advanced-examples.texi 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Using multiple implementations of a codelet::
  9. * Enabling implementation according to capabilities::
  10. * Task and Worker Profiling::
  11. * Partitioning Data:: Partitioning Data
  12. * Performance model example::
  13. * Theoretical lower bound on execution time::
  14. * Insert Task Utility::
  15. * The multiformat interface::
  16. * On-GPU rendering::
  17. * More examples:: More examples shipped with StarPU
  18. * Debugging:: When things go wrong.
  19. @end menu
  20. @node Using multiple implementations of a codelet
  21. @section Using multiple implementations of a codelet
  22. One may want to write multiple implementations of a codelet for a single type of
  23. device and let StarPU choose which one to run. As an example, we will show how
  24. to use SSE to scale a vector. The codelet can be written as follows :
  25. @cartouche
  26. @smallexample
  27. #include <xmmintrin.h>
  28. void scal_sse_func(void *buffers[], void *cl_arg)
  29. @{
  30. float *vector = (float *) STARPU_VECTOR_GET_PTR(buffers[0]);
  31. unsigned int n = STARPU_VECTOR_GET_NX(buffers[0]);
  32. unsigned int n_iterations = n/4;
  33. if (n % 4 != 0)
  34. n_iterations++;
  35. __m128 *VECTOR = (__m128*) vector;
  36. __m128 factor __attribute__((aligned(16)));
  37. factor = _mm_set1_ps(*(float *) cl_arg);
  38. unsigned int i;
  39. for (i = 0; i < n_iterations; i++)
  40. VECTOR[i] = _mm_mul_ps(factor, VECTOR[i]);
  41. @}
  42. @end smallexample
  43. @end cartouche
  44. @cartouche
  45. @smallexample
  46. struct starpu_codelet cl = @{
  47. .where = STARPU_CPU,
  48. .cpu_funcs = @{ scal_cpu_func, scal_sse_func, NULL @},
  49. .nbuffers = 1,
  50. .modes = @{ STARPU_RW @}
  51. @};
  52. @end smallexample
  53. @end cartouche
  54. Schedulers which are multi-implementation aware (only @code{dmda}, @code{heft}
  55. and @code{pheft} for now) will use the performance models of all the
  56. implementations it was given, and pick the one that seems to be the fastest.
  57. @node Enabling implementation according to capabilities
  58. @section Enabling implementation according to capabilities
  59. Some implementations may not run on some devices. For instance, some CUDA
  60. devices do not support double floating point precision, and thus the kernel
  61. execution would just fail; or the device may not have enough shared memory for
  62. the implementation being used. The @code{can_execute} field of the @code{struct
  63. starpu_codelet} structure permits to express this. For instance:
  64. @cartouche
  65. @smallexample
  66. static int can_execute(unsigned workerid, struct starpu_task *task, unsigned nimpl)
  67. @{
  68. const struct cudaDeviceProp *props;
  69. if (starpu_worker_get_type(workerid) == STARPU_CPU_WORKER)
  70. return 1;
  71. /* Cuda device */
  72. props = starpu_cuda_get_device_properties(workerid);
  73. if (props->major >= 2 || props->minor >= 3)
  74. /* At least compute capability 1.3, supports doubles */
  75. return 1;
  76. /* Old card, does not support doubles */
  77. return 0;
  78. @}
  79. struct starpu_codelet cl = @{
  80. .where = STARPU_CPU|STARPU_CUDA,
  81. .can_execute = can_execute,
  82. .cpu_funcs = @{ cpu_func, NULL @},
  83. .cuda_funcs = @{ gpu_func, NULL @}
  84. .nbuffers = 1,
  85. .modes = @{ STARPU_RW @}
  86. @};
  87. @end smallexample
  88. @end cartouche
  89. This can be essential e.g. when running on a machine which mixes various models
  90. of CUDA devices, to take benefit from the new models without crashing on old models.
  91. Note: the @code{can_execute} function is called by the scheduler each time it
  92. tries to match a task with a worker, and should thus be very fast. The
  93. @code{starpu_cuda_get_device_properties} provides a quick access to CUDA
  94. properties of CUDA devices to achieve such efficiency.
  95. Another example is compiling CUDA code for various compute capabilities,
  96. resulting with two CUDA functions, e.g. @code{scal_gpu_13} for compute capability
  97. 1.3, and @code{scal_gpu_20} for compute capability 2.0. Both functions can be
  98. provided to StarPU by using @code{cuda_funcs}, and @code{can_execute} can then be
  99. used to rule out the @code{scal_gpu_20} variant on a CUDA device which
  100. will not be able to execute it:
  101. @cartouche
  102. @smallexample
  103. static int can_execute(unsigned workerid, struct starpu_task *task, unsigned nimpl)
  104. @{
  105. const struct cudaDeviceProp *props;
  106. if (starpu_worker_get_type(workerid) == STARPU_CPU_WORKER)
  107. return 1;
  108. /* Cuda device */
  109. if (nimpl == 0)
  110. /* Trying to execute the 1.3 capability variant, we assume it is ok in all cases. */
  111. return 1;
  112. /* Trying to execute the 2.0 capability variant, check that the card can do it. */
  113. props = starpu_cuda_get_device_properties(workerid);
  114. if (props->major >= 2 || props->minor >= 0)
  115. /* At least compute capability 2.0, can run it */
  116. return 1;
  117. /* Old card, does not support 2.0, will not be able to execute the 2.0 variant. */
  118. return 0;
  119. @}
  120. struct starpu_codelet cl = @{
  121. .where = STARPU_CPU|STARPU_CUDA,
  122. .can_execute = can_execute,
  123. .cpu_funcs = @{ cpu_func, NULL @},
  124. .cuda_funcs = @{ scal_gpu_13, scal_gpu_20, NULL @},
  125. .nbuffers = 1,
  126. .modes = @{ STARPU_RW @}
  127. @};
  128. @end smallexample
  129. @end cartouche
  130. Note: the most generic variant should be provided first, as some schedulers are
  131. not able to try the different variants.
  132. @node Task and Worker Profiling
  133. @section Task and Worker Profiling
  134. A full example showing how to use the profiling API is available in
  135. the StarPU sources in the directory @code{examples/profiling/}.
  136. @cartouche
  137. @smallexample
  138. struct starpu_task *task = starpu_task_create();
  139. task->cl = &cl;
  140. task->synchronous = 1;
  141. /* We will destroy the task structure by hand so that we can
  142. * query the profiling info before the task is destroyed. */
  143. task->destroy = 0;
  144. /* Submit and wait for completion (since synchronous was set to 1) */
  145. starpu_task_submit(task);
  146. /* The task is finished, get profiling information */
  147. struct starpu_task_profiling_info *info = task->profiling_info;
  148. /* How much time did it take before the task started ? */
  149. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  150. /* How long was the task execution ? */
  151. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  152. /* We don't need the task structure anymore */
  153. starpu_task_destroy(task);
  154. @end smallexample
  155. @end cartouche
  156. @cartouche
  157. @smallexample
  158. /* Display the occupancy of all workers during the test */
  159. int worker;
  160. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  161. @{
  162. struct starpu_worker_profiling_info worker_info;
  163. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  164. STARPU_ASSERT(!ret);
  165. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  166. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  167. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  168. float executing_ratio = 100.0*executing_time/total_time;
  169. float sleeping_ratio = 100.0*sleeping_time/total_time;
  170. char workername[128];
  171. starpu_worker_get_name(worker, workername, 128);
  172. fprintf(stderr, "Worker %s:\n", workername);
  173. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  174. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  175. executing_ratio);
  176. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  177. sleeping_ratio);
  178. @}
  179. @end smallexample
  180. @end cartouche
  181. @node Partitioning Data
  182. @section Partitioning Data
  183. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  184. @cartouche
  185. @smallexample
  186. int vector[NX];
  187. starpu_data_handle_t handle;
  188. /* Declare data to StarPU */
  189. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  190. /* Partition the vector in PARTS sub-vectors */
  191. starpu_filter f =
  192. @{
  193. .filter_func = starpu_block_filter_func_vector,
  194. .nchildren = PARTS
  195. @};
  196. starpu_data_partition(handle, &f);
  197. @end smallexample
  198. @end cartouche
  199. The task submission then uses @code{starpu_data_get_sub_data} to retrive the
  200. sub-handles to be passed as tasks parameters.
  201. @cartouche
  202. @smallexample
  203. /* Submit a task on each sub-vector */
  204. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  205. /* Get subdata number i (there is only 1 dimension) */
  206. starpu_data_handle_t sub_handle = starpu_data_get_sub_data(handle, 1, i);
  207. struct starpu_task *task = starpu_task_create();
  208. task->handles[0] = sub_handle;
  209. task->cl = &cl;
  210. task->synchronous = 1;
  211. task->cl_arg = &factor;
  212. task->cl_arg_size = sizeof(factor);
  213. starpu_task_submit(task);
  214. @}
  215. @end smallexample
  216. @end cartouche
  217. Partitioning can be applied several times, see
  218. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  219. Wherever the whole piece of data is already available, the partitioning will
  220. be done in-place, i.e. without allocating new buffers but just using pointers
  221. inside the existing copy. This is particularly important to be aware of when
  222. using OpenCL, where the kernel parameters are not pointers, but handles. The
  223. kernel thus needs to be also passed the offset within the OpenCL buffer:
  224. @cartouche
  225. @smallexample
  226. void opencl_func(void *buffers[], void *cl_arg)
  227. @{
  228. cl_mem vector = (cl_mem) STARPU_VECTOR_GET_DEV_HANDLE(buffers[0]);
  229. unsigned offset = STARPU_BLOCK_GET_OFFSET(buffers[0]);
  230. ...
  231. clSetKernelArg(kernel, 0, sizeof(vector), &vector);
  232. clSetKernelArg(kernel, 1, sizeof(offset), &offset);
  233. ...
  234. @}
  235. @end smallexample
  236. @end cartouche
  237. And the kernel has to shift from the pointer passed by the OpenCL driver:
  238. @cartouche
  239. @smallexample
  240. __kernel void opencl_kernel(__global int *vector, unsigned offset)
  241. @{
  242. block = (__global void *)block + offset;
  243. ...
  244. @}
  245. @end smallexample
  246. @end cartouche
  247. @node Performance model example
  248. @section Performance model example
  249. To achieve good scheduling, StarPU scheduling policies need to be able to
  250. estimate in advance the duration of a task. This is done by giving to codelets
  251. a performance model, by defining a @code{starpu_perfmodel} structure and
  252. providing its address in the @code{model} field of the @code{struct starpu_codelet}
  253. structure. The @code{symbol} and @code{type} fields of @code{starpu_perfmodel}
  254. are mandatory, to give a name to the model, and the type of the model, since
  255. there are several kinds of performance models.
  256. @itemize
  257. @item
  258. Measured at runtime (@code{STARPU_HISTORY_BASED} model type). This assumes that for a
  259. given set of data input/output sizes, the performance will always be about the
  260. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  261. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  262. few different sets of data input/output sizes. StarPU will then keep record of
  263. the average time of previous executions on the various processing units, and use
  264. it as an estimation. History is done per task size, by using a hash of the input
  265. and ouput sizes as an index.
  266. It will also save it in @code{~/.starpu/sampling/codelets}
  267. for further executions, and can be observed by using the
  268. @code{starpu_perfmodel_display} command, or drawn by using
  269. the @code{starpu_perfmodel_plot}. The models are indexed by machine name. To
  270. share the models between machines (e.g. for a homogeneous cluster), use
  271. @code{export STARPU_HOSTNAME=some_global_name}. Measurements are only done when using a task scheduler which makes use of it, such as @code{heft} or @code{dmda}.
  272. The following is a small code example.
  273. If e.g. the code is recompiled with other compilation options, or several
  274. variants of the code are used, the symbol string should be changed to reflect
  275. that, in order to recalibrate a new model from zero. The symbol string can even
  276. be constructed dynamically at execution time, as long as this is done before
  277. submitting any task using it.
  278. @cartouche
  279. @smallexample
  280. static struct starpu_perfmodel mult_perf_model = @{
  281. .type = STARPU_HISTORY_BASED,
  282. .symbol = "mult_perf_model"
  283. @};
  284. struct starpu_codelet cl = @{
  285. .where = STARPU_CPU,
  286. .cpu_funcs = @{ cpu_mult, NULL @},
  287. .nbuffers = 3,
  288. .modes = @{ STARPU_R, STARPU_R, STARPU_W @},
  289. /* for the scheduling policy to be able to use performance models */
  290. .model = &mult_perf_model
  291. @};
  292. @end smallexample
  293. @end cartouche
  294. @item
  295. Measured at runtime and refined by regression (@code{STARPU_*REGRESSION_BASED}
  296. model type). This still assumes performance regularity, but can work
  297. with various data input sizes, by applying regression over observed
  298. execution times. STARPU_REGRESSION_BASED uses an a*n^b regression
  299. form, STARPU_NL_REGRESSION_BASED uses an a*n^b+c (more precise than
  300. STARPU_REGRESSION_BASED, but costs a lot more to compute). For instance,
  301. @code{tests/perfmodels/regression_based.c} uses a regression-based performance
  302. model for the @code{memset} operation. Of course, the application has to issue
  303. tasks with varying size so that the regression can be computed. StarPU will not
  304. trust the regression unless there is at least 10% difference between the minimum
  305. and maximum observed input size. For non-linear regression, since computing it
  306. is quite expensive, it is only done at termination of the application. This
  307. means that the first execution uses history-based performance model to perform
  308. scheduling.
  309. @item
  310. Provided as an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_function} field),
  311. see for instance
  312. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}.
  313. @item
  314. Provided explicitly by the application (@code{STARPU_PER_ARCH} model type): the
  315. @code{.per_arch[arch][nimpl].cost_function} fields have to be filled with pointers to
  316. functions which return the expected duration of the task in micro-seconds, one
  317. per architecture.
  318. @end itemize
  319. For the @code{STARPU_HISTORY_BASED} and @code{STARPU_*REGRESSION_BASE},
  320. the total size of task data (both input and output) is used as an index by
  321. default. The @code{size_base} field of @code{struct starpu_perfmodel} however
  322. permits the application to override that, when for instance some of the data
  323. do not matter for task cost (e.g. mere reference table), or when using sparse
  324. structures (in which case it is the number of non-zeros which matter), or when
  325. there is some hidden parameter such as the number of iterations, etc.
  326. How to use schedulers which can benefit from such performance model is explained
  327. in @ref{Task scheduling policy}.
  328. The same can be done for task power consumption estimation, by setting the
  329. @code{power_model} field the same way as the @code{model} field. Note: for
  330. now, the application has to give to the power consumption performance model
  331. a name which is different from the execution time performance model.
  332. The application can request time estimations from the StarPU performance
  333. models by filling a task structure as usual without actually submitting
  334. it. The data handles can be created by calling @code{starpu_data_register}
  335. functions with a @code{NULL} pointer (and need to be unregistered as usual)
  336. and the desired data sizes. The @code{starpu_task_expected_length} and
  337. @code{starpu_task_expected_power} functions can then be called to get an
  338. estimation of the task duration on a given arch. @code{starpu_task_destroy}
  339. needs to be called to destroy the dummy task afterwards. See
  340. @code{tests/perfmodels/regression_based.c} for an example.
  341. @node Theoretical lower bound on execution time
  342. @section Theoretical lower bound on execution time
  343. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  344. bound for the execution time of a whole set of tasks. See for
  345. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  346. call @code{starpu_bound_start}, and after complete execution, call
  347. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  348. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  349. problem corresponding to the schedule of your tasks. Run it through
  350. @code{lp_solve} or any other linear programming solver, and that will give you a
  351. lower bound for the total execution time of your tasks. If StarPU was compiled
  352. with the glpk library installed, @code{starpu_bound_compute} can be used to
  353. solve it immediately and get the optimized minimum, in ms. Its @code{integer}
  354. parameter allows to decide whether integer resolution should be computed
  355. and returned too.
  356. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  357. dependencies into account. It must be understood that the linear programming
  358. problem size is quadratic with the number of tasks and thus the time to solve it
  359. will be very long, it could be minutes for just a few dozen tasks. You should
  360. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  361. problem to MPS format and then use a better solver, @code{glpsol} might be
  362. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  363. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  364. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  365. of @code{lp_solve}. For instance, we often just use
  366. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  367. the @code{-gr} option can also be quite useful.
  368. Setting @code{deps} to 0 will only take into account the actual computations
  369. on processing units. It however still properly takes into account the varying
  370. performances of kernels and processing units, which is quite more accurate than
  371. just comparing StarPU performances with the fastest of the kernels being used.
  372. The @code{prio} parameter tells StarPU whether to simulate taking into account
  373. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  374. tasks before less prioritized tasks, to check to which extend this results
  375. to a less optimal solution. This increases even more computation time.
  376. Note that for simplicity, all this however doesn't take into account data
  377. transfers, which are assumed to be completely overlapped.
  378. @node Insert Task Utility
  379. @section Insert Task Utility
  380. StarPU provides the wrapper function @code{starpu_insert_task} to ease
  381. the creation and submission of tasks.
  382. @deftypefun int starpu_insert_task (struct starpu_codelet *@var{cl}, ...)
  383. Create and submit a task corresponding to @var{cl} with the following
  384. arguments. The argument list must be zero-terminated.
  385. The arguments following the codelets can be of the following types:
  386. @itemize
  387. @item
  388. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH}, @code{STARPU_REDUX} an access mode followed by a data handle;
  389. @item
  390. @code{STARPU_VALUE} followed by a pointer to a constant value and
  391. the size of the constant;
  392. @item
  393. @code{STARPU_CALLBACK} followed by a pointer to a callback function;
  394. @item
  395. @code{STARPU_CALLBACK_ARG} followed by a pointer to be given as an
  396. argument to the callback function;
  397. @item
  398. @code{STARPU_CALLBACK_WITH_ARG} followed by two pointers: one to a callback
  399. function, and the other to be given as an argument to the callback
  400. function; this is equivalent to using both @code{STARPU_CALLBACK} and
  401. @code{STARPU_CALLBACK_WITH_ARG}
  402. @item
  403. @code{STARPU_PRIORITY} followed by a integer defining a priority level.
  404. @end itemize
  405. Parameters to be passed to the codelet implementation are defined
  406. through the type @code{STARPU_VALUE}. The function
  407. @code{starpu_unpack_cl_args} must be called within the codelet
  408. implementation to retrieve them.
  409. @end deftypefun
  410. Here the implementation of the codelet:
  411. @smallexample
  412. void func_cpu(void *descr[], void *_args)
  413. @{
  414. int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);
  415. float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);
  416. int ifactor;
  417. float ffactor;
  418. starpu_unpack_cl_args(_args, &ifactor, &ffactor);
  419. *x0 = *x0 * ifactor;
  420. *x1 = *x1 * ffactor;
  421. @}
  422. struct starpu_codelet mycodelet = @{
  423. .where = STARPU_CPU,
  424. .cpu_funcs = @{ func_cpu, NULL @},
  425. .nbuffers = 2,
  426. .modes = @{ STARPU_RW, STARPU_RW @}
  427. @};
  428. @end smallexample
  429. And the call to the @code{starpu_insert_task} wrapper:
  430. @smallexample
  431. starpu_insert_task(&mycodelet,
  432. STARPU_VALUE, &ifactor, sizeof(ifactor),
  433. STARPU_VALUE, &ffactor, sizeof(ffactor),
  434. STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],
  435. 0);
  436. @end smallexample
  437. The call to @code{starpu_insert_task} is equivalent to the following
  438. code:
  439. @smallexample
  440. struct starpu_task *task = starpu_task_create();
  441. task->cl = &mycodelet;
  442. task->handles[0] = data_handles[0];
  443. task->handles[1] = data_handles[1];
  444. char *arg_buffer;
  445. size_t arg_buffer_size;
  446. starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,
  447. STARPU_VALUE, &ifactor, sizeof(ifactor),
  448. STARPU_VALUE, &ffactor, sizeof(ffactor),
  449. 0);
  450. task->cl_arg = arg_buffer;
  451. task->cl_arg_size = arg_buffer_size;
  452. int ret = starpu_task_submit(task);
  453. @end smallexample
  454. If some part of the task insertion depends on the value of some computation,
  455. the @code{STARPU_DATA_ACQUIRE_CB} macro can be very convenient. For
  456. instance, assuming that the index variable @code{i} was registered as handle
  457. @code{i_handle}:
  458. @smallexample
  459. /* Compute which portion we will work on, e.g. pivot */
  460. starpu_insert_task(&which_index, STARPU_W, i_handle, 0);
  461. /* And submit the corresponding task */
  462. STARPU_DATA_ACQUIRE_CB(i_handle, STARPU_R, starpu_insert_task(&work, STARPU_RW, A_handle[i], 0));
  463. @end smallexample
  464. The @code{STARPU_DATA_ACQUIRE_CB} macro submits an asynchronous request for
  465. acquiring data @code{i} for the main application, and will execute the code
  466. given as third parameter when it is acquired. In other words, as soon as the
  467. value of @code{i} computed by the @code{which_index} codelet can be read, the
  468. portion of code passed as third parameter of @code{STARPU_DATA_ACQUIRE_CB} will
  469. be executed, and is allowed to read from @code{i} to use it e.g. as an
  470. index. Note that this macro is only avaible when compiling StarPU with
  471. the compiler @code{gcc}.
  472. @node Debugging
  473. @section Debugging
  474. StarPU provides several tools to help debugging aplications. Execution traces
  475. can be generated and displayed graphically, see @ref{Generating traces}. Some
  476. gdb helpers are also provided to show the whole StarPU state:
  477. @smallexample
  478. (gdb) source tools/gdbinit
  479. (gdb) help starpu
  480. @end smallexample
  481. @node The multiformat interface
  482. @section The multiformat interface
  483. It may be interesting to represent the same piece of data using two different
  484. data structures : one that would only be used on CPUs, and one that would only
  485. be used on GPUs. This can be done by using the multiformat interface. StarPU
  486. will be able to convert data from one data structure to the other when needed.
  487. Note that the heft scheduler is the only one optimized for this interface. The
  488. user must provide StarPU with conversion codelets :
  489. @cartouche
  490. @smallexample
  491. #define NX 1024
  492. struct point array_of_structs[NX];
  493. starpu_data_handle_t handle;
  494. /*
  495. * The conversion of a piece of data is itself a task, though it is created,
  496. * submitted and destroyed by StarPU internals and not by the user. Therefore,
  497. * we have to define two codelets.
  498. * Note that for now the conversion from the CPU format to the GPU format has to
  499. * be executed on the GPU, and the conversion from the GPU to the CPU has to be
  500. * executed on the CPU.
  501. */
  502. #ifdef STARPU_USE_OPENCL
  503. void cpu_to_opencl_opencl_func(void *buffers[], void *args);
  504. struct starpu_codelet cpu_to_opencl_cl = @{
  505. .where = STARPU_OPENCL,
  506. .opencl_funcs = @{ cpu_to_opencl_opencl_func, NULL @},
  507. .nbuffers = 1,
  508. .modes = @{ STARPU_RW @}
  509. @};
  510. void opencl_to_cpu_func(void *buffers[], void *args);
  511. struct starpu_codelet opencl_to_cpu_cl = @{
  512. .where = STARPU_CPU,
  513. .cpu_funcs = @{ opencl_to_cpu_func, NULL @},
  514. .nbuffers = 1,
  515. .modes = @{ STARPU_RW @}
  516. @};
  517. #endif
  518. struct starpu_multiformat_data_interface_ops format_ops = @{
  519. #ifdef STARPU_USE_OPENCL
  520. .opencl_elemsize = 2 * sizeof(float),
  521. .cpu_to_opencl_cl = &cpu_to_opencl_cl,
  522. .opencl_to_cpu_cl = &opencl_to_cpu_cl,
  523. #endif
  524. .cpu_elemsize = 2 * sizeof(float),
  525. ...
  526. @};
  527. starpu_multiformat_data_register(handle, 0, &array_of_structs, NX, &format_ops);
  528. @end smallexample
  529. @end cartouche
  530. Kernels can be written almost as for any other interface. Note that
  531. STARPU_MULTIFORMAT_GET_PTR shall only be used for CPU kernels. CUDA kernels
  532. must use STARPU_MULTIFORMAT_GET_CUDA_PTR, and OpenCL kernels must use
  533. STARPU_MULTIFORMAT_GET_OPENCL_PTR. STARPU_MULTIFORMAT_GET_NX may be used in any
  534. kind of kernel.
  535. @cartouche
  536. @smallexample
  537. static void
  538. multiformat_scal_cpu_func(void *buffers[], void *args)
  539. @{
  540. struct point *aos;
  541. unsigned int n;
  542. aos = STARPU_MULTIFORMAT_GET_PTR(buffers[0]);
  543. n = STARPU_MULTIFORMAT_GET_NX(buffers[0]);
  544. ...
  545. @}
  546. extern "C" void multiformat_scal_cuda_func(void *buffers[], void *_args)
  547. @{
  548. unsigned int n;
  549. struct struct_of_arrays *soa;
  550. soa = (struct struct_of_arrays *) STARPU_MULTIFORMAT_GET_CUDA_PTR(buffers[0]);
  551. n = STARPU_MULTIFORMAT_GET_NX(buffers[0]);
  552. ...
  553. @}
  554. @end smallexample
  555. @end cartouche
  556. A full example may be found in @code{examples/basic_examples/multiformat.c}.
  557. @node On-GPU rendering
  558. @section On-GPU rendering
  559. Graphical-oriented applications need to draw the result of their computations,
  560. typically on the very GPU where these happened. Technologies such as OpenGL/CUDA
  561. interoperability permit to let CUDA directly work on the OpenGL buffers, making
  562. them thus immediately ready for drawing, by mapping OpenGL buffer, textures or
  563. renderbuffer objects into CUDA. To achieve this with StarPU, it simply needs to
  564. be given the CUDA pointer at registration, for instance:
  565. @cartouche
  566. @smallexample
  567. for (workerid = 0; workerid < starpu_worker_get_count(); workerid++)
  568. if (starpu_worker_get_type(workerid) == STARPU_CUDA_WORKER)
  569. break;
  570. cudaSetDevice(starpu_worker_get_devid(workerid));
  571. cudaGraphicsResourceGetMappedPointer((void**)&output, &num_bytes, resource);
  572. starpu_vector_data_register(&handle, starpu_worker_get_memory_node(workerid), output, num_bytes / sizeof(float4), sizeof(float4));
  573. starpu_insert_task(&cl, STARPU_RW, handle, 0);
  574. starpu_data_unregister(handle);
  575. cudaSetDevice(starpu_worker_get_devid(workerid));
  576. cudaGraphicsUnmapResources(1, &resource, 0);
  577. /* Now display it */
  578. @end smallexample
  579. @end cartouche
  580. @node More examples
  581. @section More examples
  582. More examples are available in the StarPU sources in the @code{examples/}
  583. directory. Simple examples include:
  584. @table @asis
  585. @item @code{incrementer/}:
  586. Trivial incrementation test.
  587. @item @code{basic_examples/}:
  588. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  589. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  590. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  591. interface, an example using the variable data interface, and an example
  592. using different formats on CPUs and GPUs.
  593. @item @code{matvecmult/}:
  594. OpenCL example from NVidia, adapted to StarPU.
  595. @item @code{axpy/}:
  596. AXPY CUBLAS operation adapted to StarPU.
  597. @item @code{fortran/}:
  598. Example of Fortran bindings.
  599. @end table
  600. More advanced examples include:
  601. @table @asis
  602. @item @code{filters/}:
  603. Examples using filters, as shown in @ref{Partitioning Data}.
  604. @item @code{lu/}:
  605. LU matrix factorization, see for instance @code{xlu_implicit.c}
  606. @item @code{cholesky/}:
  607. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  608. @end table