| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412 | /* dsptri.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b11 = -1.;static doublereal c_b13 = 0.;/* Subroutine */ int _starpu_dsptri_(char *uplo, integer *n, doublereal *ap, integer *	ipiv, doublereal *work, integer *info){    /* System generated locals */    integer i__1;    doublereal d__1;    /* Local variables */    doublereal d__;    integer j, k;    doublereal t, ak;    integer kc, kp, kx, kpc, npp;    doublereal akp1;    extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *, 	    integer *);    doublereal temp, akkp1;    extern logical _starpu_lsame_(char *, char *);    extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *), _starpu_dswap_(integer *, doublereal *, integer 	    *, doublereal *, integer *);    integer kstep;    extern /* Subroutine */ int _starpu_dspmv_(char *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *, doublereal *, doublereal *, 	     integer *);    logical upper;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    integer kcnext;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSPTRI computes the inverse of a real symmetric indefinite matrix *//*  A in packed storage using the factorization A = U*D*U**T or *//*  A = L*D*L**T computed by DSPTRF. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          Specifies whether the details of the factorization are stored *//*          as an upper or lower triangular matrix. *//*          = 'U':  Upper triangular, form is A = U*D*U**T; *//*          = 'L':  Lower triangular, form is A = L*D*L**T. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) *//*          On entry, the block diagonal matrix D and the multipliers *//*          used to obtain the factor U or L as computed by DSPTRF, *//*          stored as a packed triangular matrix. *//*          On exit, if INFO = 0, the (symmetric) inverse of the original *//*          matrix, stored as a packed triangular matrix. The j-th column *//*          of inv(A) is stored in the array AP as follows: *//*          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; *//*          if UPLO = 'L', *//*             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. *//*  IPIV    (input) INTEGER array, dimension (N) *//*          Details of the interchanges and the block structure of D *//*          as determined by DSPTRF. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (N) *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -i, the i-th argument had an illegal value *//*          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its *//*               inverse could not be computed. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --work;    --ipiv;    --ap;    /* Function Body */    *info = 0;    upper = _starpu_lsame_(uplo, "U");    if (! upper && ! _starpu_lsame_(uplo, "L")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DSPTRI", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Check that the diagonal matrix D is nonsingular. */    if (upper) {/*        Upper triangular storage: examine D from bottom to top */	kp = *n * (*n + 1) / 2;	for (*info = *n; *info >= 1; --(*info)) {	    if (ipiv[*info] > 0 && ap[kp] == 0.) {		return 0;	    }	    kp -= *info;/* L10: */	}    } else {/*        Lower triangular storage: examine D from top to bottom. */	kp = 1;	i__1 = *n;	for (*info = 1; *info <= i__1; ++(*info)) {	    if (ipiv[*info] > 0 && ap[kp] == 0.) {		return 0;	    }	    kp = kp + *n - *info + 1;/* L20: */	}    }    *info = 0;    if (upper) {/*        Compute inv(A) from the factorization A = U*D*U'. *//*        K is the main loop index, increasing from 1 to N in steps of *//*        1 or 2, depending on the size of the diagonal blocks. */	k = 1;	kc = 1;L30:/*        If K > N, exit from loop. */	if (k > *n) {	    goto L50;	}	kcnext = kc + k;	if (ipiv[k] > 0) {/*           1 x 1 diagonal block *//*           Invert the diagonal block. */	    ap[kc + k - 1] = 1. / ap[kc + k - 1];/*           Compute column K of the inverse. */	    if (k > 1) {		i__1 = k - 1;		_starpu_dcopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1);		i__1 = k - 1;		_starpu_dspmv_(uplo, &i__1, &c_b11, &ap[1], &work[1], &c__1, &c_b13, &			ap[kc], &c__1);		i__1 = k - 1;		ap[kc + k - 1] -= _starpu_ddot_(&i__1, &work[1], &c__1, &ap[kc], &			c__1);	    }	    kstep = 1;	} else {/*           2 x 2 diagonal block *//*           Invert the diagonal block. */	    t = (d__1 = ap[kcnext + k - 1], abs(d__1));	    ak = ap[kc + k - 1] / t;	    akp1 = ap[kcnext + k] / t;	    akkp1 = ap[kcnext + k - 1] / t;	    d__ = t * (ak * akp1 - 1.);	    ap[kc + k - 1] = akp1 / d__;	    ap[kcnext + k] = ak / d__;	    ap[kcnext + k - 1] = -akkp1 / d__;/*           Compute columns K and K+1 of the inverse. */	    if (k > 1) {		i__1 = k - 1;		_starpu_dcopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1);		i__1 = k - 1;		_starpu_dspmv_(uplo, &i__1, &c_b11, &ap[1], &work[1], &c__1, &c_b13, &			ap[kc], &c__1);		i__1 = k - 1;		ap[kc + k - 1] -= _starpu_ddot_(&i__1, &work[1], &c__1, &ap[kc], &			c__1);		i__1 = k - 1;		ap[kcnext + k - 1] -= _starpu_ddot_(&i__1, &ap[kc], &c__1, &ap[kcnext], &c__1);		i__1 = k - 1;		_starpu_dcopy_(&i__1, &ap[kcnext], &c__1, &work[1], &c__1);		i__1 = k - 1;		_starpu_dspmv_(uplo, &i__1, &c_b11, &ap[1], &work[1], &c__1, &c_b13, &			ap[kcnext], &c__1);		i__1 = k - 1;		ap[kcnext + k] -= _starpu_ddot_(&i__1, &work[1], &c__1, &ap[kcnext], &			c__1);	    }	    kstep = 2;	    kcnext = kcnext + k + 1;	}	kp = (i__1 = ipiv[k], abs(i__1));	if (kp != k) {/*           Interchange rows and columns K and KP in the leading *//*           submatrix A(1:k+1,1:k+1) */	    kpc = (kp - 1) * kp / 2 + 1;	    i__1 = kp - 1;	    _starpu_dswap_(&i__1, &ap[kc], &c__1, &ap[kpc], &c__1);	    kx = kpc + kp - 1;	    i__1 = k - 1;	    for (j = kp + 1; j <= i__1; ++j) {		kx = kx + j - 1;		temp = ap[kc + j - 1];		ap[kc + j - 1] = ap[kx];		ap[kx] = temp;/* L40: */	    }	    temp = ap[kc + k - 1];	    ap[kc + k - 1] = ap[kpc + kp - 1];	    ap[kpc + kp - 1] = temp;	    if (kstep == 2) {		temp = ap[kc + k + k - 1];		ap[kc + k + k - 1] = ap[kc + k + kp - 1];		ap[kc + k + kp - 1] = temp;	    }	}	k += kstep;	kc = kcnext;	goto L30;L50:	;    } else {/*        Compute inv(A) from the factorization A = L*D*L'. *//*        K is the main loop index, increasing from 1 to N in steps of *//*        1 or 2, depending on the size of the diagonal blocks. */	npp = *n * (*n + 1) / 2;	k = *n;	kc = npp;L60:/*        If K < 1, exit from loop. */	if (k < 1) {	    goto L80;	}	kcnext = kc - (*n - k + 2);	if (ipiv[k] > 0) {/*           1 x 1 diagonal block *//*           Invert the diagonal block. */	    ap[kc] = 1. / ap[kc];/*           Compute column K of the inverse. */	    if (k < *n) {		i__1 = *n - k;		_starpu_dcopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1);		i__1 = *n - k;		_starpu_dspmv_(uplo, &i__1, &c_b11, &ap[kc + *n - k + 1], &work[1], &			c__1, &c_b13, &ap[kc + 1], &c__1);		i__1 = *n - k;		ap[kc] -= _starpu_ddot_(&i__1, &work[1], &c__1, &ap[kc + 1], &c__1);	    }	    kstep = 1;	} else {/*           2 x 2 diagonal block *//*           Invert the diagonal block. */	    t = (d__1 = ap[kcnext + 1], abs(d__1));	    ak = ap[kcnext] / t;	    akp1 = ap[kc] / t;	    akkp1 = ap[kcnext + 1] / t;	    d__ = t * (ak * akp1 - 1.);	    ap[kcnext] = akp1 / d__;	    ap[kc] = ak / d__;	    ap[kcnext + 1] = -akkp1 / d__;/*           Compute columns K-1 and K of the inverse. */	    if (k < *n) {		i__1 = *n - k;		_starpu_dcopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1);		i__1 = *n - k;		_starpu_dspmv_(uplo, &i__1, &c_b11, &ap[kc + (*n - k + 1)], &work[1], 			&c__1, &c_b13, &ap[kc + 1], &c__1);		i__1 = *n - k;		ap[kc] -= _starpu_ddot_(&i__1, &work[1], &c__1, &ap[kc + 1], &c__1);		i__1 = *n - k;		ap[kcnext + 1] -= _starpu_ddot_(&i__1, &ap[kc + 1], &c__1, &ap[kcnext 			+ 2], &c__1);		i__1 = *n - k;		_starpu_dcopy_(&i__1, &ap[kcnext + 2], &c__1, &work[1], &c__1);		i__1 = *n - k;		_starpu_dspmv_(uplo, &i__1, &c_b11, &ap[kc + (*n - k + 1)], &work[1], 			&c__1, &c_b13, &ap[kcnext + 2], &c__1);		i__1 = *n - k;		ap[kcnext] -= _starpu_ddot_(&i__1, &work[1], &c__1, &ap[kcnext + 2], &			c__1);	    }	    kstep = 2;	    kcnext -= *n - k + 3;	}	kp = (i__1 = ipiv[k], abs(i__1));	if (kp != k) {/*           Interchange rows and columns K and KP in the trailing *//*           submatrix A(k-1:n,k-1:n) */	    kpc = npp - (*n - kp + 1) * (*n - kp + 2) / 2 + 1;	    if (kp < *n) {		i__1 = *n - kp;		_starpu_dswap_(&i__1, &ap[kc + kp - k + 1], &c__1, &ap[kpc + 1], &			c__1);	    }	    kx = kc + kp - k;	    i__1 = kp - 1;	    for (j = k + 1; j <= i__1; ++j) {		kx = kx + *n - j + 1;		temp = ap[kc + j - k];		ap[kc + j - k] = ap[kx];		ap[kx] = temp;/* L70: */	    }	    temp = ap[kc];	    ap[kc] = ap[kpc];	    ap[kpc] = temp;	    if (kstep == 2) {		temp = ap[kc - *n + k - 1];		ap[kc - *n + k - 1] = ap[kc - *n + kp - 1];		ap[kc - *n + kp - 1] = temp;	    }	}	k -= kstep;	kc = kcnext;	goto L60;L80:	;    }    return 0;/*     End of DSPTRI */} /* _starpu_dsptri_ */
 |