task profiling information
  3574. * struct starpu_worker_profiling_info:: worker profiling information
  3575. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3576. * struct starpu_bus_profiling_info:: bus profiling information
  3577. * starpu_bus_get_count::
  3578. * starpu_bus_get_id::
  3579. * starpu_bus_get_src::
  3580. * starpu_bus_get_dst::
  3581. * starpu_timing_timespec_delay_us::
  3582. * starpu_timing_timespec_to_us::
  3583. * starpu_bus_profiling_helper_display_summary::
  3584. * starpu_worker_profiling_helper_display_summary::
  3585. @end menu
  3586. @node starpu_profiling_status_set
  3587. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3588. @table @asis
  3589. @item @emph{Description}:
  3590. Thie function sets the profiling status. Profiling is activated by passing
  3591. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3592. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3593. resets all profiling measurements. When profiling is enabled, the
  3594. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3595. to a valid @code{struct starpu_task_profiling_info} structure containing
  3596. information about the execution of the task.
  3597. @item @emph{Return value}:
  3598. Negative return values indicate an error, otherwise the previous status is
  3599. returned.
  3600. @item @emph{Prototype}:
  3601. @code{int starpu_profiling_status_set(int status);}
  3602. @end table
  3603. @node starpu_profiling_status_get
  3604. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3605. @deftypefun int starpu_profiling_status_get (void)
  3606. Return the current profiling status or a negative value in case there was an error.
  3607. @end deftypefun
  3608. @node struct starpu_task_profiling_info
  3609. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3610. @table @asis
  3611. @item @emph{Description}:
  3612. This structure contains information about the execution of a task. It is
  3613. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3614. structure if profiling was enabled.
  3615. @item @emph{Fields}:
  3616. @table @asis
  3617. @item @code{submit_time}:
  3618. Date of task submission (relative to the initialization of StarPU).
  3619. @item @code{start_time}:
  3620. Date of task execution beginning (relative to the initialization of StarPU).
  3621. @item @code{end_time}:
  3622. Date of task execution termination (relative to the initialization of StarPU).
  3623. @item @code{workerid}:
  3624. Identifier of the worker which has executed the task.
  3625. @end table
  3626. @end table
  3627. @node struct starpu_worker_profiling_info
  3628. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3629. @table @asis
  3630. @item @emph{Description}:
  3631. This structure contains the profiling information associated to a worker.
  3632. @item @emph{Fields}:
  3633. @table @asis
  3634. @item @code{start_time}:
  3635. Starting date for the reported profiling measurements.
  3636. @item @code{total_time}:
  3637. Duration of the profiling measurement interval.
  3638. @item @code{executing_time}:
  3639. Time spent by the worker to execute tasks during the profiling measurement interval.
  3640. @item @code{sleeping_time}:
  3641. Time spent idling by the worker during the profiling measurement interval.
  3642. @item @code{executed_tasks}:
  3643. Number of tasks executed by the worker during the profiling measurement interval.
  3644. @end table
  3645. @end table
  3646. @node starpu_worker_get_profiling_info
  3647. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3648. @table @asis
  3649. @item @emph{Description}:
  3650. Get the profiling info associated to the worker identified by @code{workerid},
  3651. and reset the profiling measurements. If the @code{worker_info} argument is
  3652. NULL, only reset the counters associated to worker @code{workerid}.
  3653. @item @emph{Return value}:
  3654. Upon successful completion, this function returns 0. Otherwise, a negative
  3655. value is returned.
  3656. @item @emph{Prototype}:
  3657. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3658. @end table
  3659. @node struct starpu_bus_profiling_info
  3660. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3661. @table @asis
  3662. @item @emph{Description}:
  3663. TODO
  3664. @item @emph{Fields}:
  3665. @table @asis
  3666. @item @code{start_time}:
  3667. TODO
  3668. @item @code{total_time}:
  3669. TODO
  3670. @item @code{transferred_bytes}:
  3671. TODO
  3672. @item @code{transfer_count}:
  3673. TODO
  3674. @end table
  3675. @end table
  3676. @node starpu_bus_get_count
  3677. @subsection @code{starpu_bus_get_count}
  3678. @deftypefun int starpu_bus_get_count (void)
  3679. TODO
  3680. @end deftypefun
  3681. @node starpu_bus_get_id
  3682. @subsection @code{starpu_bus_get_id}
  3683. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  3684. TODO
  3685. @end deftypefun
  3686. @node starpu_bus_get_src
  3687. @subsection @code{starpu_bus_get_src}
  3688. @deftypefun int starpu_bus_get_src (int @var{busid})
  3689. TODO
  3690. @end deftypefun
  3691. @node starpu_bus_get_dst
  3692. @subsection @code{starpu_bus_get_dst}
  3693. @deftypefun int starpu_bus_get_dst (int @var{busid})
  3694. TODO
  3695. @end deftypefun
  3696. @node starpu_timing_timespec_delay_us
  3697. @subsection @code{starpu_timing_timespec_delay_us}
  3698. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  3699. TODO
  3700. @end deftypefun
  3701. @node starpu_timing_timespec_to_us
  3702. @subsection @code{starpu_timing_timespec_to_us}
  3703. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  3704. TODO
  3705. @end deftypefun
  3706. @node starpu_bus_profiling_helper_display_summary
  3707. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3708. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  3709. TODO
  3710. @end deftypefun
  3711. @node starpu_worker_profiling_helper_display_summary
  3712. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3713. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  3714. TODO
  3715. @end deftypefun
  3716. @node CUDA extensions
  3717. @section CUDA extensions
  3718. @c void starpu_malloc(float **A, size_t dim);
  3719. @menu
  3720. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3721. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3722. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3723. @end menu
  3724. @node starpu_cuda_get_local_stream
  3725. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3726. @deftypefun {cudaStream_t *} starpu_cuda_get_local_stream (void)
  3727. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3728. function is only provided for convenience so that programmers can easily use
  3729. asynchronous operations within codelets without having to create a stream by
  3730. hand. Note that the application is not forced to use the stream provided by
  3731. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3732. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3733. the likelihood of having all transfers overlapped.
  3734. @end deftypefun
  3735. @node starpu_helper_cublas_init
  3736. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3737. @deftypefun void starpu_helper_cublas_init (void)
  3738. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3739. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3740. controlled by StarPU. This call blocks until CUBLAS has been properly
  3741. initialized on every device.
  3742. @end deftypefun
  3743. @node starpu_helper_cublas_shutdown
  3744. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3745. @deftypefun void starpu_helper_cublas_shutdown (void)
  3746. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3747. @end deftypefun
  3748. @node OpenCL extensions
  3749. @section OpenCL extensions
  3750. @menu
  3751. * Enabling OpenCL:: Enabling OpenCL
  3752. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3753. * Loading OpenCL kernels:: Loading OpenCL kernels
  3754. * OpenCL statistics:: Collecting statistics from OpenCL
  3755. @end menu
  3756. @node Enabling OpenCL
  3757. @subsection Enabling OpenCL
  3758. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3759. enabled by default. To enable OpenCL, you need either to disable CUDA
  3760. when configuring StarPU:
  3761. @example
  3762. % ./configure --disable-cuda
  3763. @end example
  3764. or when running applications:
  3765. @example
  3766. % STARPU_NCUDA=0 ./application
  3767. @end example
  3768. OpenCL will automatically be started on any device not yet used by
  3769. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3770. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3771. so:
  3772. @example
  3773. % STARPU_NCUDA=2 ./application
  3774. @end example
  3775. @node Compiling OpenCL kernels
  3776. @subsection Compiling OpenCL kernels
  3777. Source codes for OpenCL kernels can be stored in a file or in a
  3778. string. StarPU provides functions to build the program executable for
  3779. each available OpenCL device as a @code{cl_program} object. This
  3780. program executable can then be loaded within a specific queue as
  3781. explained in the next section. These are only helpers, Applications
  3782. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3783. use (e.g. different programs on the different OpenCL devices, for
  3784. relocation purpose for instance).
  3785. @menu
  3786. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3787. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3788. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3789. @end menu
  3790. @node starpu_opencl_load_opencl_from_file
  3791. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3792. @deftypefun int starpu_opencl_load_opencl_from_file (char *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  3793. TODO
  3794. @end deftypefun
  3795. @node starpu_opencl_load_opencl_from_string
  3796. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3797. @deftypefun int starpu_opencl_load_opencl_from_string (char *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  3798. TODO
  3799. @end deftypefun
  3800. @node starpu_opencl_unload_opencl
  3801. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3802. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  3803. TODO
  3804. @end deftypefun
  3805. @node Loading OpenCL kernels
  3806. @subsection Loading OpenCL kernels
  3807. @menu
  3808. * starpu_opencl_load_kernel:: Loading a kernel
  3809. * starpu_opencl_relase_kernel:: Releasing a kernel
  3810. @end menu
  3811. @node starpu_opencl_load_kernel
  3812. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3813. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, char *@var{kernel_name}, int @var{devid})
  3814. TODO
  3815. @end deftypefun
  3816. @node starpu_opencl_relase_kernel
  3817. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3818. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  3819. TODO
  3820. @end deftypefun
  3821. @node OpenCL statistics
  3822. @subsection OpenCL statistics
  3823. @menu
  3824. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3825. @end menu
  3826. @node starpu_opencl_collect_stats
  3827. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3828. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  3829. After termination of the kernels, the OpenCL codelet should call this function
  3830. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3831. collect statistics about the kernel execution (used cycles, consumed power).
  3832. @end deftypefun
  3833. @node Cell extensions
  3834. @section Cell extensions
  3835. nothing yet.
  3836. @node Miscellaneous helpers
  3837. @section Miscellaneous helpers
  3838. @menu
  3839. * starpu_data_cpy:: Copy a data handle into another data handle
  3840. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3841. @end menu
  3842. @node starpu_data_cpy
  3843. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3844. @deftypefun int starpu_data_cpy (starpu_data_handle @var{dst_handle}, starpu_data_handle @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  3845. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  3846. The @var{asynchronous} parameter indicates whether the function should
  3847. block or not. In the case of an asynchronous call, it is possible to
  3848. synchronize with the termination of this operation either by the means of
  3849. implicit dependencies (if enabled) or by calling
  3850. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  3851. this callback function is executed after the handle has been copied, and it is
  3852. given the @var{callback_arg} pointer as argument.
  3853. @end deftypefun
  3854. @node starpu_execute_on_each_worker
  3855. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3856. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  3857. When calling this method, the offloaded function specified by the first argument is
  3858. executed by every StarPU worker that may execute the function.
  3859. The second argument is passed to the offloaded function.
  3860. The last argument specifies on which types of processing units the function
  3861. should be executed. Similarly to the @var{where} field of the
  3862. @code{starpu_codelet} structure, it is possible to specify that the function
  3863. should be executed on every CUDA device and every CPU by passing
  3864. @code{STARPU_CPU|STARPU_CUDA}.
  3865. This function blocks until the function has been executed on every appropriate
  3866. processing units, so that it may not be called from a callback function for
  3867. instance.
  3868. @end deftypefun
  3869. @c ---------------------------------------------------------------------
  3870. @c Advanced Topics
  3871. @c ---------------------------------------------------------------------
  3872. @node Advanced Topics
  3873. @chapter Advanced Topics
  3874. @menu
  3875. * Defining a new data interface::
  3876. * Defining a new scheduling policy::
  3877. @end menu
  3878. @node Defining a new data interface
  3879. @section Defining a new data interface
  3880. @menu
  3881. * struct starpu_data_interface_ops_t:: Per-interface methods
  3882. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3883. * An example of data interface:: An example of data interface
  3884. @end menu
  3885. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3886. @node struct starpu_data_interface_ops_t
  3887. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3888. @table @asis
  3889. @item @emph{Description}:
  3890. TODO describe all the different fields
  3891. @end table
  3892. @node struct starpu_data_copy_methods
  3893. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3894. @table @asis
  3895. @item @emph{Description}:
  3896. TODO describe all the different fields
  3897. @end table
  3898. @node An example of data interface
  3899. @subsection An example of data interface
  3900. @table @asis
  3901. TODO
  3902. See @code{src/datawizard/interfaces/vector_interface.c} for now.
  3903. @end table
  3904. @node Defining a new scheduling policy
  3905. @section Defining a new scheduling policy
  3906. TODO
  3907. A full example showing how to define a new scheduling policy is available in
  3908. the StarPU sources in the directory @code{examples/scheduler/}.
  3909. @menu
  3910. * struct starpu_sched_policy_s::
  3911. * starpu_worker_set_sched_condition::
  3912. * starpu_sched_set_min_priority:: Set the minimum priority level
  3913. * starpu_sched_set_max_priority:: Set the maximum priority level
  3914. * starpu_push_local_task:: Assign a task to a worker
  3915. * Source code::
  3916. @end menu
  3917. @node struct starpu_sched_policy_s
  3918. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3919. @table @asis
  3920. @item @emph{Description}:
  3921. This structure contains all the methods that implement a scheduling policy. An
  3922. application may specify which scheduling strategy in the @code{sched_policy}
  3923. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3924. function.
  3925. @item @emph{Fields}:
  3926. @table @asis
  3927. @item @code{init_sched}:
  3928. Initialize the scheduling policy.
  3929. @item @code{deinit_sched}:
  3930. Cleanup the scheduling policy.
  3931. @item @code{push_task}:
  3932. Insert a task into the scheduler.
  3933. @item @code{push_prio_task}:
  3934. Insert a priority task into the scheduler.
  3935. @item @code{push_prio_notify}:
  3936. Notify the scheduler that a task was pushed on the worker. This method is
  3937. called when a task that was explicitely assigned to a worker is scheduled. This
  3938. method therefore permits to keep the state of of the scheduler coherent even
  3939. when StarPU bypasses the scheduling strategy.
  3940. @item @code{pop_task}:
  3941. Get a task from the scheduler. The mutex associated to the worker is already
  3942. taken when this method is called. If this method is defined as @code{NULL}, the
  3943. worker will only execute tasks from its local queue. In this case, the
  3944. @code{push_task} method should use the @code{starpu_push_local_task} method to
  3945. assign tasks to the different workers.
  3946. @item @code{pop_every_task}:
  3947. Remove all available tasks from the scheduler (tasks are chained by the means
  3948. of the prev and next fields of the starpu_task structure). The mutex associated
  3949. to the worker is already taken when this method is called.
  3950. @item @code{post_exec_hook} (optionnal):
  3951. This method is called every time a task has been executed.
  3952. @item @code{policy_name}:
  3953. Name of the policy (optionnal).
  3954. @item @code{policy_description}:
  3955. Description of the policy (optionnal).
  3956. @end table
  3957. @end table
  3958. @node starpu_worker_set_sched_condition
  3959. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3960. @deftypefun void starpu_worker_set_sched_condition (int @var{workerid}, pthread_cond_t *@var{sched_cond}, pthread_mutex_t *@var{sched_mutex})
  3961. When there is no available task for a worker, StarPU blocks this worker on a
  3962. condition variable. This function specifies which condition variable (and the
  3963. associated mutex) should be used to block (and to wake up) a worker. Note that
  3964. multiple workers may use the same condition variable. For instance, in the case
  3965. of a scheduling strategy with a single task queue, the same condition variable
  3966. would be used to block and wake up all workers.
  3967. The initialization method of a scheduling strategy (@code{init_sched}) must
  3968. call this function once per worker.
  3969. @end deftypefun
  3970. @node starpu_sched_set_min_priority
  3971. @subsection @code{starpu_sched_set_min_priority}
  3972. @deftypefun void starpu_sched_set_min_priority (int @var{min_prio})
  3973. Defines the minimum priority level supported by the scheduling policy. The
  3974. default minimum priority level is the same as the default priority level which
  3975. is 0 by convention. The application may access that value by calling the
  3976. @code{starpu_sched_get_min_priority} function. This function should only be
  3977. called from the initialization method of the scheduling policy, and should not
  3978. be used directly from the application.
  3979. @end deftypefun
  3980. @node starpu_sched_set_max_priority
  3981. @subsection @code{starpu_sched_set_max_priority}
  3982. @deftypefun void starpu_sched_set_min_priority (int @var{max_prio})
  3983. Defines the maximum priority level supported by the scheduling policy. The
  3984. default maximum priority level is 1. The application may access that value by
  3985. calling the @code{starpu_sched_get_max_priority} function. This function should
  3986. only be called from the initialization method of the scheduling policy, and
  3987. should not be used directly from the application.
  3988. @end deftypefun
  3989. @node starpu_push_local_task
  3990. @subsection @code{starpu_push_local_task}
  3991. @deftypefun int starpu_push_local_task (int @var{workerid}, {struct starpu_task} *@var{task}, int @var{back})
  3992. The scheduling policy may put tasks directly into a worker's local queue so
  3993. that it is not always necessary to create its own queue when the local queue
  3994. is sufficient. If "back" not null, the task is put at the back of the queue
  3995. where the worker will pop tasks first. Setting "back" to 0 therefore ensures
  3996. a FIFO ordering.
  3997. @end deftypefun
  3998. @node Source code
  3999. @subsection Source code
  4000. @cartouche
  4001. @smallexample
  4002. static struct starpu_sched_policy_s dummy_sched_policy = @{
  4003. .init_sched = init_dummy_sched,
  4004. .deinit_sched = deinit_dummy_sched,
  4005. .push_task = push_task_dummy,
  4006. .push_prio_task = NULL,
  4007. .pop_task = pop_task_dummy,
  4008. .post_exec_hook = NULL,
  4009. .pop_every_task = NULL,
  4010. .policy_name = "dummy",
  4011. .policy_description = "dummy scheduling strategy"
  4012. @};
  4013. @end smallexample
  4014. @end cartouche
  4015. @c ---------------------------------------------------------------------
  4016. @c Appendices
  4017. @c ---------------------------------------------------------------------
  4018. @c ---------------------------------------------------------------------
  4019. @c Full source code for the 'Scaling a Vector' example
  4020. @c ---------------------------------------------------------------------
  4021. @node Full source code for the 'Scaling a Vector' example
  4022. @appendix Full source code for the 'Scaling a Vector' example
  4023. @menu
  4024. * Main application::
  4025. * CPU Kernel::
  4026. * CUDA Kernel::
  4027. * OpenCL Kernel::
  4028. @end menu
  4029. @node Main application
  4030. @section Main application
  4031. @smallexample
  4032. @include vector_scal_c.texi
  4033. @end smallexample
  4034. @node CPU Kernel
  4035. @section CPU Kernel
  4036. @smallexample
  4037. @include vector_scal_cpu.texi
  4038. @end smallexample
  4039. @node CUDA Kernel
  4040. @section CUDA Kernel
  4041. @smallexample
  4042. @include vector_scal_cuda.texi
  4043. @end smallexample
  4044. @node OpenCL Kernel
  4045. @section OpenCL Kernel
  4046. @menu
  4047. * Invoking the kernel::
  4048. * Source of the kernel::
  4049. @end menu
  4050. @node Invoking the kernel
  4051. @subsection Invoking the kernel
  4052. @smallexample
  4053. @include vector_scal_opencl.texi
  4054. @end smallexample
  4055. @node Source of the kernel
  4056. @subsection Source of the kernel
  4057. @smallexample
  4058. @include vector_scal_opencl_codelet.texi
  4059. @end smallexample
  4060. @c
  4061. @c Indices.
  4062. @c
  4063. @node Function Index
  4064. @unnumbered Function Index
  4065. @printindex fn
  4066. @bye