123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171 |
- /*
- * Copyright 1993-2009 NVIDIA Corporation. All rights reserved.
- *
- * NVIDIA Corporation and its licensors retain all intellectual property and
- * proprietary rights in and to this software and related documentation and
- * any modifications thereto. Any use, reproduction, disclosure, or distribution
- * of this software and related documentation without an express license
- * agreement from NVIDIA Corporation is strictly prohibited.
- *
- */
-
- /*
- * Portions Copyright (c) 1993-2009 NVIDIA Corporation. All rights reserved.
- * Portions Copyright (c) 2009 Mike Giles, Oxford University. All rights reserved.
- * Portions Copyright (c) 2008 Frances Y. Kuo and Stephen Joe. All rights reserved.
- *
- * Sobol Quasi-random Number Generator example
- *
- * Based on CUDA code submitted by Mike Giles, Oxford University, United Kingdom
- * http://people.maths.ox.ac.uk/~gilesm/
- *
- * and C code developed by Stephen Joe, University of Waikato, New Zealand
- * and Frances Kuo, University of New South Wales, Australia
- * http://web.maths.unsw.edu.au/~fkuo/sobol/
- *
- * For theoretical background see:
- *
- * P. Bratley and B.L. Fox.
- * Implementing Sobol's quasirandom sequence generator
- * http://portal.acm.org/citation.cfm?id=42288
- * ACM Trans. on Math. Software, 14(1):88-100, 1988
- *
- * S. Joe and F. Kuo.
- * Remark on algorithm 659: implementing Sobol's quasirandom sequence generator.
- * http://portal.acm.org/citation.cfm?id=641879
- * ACM Trans. on Math. Software, 29(1):49-57, 2003
- *
- */
- #include "sobol.h"
- #include "sobol_gpu.h"
- #include <starpu.h>
- #include <starpu_cuda.h>
- #define k_2powneg32 2.3283064E-10F
- __global__ void sobolGPU_kernel(unsigned n_vectors, unsigned n_dimensions, unsigned *d_directions, float *d_output)
- {
- __shared__ unsigned int v[n_directions];
- // Offset into the correct dimension as specified by the
- // block y coordinate
- d_directions = d_directions + n_directions * blockIdx.y;
- d_output = d_output + n_vectors * blockIdx.y;
- // Copy the direction numbers for this dimension into shared
- // memory - there are only 32 direction numbers so only the
- // first 32 (n_directions) threads need participate.
- if (threadIdx.x < n_directions)
- {
- v[threadIdx.x] = d_directions[threadIdx.x];
- }
- __syncthreads();
- // Set initial index (i.e. which vector this thread is
- // computing first) and stride (i.e. step to the next vector
- // for this thread)
- int i0 = threadIdx.x + blockIdx.x * blockDim.x;
- int stride = gridDim.x * blockDim.x;
- // Get the gray code of the index
- // c.f. Numerical Recipes in C, chapter 20
- // http://www.nrbook.com/a/bookcpdf/c20-2.pdf
- unsigned int g = i0 ^ (i0 >> 1);
- // Initialisation for first point x[i0]
- // In the Bratley and Fox paper this is equation (*), where
- // we are computing the value for x[n] without knowing the
- // value of x[n-1].
- unsigned int X = 0;
- unsigned int mask;
- for (unsigned int k = 0 ; k < __ffs(stride) - 1 ; k++)
- {
- // We want X ^= g_k * v[k], where g_k is one or zero.
- // We do this by setting a mask with all bits equal to
- // g_k. In reality we keep shifting g so that g_k is the
- // LSB of g. This way we avoid multiplication.
- mask = - (g & 1);
- X ^= mask & v[k];
- g = g >> 1;
- }
- if (i0 < n_vectors)
- {
- d_output[i0] = (float)X * k_2powneg32;
- }
- // Now do rest of points, using the stride
- // Here we want to generate x[i] from x[i-stride] where we
- // don't have any of the x in between, therefore we have to
- // revisit the equation (**), this is easiest with an example
- // so assume stride is 16.
- // From x[n] to x[n+16] there will be:
- // 8 changes in the first bit
- // 4 changes in the second bit
- // 2 changes in the third bit
- // 1 change in the fourth
- // 1 change in one of the remaining bits
- //
- // What this means is that in the equation:
- // x[n+1] = x[n] ^ v[p]
- // x[n+2] = x[n+1] ^ v[q] = x[n] ^ v[p] ^ v[q]
- // ...
- // We will apply xor with v[1] eight times, v[2] four times,
- // v[3] twice, v[4] once and one other direction number once.
- // Since two xors cancel out, we can skip even applications
- // and just apply xor with v[4] (i.e. log2(16)) and with
- // the current applicable direction number.
- // Note that all these indices count from 1, so we need to
- // subtract 1 from them all to account for C arrays counting
- // from zero.
- unsigned int v_log2stridem1 = v[__ffs(stride) - 2];
- unsigned int v_stridemask = stride - 1;
- for (unsigned int i = i0 + stride ; i < n_vectors ; i += stride)
- {
- // x[i] = x[i-stride] ^ v[b] ^ v[c]
- // where b is log2(stride) minus 1 for C array indexing
- // where c is the index of the rightmost zero bit in i,
- // not including the bottom log2(stride) bits, minus 1
- // for C array indexing
- // In the Bratley and Fox paper this is equation (**)
- X ^= v_log2stridem1 ^ v[__ffs(~((i - stride) | v_stridemask)) - 1];
- d_output[i] = (float)X * k_2powneg32;
- }
- }
- extern "C"
- void sobolGPU(int n_vectors, int n_dimensions, unsigned int *d_directions, float *d_output)
- {
- const int threadsperblock = 64;
- // Set up the execution configuration
- dim3 dimGrid;
- dim3 dimBlock;
- // This implementation of the generator outputs all the draws for
- // one dimension in a contiguous region of memory, followed by the
- // next dimension and so on.
- // Therefore all threads within a block will be processing different
- // vectors from the same dimension. As a result we want the total
- // number of blocks to be a multiple of the number of dimensions.
- dimGrid.y = n_dimensions;
- // If the number of dimensions is large then we will set the number
- // of blocks to equal the number of dimensions (i.e. dimGrid.x = 1)
- // but if the number of dimensions is small (e.g. less than 32) then
- // we'll partition the vectors across blocks (as well as threads).
- // We also need to cap the dimGrid.x where the number of vectors
- // is too small to be partitioned.
- dimGrid.x = 1 + 31 / n_dimensions;
- if (dimGrid.x > (unsigned int)(n_vectors / threadsperblock))
- {
- dimGrid.x = (n_vectors + threadsperblock - 1) / threadsperblock;
- }
-
- // Fix the number of threads
- dimBlock.x = threadsperblock;
- // Execute GPU kernel
- sobolGPU_kernel<<<dimGrid, dimBlock, 0, starpu_cuda_get_local_stream()>>>(n_vectors, n_dimensions, d_directions, d_output);
- }
|