| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607 | /* dtrsna.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static logical c_true = TRUE_;static logical c_false = FALSE_;/* Subroutine */ int _starpu_dtrsna_(char *job, char *howmny, logical *select, 	integer *n, doublereal *t, integer *ldt, doublereal *vl, integer *	ldvl, doublereal *vr, integer *ldvr, doublereal *s, doublereal *sep, 	integer *mm, integer *m, doublereal *work, integer *ldwork, integer *	iwork, integer *info){    /* System generated locals */    integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, 	    work_dim1, work_offset, i__1, i__2;    doublereal d__1, d__2;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, j, k, n2;    doublereal cs;    integer nn, ks;    doublereal sn, mu, eps, est;    integer kase;    doublereal cond;    extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *, 	    integer *);    logical pair;    integer ierr;    doublereal dumm, prod;    integer ifst;    doublereal lnrm;    integer ilst;    doublereal rnrm;    extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);    doublereal prod1, prod2, scale, delta;    extern logical _starpu_lsame_(char *, char *);    integer isave[3];    logical wants;    doublereal dummy[1];    extern /* Subroutine */ int _starpu_dlacn2_(integer *, doublereal *, doublereal *, 	     integer *, doublereal *, integer *, integer *);    extern doublereal _starpu_dlapy2_(doublereal *, doublereal *);    extern /* Subroutine */ int _starpu_dlabad_(doublereal *, doublereal *);    extern doublereal _starpu_dlamch_(char *);    extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *), 	    _starpu_xerbla_(char *, integer *);    doublereal bignum;    logical wantbh;    extern /* Subroutine */ int _starpu_dlaqtr_(logical *, logical *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 	     doublereal *, doublereal *, integer *), _starpu_dtrexc_(char *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, 	    integer *, doublereal *, integer *);    logical somcon;    doublereal smlnum;    logical wantsp;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DTRSNA estimates reciprocal condition numbers for specified *//*  eigenvalues and/or right eigenvectors of a real upper *//*  quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q *//*  orthogonal). *//*  T must be in Schur canonical form (as returned by DHSEQR), that is, *//*  block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each *//*  2-by-2 diagonal block has its diagonal elements equal and its *//*  off-diagonal elements of opposite sign. *//*  Arguments *//*  ========= *//*  JOB     (input) CHARACTER*1 *//*          Specifies whether condition numbers are required for *//*          eigenvalues (S) or eigenvectors (SEP): *//*          = 'E': for eigenvalues only (S); *//*          = 'V': for eigenvectors only (SEP); *//*          = 'B': for both eigenvalues and eigenvectors (S and SEP). *//*  HOWMNY  (input) CHARACTER*1 *//*          = 'A': compute condition numbers for all eigenpairs; *//*          = 'S': compute condition numbers for selected eigenpairs *//*                 specified by the array SELECT. *//*  SELECT  (input) LOGICAL array, dimension (N) *//*          If HOWMNY = 'S', SELECT specifies the eigenpairs for which *//*          condition numbers are required. To select condition numbers *//*          for the eigenpair corresponding to a real eigenvalue w(j), *//*          SELECT(j) must be set to .TRUE.. To select condition numbers *//*          corresponding to a complex conjugate pair of eigenvalues w(j) *//*          and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be *//*          set to .TRUE.. *//*          If HOWMNY = 'A', SELECT is not referenced. *//*  N       (input) INTEGER *//*          The order of the matrix T. N >= 0. *//*  T       (input) DOUBLE PRECISION array, dimension (LDT,N) *//*          The upper quasi-triangular matrix T, in Schur canonical form. *//*  LDT     (input) INTEGER *//*          The leading dimension of the array T. LDT >= max(1,N). *//*  VL      (input) DOUBLE PRECISION array, dimension (LDVL,M) *//*          If JOB = 'E' or 'B', VL must contain left eigenvectors of T *//*          (or of any Q*T*Q**T with Q orthogonal), corresponding to the *//*          eigenpairs specified by HOWMNY and SELECT. The eigenvectors *//*          must be stored in consecutive columns of VL, as returned by *//*          DHSEIN or DTREVC. *//*          If JOB = 'V', VL is not referenced. *//*  LDVL    (input) INTEGER *//*          The leading dimension of the array VL. *//*          LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N. *//*  VR      (input) DOUBLE PRECISION array, dimension (LDVR,M) *//*          If JOB = 'E' or 'B', VR must contain right eigenvectors of T *//*          (or of any Q*T*Q**T with Q orthogonal), corresponding to the *//*          eigenpairs specified by HOWMNY and SELECT. The eigenvectors *//*          must be stored in consecutive columns of VR, as returned by *//*          DHSEIN or DTREVC. *//*          If JOB = 'V', VR is not referenced. *//*  LDVR    (input) INTEGER *//*          The leading dimension of the array VR. *//*          LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N. *//*  S       (output) DOUBLE PRECISION array, dimension (MM) *//*          If JOB = 'E' or 'B', the reciprocal condition numbers of the *//*          selected eigenvalues, stored in consecutive elements of the *//*          array. For a complex conjugate pair of eigenvalues two *//*          consecutive elements of S are set to the same value. Thus *//*          S(j), SEP(j), and the j-th columns of VL and VR all *//*          correspond to the same eigenpair (but not in general the *//*          j-th eigenpair, unless all eigenpairs are selected). *//*          If JOB = 'V', S is not referenced. *//*  SEP     (output) DOUBLE PRECISION array, dimension (MM) *//*          If JOB = 'V' or 'B', the estimated reciprocal condition *//*          numbers of the selected eigenvectors, stored in consecutive *//*          elements of the array. For a complex eigenvector two *//*          consecutive elements of SEP are set to the same value. If *//*          the eigenvalues cannot be reordered to compute SEP(j), SEP(j) *//*          is set to 0; this can only occur when the true value would be *//*          very small anyway. *//*          If JOB = 'E', SEP is not referenced. *//*  MM      (input) INTEGER *//*          The number of elements in the arrays S (if JOB = 'E' or 'B') *//*           and/or SEP (if JOB = 'V' or 'B'). MM >= M. *//*  M       (output) INTEGER *//*          The number of elements of the arrays S and/or SEP actually *//*          used to store the estimated condition numbers. *//*          If HOWMNY = 'A', M is set to N. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (LDWORK,N+6) *//*          If JOB = 'E', WORK is not referenced. *//*  LDWORK  (input) INTEGER *//*          The leading dimension of the array WORK. *//*          LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N. *//*  IWORK   (workspace) INTEGER array, dimension (2*(N-1)) *//*          If JOB = 'E', IWORK is not referenced. *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -i, the i-th argument had an illegal value *//*  Further Details *//*  =============== *//*  The reciprocal of the condition number of an eigenvalue lambda is *//*  defined as *//*          S(lambda) = |v'*u| / (norm(u)*norm(v)) *//*  where u and v are the right and left eigenvectors of T corresponding *//*  to lambda; v' denotes the conjugate-transpose of v, and norm(u) *//*  denotes the Euclidean norm. These reciprocal condition numbers always *//*  lie between zero (very badly conditioned) and one (very well *//*  conditioned). If n = 1, S(lambda) is defined to be 1. *//*  An approximate error bound for a computed eigenvalue W(i) is given by *//*                      EPS * norm(T) / S(i) *//*  where EPS is the machine precision. *//*  The reciprocal of the condition number of the right eigenvector u *//*  corresponding to lambda is defined as follows. Suppose *//*              T = ( lambda  c  ) *//*                  (   0    T22 ) *//*  Then the reciprocal condition number is *//*          SEP( lambda, T22 ) = sigma-min( T22 - lambda*I ) *//*  where sigma-min denotes the smallest singular value. We approximate *//*  the smallest singular value by the reciprocal of an estimate of the *//*  one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is *//*  defined to be abs(T(1,1)). *//*  An approximate error bound for a computed right eigenvector VR(i) *//*  is given by *//*                      EPS * norm(T) / SEP(i) *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Decode and test the input parameters */    /* Parameter adjustments */    --select;    t_dim1 = *ldt;    t_offset = 1 + t_dim1;    t -= t_offset;    vl_dim1 = *ldvl;    vl_offset = 1 + vl_dim1;    vl -= vl_offset;    vr_dim1 = *ldvr;    vr_offset = 1 + vr_dim1;    vr -= vr_offset;    --s;    --sep;    work_dim1 = *ldwork;    work_offset = 1 + work_dim1;    work -= work_offset;    --iwork;    /* Function Body */    wantbh = _starpu_lsame_(job, "B");    wants = _starpu_lsame_(job, "E") || wantbh;    wantsp = _starpu_lsame_(job, "V") || wantbh;    somcon = _starpu_lsame_(howmny, "S");    *info = 0;    if (! wants && ! wantsp) {	*info = -1;    } else if (! _starpu_lsame_(howmny, "A") && ! somcon) {	*info = -2;    } else if (*n < 0) {	*info = -4;    } else if (*ldt < max(1,*n)) {	*info = -6;    } else if (*ldvl < 1 || wants && *ldvl < *n) {	*info = -8;    } else if (*ldvr < 1 || wants && *ldvr < *n) {	*info = -10;    } else {/*        Set M to the number of eigenpairs for which condition numbers *//*        are required, and test MM. */	if (somcon) {	    *m = 0;	    pair = FALSE_;	    i__1 = *n;	    for (k = 1; k <= i__1; ++k) {		if (pair) {		    pair = FALSE_;		} else {		    if (k < *n) {			if (t[k + 1 + k * t_dim1] == 0.) {			    if (select[k]) {				++(*m);			    }			} else {			    pair = TRUE_;			    if (select[k] || select[k + 1]) {				*m += 2;			    }			}		    } else {			if (select[*n]) {			    ++(*m);			}		    }		}/* L10: */	    }	} else {	    *m = *n;	}	if (*mm < *m) {	    *info = -13;	} else if (*ldwork < 1 || wantsp && *ldwork < *n) {	    *info = -16;	}    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DTRSNA", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }    if (*n == 1) {	if (somcon) {	    if (! select[1]) {		return 0;	    }	}	if (wants) {	    s[1] = 1.;	}	if (wantsp) {	    sep[1] = (d__1 = t[t_dim1 + 1], abs(d__1));	}	return 0;    }/*     Get machine constants */    eps = _starpu_dlamch_("P");    smlnum = _starpu_dlamch_("S") / eps;    bignum = 1. / smlnum;    _starpu_dlabad_(&smlnum, &bignum);    ks = 0;    pair = FALSE_;    i__1 = *n;    for (k = 1; k <= i__1; ++k) {/*        Determine whether T(k,k) begins a 1-by-1 or 2-by-2 block. */	if (pair) {	    pair = FALSE_;	    goto L60;	} else {	    if (k < *n) {		pair = t[k + 1 + k * t_dim1] != 0.;	    }	}/*        Determine whether condition numbers are required for the k-th *//*        eigenpair. */	if (somcon) {	    if (pair) {		if (! select[k] && ! select[k + 1]) {		    goto L60;		}	    } else {		if (! select[k]) {		    goto L60;		}	    }	}	++ks;	if (wants) {/*           Compute the reciprocal condition number of the k-th *//*           eigenvalue. */	    if (! pair) {/*              Real eigenvalue. */		prod = _starpu_ddot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks * 			vl_dim1 + 1], &c__1);		rnrm = _starpu_dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);		lnrm = _starpu_dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);		s[ks] = abs(prod) / (rnrm * lnrm);	    } else {/*              Complex eigenvalue. */		prod1 = _starpu_ddot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks * 			vl_dim1 + 1], &c__1);		prod1 += _starpu_ddot_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1, &vl[(ks 			+ 1) * vl_dim1 + 1], &c__1);		prod2 = _starpu_ddot_(n, &vl[ks * vl_dim1 + 1], &c__1, &vr[(ks + 1) * 			vr_dim1 + 1], &c__1);		prod2 -= _starpu_ddot_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1, &vr[ks *			 vr_dim1 + 1], &c__1);		d__1 = _starpu_dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);		d__2 = _starpu_dnrm2_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1);		rnrm = _starpu_dlapy2_(&d__1, &d__2);		d__1 = _starpu_dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);		d__2 = _starpu_dnrm2_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1);		lnrm = _starpu_dlapy2_(&d__1, &d__2);		cond = _starpu_dlapy2_(&prod1, &prod2) / (rnrm * lnrm);		s[ks] = cond;		s[ks + 1] = cond;	    }	}	if (wantsp) {/*           Estimate the reciprocal condition number of the k-th *//*           eigenvector. *//*           Copy the matrix T to the array WORK and swap the diagonal *//*           block beginning at T(k,k) to the (1,1) position. */	    _starpu_dlacpy_("Full", n, n, &t[t_offset], ldt, &work[work_offset], 		    ldwork);	    ifst = k;	    ilst = 1;	    _starpu_dtrexc_("No Q", n, &work[work_offset], ldwork, dummy, &c__1, &		    ifst, &ilst, &work[(*n + 1) * work_dim1 + 1], &ierr);	    if (ierr == 1 || ierr == 2) {/*              Could not swap because blocks not well separated */		scale = 1.;		est = bignum;	    } else {/*              Reordering successful */		if (work[work_dim1 + 2] == 0.) {/*                 Form C = T22 - lambda*I in WORK(2:N,2:N). */		    i__2 = *n;		    for (i__ = 2; i__ <= i__2; ++i__) {			work[i__ + i__ * work_dim1] -= work[work_dim1 + 1];/* L20: */		    }		    n2 = 1;		    nn = *n - 1;		} else {/*                 Triangularize the 2 by 2 block by unitary *//*                 transformation U = [  cs   i*ss ] *//*                                    [ i*ss   cs  ]. *//*                 such that the (1,1) position of WORK is complex *//*                 eigenvalue lambda with positive imaginary part. (2,2) *//*                 position of WORK is the complex eigenvalue lambda *//*                 with negative imaginary  part. */		    mu = sqrt((d__1 = work[(work_dim1 << 1) + 1], abs(d__1))) 			    * sqrt((d__2 = work[work_dim1 + 2], abs(d__2)));		    delta = _starpu_dlapy2_(&mu, &work[work_dim1 + 2]);		    cs = mu / delta;		    sn = -work[work_dim1 + 2] / delta;/*                 Form *//*                 C' = WORK(2:N,2:N) + i*[rwork(1) ..... rwork(n-1) ] *//*                                        [   mu                     ] *//*                                        [         ..               ] *//*                                        [             ..           ] *//*                                        [                  mu      ] *//*                 where C' is conjugate transpose of complex matrix C, *//*                 and RWORK is stored starting in the N+1-st column of *//*                 WORK. */		    i__2 = *n;		    for (j = 3; j <= i__2; ++j) {			work[j * work_dim1 + 2] = cs * work[j * work_dim1 + 2]				;			work[j + j * work_dim1] -= work[work_dim1 + 1];/* L30: */		    }		    work[(work_dim1 << 1) + 2] = 0.;		    work[(*n + 1) * work_dim1 + 1] = mu * 2.;		    i__2 = *n - 1;		    for (i__ = 2; i__ <= i__2; ++i__) {			work[i__ + (*n + 1) * work_dim1] = sn * work[(i__ + 1)				 * work_dim1 + 1];/* L40: */		    }		    n2 = 2;		    nn = *n - 1 << 1;		}/*              Estimate norm(inv(C')) */		est = 0.;		kase = 0;L50:		_starpu_dlacn2_(&nn, &work[(*n + 2) * work_dim1 + 1], &work[(*n + 4) *			 work_dim1 + 1], &iwork[1], &est, &kase, isave);		if (kase != 0) {		    if (kase == 1) {			if (n2 == 1) {/*                       Real eigenvalue: solve C'*x = scale*c. */			    i__2 = *n - 1;			    _starpu_dlaqtr_(&c_true, &c_true, &i__2, &work[(work_dim1 				    << 1) + 2], ldwork, dummy, &dumm, &scale, 				    &work[(*n + 4) * work_dim1 + 1], &work[(*				    n + 6) * work_dim1 + 1], &ierr);			} else {/*                       Complex eigenvalue: solve *//*                       C'*(p+iq) = scale*(c+id) in real arithmetic. */			    i__2 = *n - 1;			    _starpu_dlaqtr_(&c_true, &c_false, &i__2, &work[(				    work_dim1 << 1) + 2], ldwork, &work[(*n + 				    1) * work_dim1 + 1], &mu, &scale, &work[(*				    n + 4) * work_dim1 + 1], &work[(*n + 6) * 				    work_dim1 + 1], &ierr);			}		    } else {			if (n2 == 1) {/*                       Real eigenvalue: solve C*x = scale*c. */			    i__2 = *n - 1;			    _starpu_dlaqtr_(&c_false, &c_true, &i__2, &work[(				    work_dim1 << 1) + 2], ldwork, dummy, &				    dumm, &scale, &work[(*n + 4) * work_dim1 				    + 1], &work[(*n + 6) * work_dim1 + 1], &				    ierr);			} else {/*                       Complex eigenvalue: solve *//*                       C*(p+iq) = scale*(c+id) in real arithmetic. */			    i__2 = *n - 1;			    _starpu_dlaqtr_(&c_false, &c_false, &i__2, &work[(				    work_dim1 << 1) + 2], ldwork, &work[(*n + 				    1) * work_dim1 + 1], &mu, &scale, &work[(*				    n + 4) * work_dim1 + 1], &work[(*n + 6) * 				    work_dim1 + 1], &ierr);			}		    }		    goto L50;		}	    }	    sep[ks] = scale / max(est,smlnum);	    if (pair) {		sep[ks + 1] = sep[ks];	    }	}	if (pair) {	    ++ks;	}L60:	;    }    return 0;/*     End of DTRSNA */} /* _starpu_dtrsna_ */
 |