| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 | /* dlasd1.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__0 = 0;static doublereal c_b7 = 1.;static integer c__1 = 1;static integer c_n1 = -1;/* Subroutine */ int _starpu_dlasd1_(integer *nl, integer *nr, integer *sqre, 	doublereal *d__, doublereal *alpha, doublereal *beta, doublereal *u, 	integer *ldu, doublereal *vt, integer *ldvt, integer *idxq, integer *	iwork, doublereal *work, integer *info){    /* System generated locals */    integer u_dim1, u_offset, vt_dim1, vt_offset, i__1;    doublereal d__1, d__2;    /* Local variables */    integer i__, k, m, n, n1, n2, iq, iz, iu2, ldq, idx, ldu2, ivt2, idxc, 	    idxp, ldvt2;    extern /* Subroutine */ int _starpu_dlasd2_(integer *, integer *, integer *, 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 	     doublereal *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, integer *, 	    integer *, integer *, integer *, integer *, integer *), _starpu_dlasd3_(	    integer *, integer *, integer *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *, integer *, integer *, doublereal *, integer *), 	    _starpu_dlascl_(char *, integer *, integer *, doublereal *, doublereal *, 	    integer *, integer *, doublereal *, integer *, integer *),	     _starpu_dlamrg_(integer *, integer *, doublereal *, integer *, integer *, 	     integer *);    integer isigma;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);    doublereal orgnrm;    integer coltyp;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B, *//*  where N = NL + NR + 1 and M = N + SQRE. DLASD1 is called from DLASD0. *//*  A related subroutine DLASD7 handles the case in which the singular *//*  values (and the singular vectors in factored form) are desired. *//*  DLASD1 computes the SVD as follows: *//*                ( D1(in)  0    0     0 ) *//*    B = U(in) * (   Z1'   a   Z2'    b ) * VT(in) *//*                (   0     0   D2(in) 0 ) *//*      = U(out) * ( D(out) 0) * VT(out) *//*  where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M *//*  with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros *//*  elsewhere; and the entry b is empty if SQRE = 0. *//*  The left singular vectors of the original matrix are stored in U, and *//*  the transpose of the right singular vectors are stored in VT, and the *//*  singular values are in D.  The algorithm consists of three stages: *//*     The first stage consists of deflating the size of the problem *//*     when there are multiple singular values or when there are zeros in *//*     the Z vector.  For each such occurence the dimension of the *//*     secular equation problem is reduced by one.  This stage is *//*     performed by the routine DLASD2. *//*     The second stage consists of calculating the updated *//*     singular values. This is done by finding the square roots of the *//*     roots of the secular equation via the routine DLASD4 (as called *//*     by DLASD3). This routine also calculates the singular vectors of *//*     the current problem. *//*     The final stage consists of computing the updated singular vectors *//*     directly using the updated singular values.  The singular vectors *//*     for the current problem are multiplied with the singular vectors *//*     from the overall problem. *//*  Arguments *//*  ========= *//*  NL     (input) INTEGER *//*         The row dimension of the upper block.  NL >= 1. *//*  NR     (input) INTEGER *//*         The row dimension of the lower block.  NR >= 1. *//*  SQRE   (input) INTEGER *//*         = 0: the lower block is an NR-by-NR square matrix. *//*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. *//*         The bidiagonal matrix has row dimension N = NL + NR + 1, *//*         and column dimension M = N + SQRE. *//*  D      (input/output) DOUBLE PRECISION array, *//*                        dimension (N = NL+NR+1). *//*         On entry D(1:NL,1:NL) contains the singular values of the *//*         upper block; and D(NL+2:N) contains the singular values of *//*         the lower block. On exit D(1:N) contains the singular values *//*         of the modified matrix. *//*  ALPHA  (input/output) DOUBLE PRECISION *//*         Contains the diagonal element associated with the added row. *//*  BETA   (input/output) DOUBLE PRECISION *//*         Contains the off-diagonal element associated with the added *//*         row. *//*  U      (input/output) DOUBLE PRECISION array, dimension(LDU,N) *//*         On entry U(1:NL, 1:NL) contains the left singular vectors of *//*         the upper block; U(NL+2:N, NL+2:N) contains the left singular *//*         vectors of the lower block. On exit U contains the left *//*         singular vectors of the bidiagonal matrix. *//*  LDU    (input) INTEGER *//*         The leading dimension of the array U.  LDU >= max( 1, N ). *//*  VT     (input/output) DOUBLE PRECISION array, dimension(LDVT,M) *//*         where M = N + SQRE. *//*         On entry VT(1:NL+1, 1:NL+1)' contains the right singular *//*         vectors of the upper block; VT(NL+2:M, NL+2:M)' contains *//*         the right singular vectors of the lower block. On exit *//*         VT' contains the right singular vectors of the *//*         bidiagonal matrix. *//*  LDVT   (input) INTEGER *//*         The leading dimension of the array VT.  LDVT >= max( 1, M ). *//*  IDXQ  (output) INTEGER array, dimension(N) *//*         This contains the permutation which will reintegrate the *//*         subproblem just solved back into sorted order, i.e. *//*         D( IDXQ( I = 1, N ) ) will be in ascending order. *//*  IWORK  (workspace) INTEGER array, dimension( 4 * N ) *//*  WORK   (workspace) DOUBLE PRECISION array, dimension( 3*M**2 + 2*M ) *//*  INFO   (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*          > 0:  if INFO = 1, an singular value did not converge *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Ming Gu and Huan Ren, Computer Science Division, University of *//*     California at Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    u_dim1 = *ldu;    u_offset = 1 + u_dim1;    u -= u_offset;    vt_dim1 = *ldvt;    vt_offset = 1 + vt_dim1;    vt -= vt_offset;    --idxq;    --iwork;    --work;    /* Function Body */    *info = 0;    if (*nl < 1) {	*info = -1;    } else if (*nr < 1) {	*info = -2;    } else if (*sqre < 0 || *sqre > 1) {	*info = -3;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DLASD1", &i__1);	return 0;    }    n = *nl + *nr + 1;    m = n + *sqre;/*     The following values are for bookkeeping purposes only.  They are *//*     integer pointers which indicate the portion of the workspace *//*     used by a particular array in DLASD2 and DLASD3. */    ldu2 = n;    ldvt2 = m;    iz = 1;    isigma = iz + m;    iu2 = isigma + n;    ivt2 = iu2 + ldu2 * n;    iq = ivt2 + ldvt2 * m;    idx = 1;    idxc = idx + n;    coltyp = idxc + n;    idxp = coltyp + n;/*     Scale. *//* Computing MAX */    d__1 = abs(*alpha), d__2 = abs(*beta);    orgnrm = max(d__1,d__2);    d__[*nl + 1] = 0.;    i__1 = n;    for (i__ = 1; i__ <= i__1; ++i__) {	if ((d__1 = d__[i__], abs(d__1)) > orgnrm) {	    orgnrm = (d__1 = d__[i__], abs(d__1));	}/* L10: */    }    _starpu_dlascl_("G", &c__0, &c__0, &orgnrm, &c_b7, &n, &c__1, &d__[1], &n, info);    *alpha /= orgnrm;    *beta /= orgnrm;/*     Deflate singular values. */    _starpu_dlasd2_(nl, nr, sqre, &k, &d__[1], &work[iz], alpha, beta, &u[u_offset], 	    ldu, &vt[vt_offset], ldvt, &work[isigma], &work[iu2], &ldu2, &	    work[ivt2], &ldvt2, &iwork[idxp], &iwork[idx], &iwork[idxc], &	    idxq[1], &iwork[coltyp], info);/*     Solve Secular Equation and update singular vectors. */    ldq = k;    _starpu_dlasd3_(nl, nr, sqre, &k, &d__[1], &work[iq], &ldq, &work[isigma], &u[	    u_offset], ldu, &work[iu2], &ldu2, &vt[vt_offset], ldvt, &work[	    ivt2], &ldvt2, &iwork[idxc], &iwork[coltyp], &work[iz], info);    if (*info != 0) {	return 0;    }/*     Unscale. */    _starpu_dlascl_("G", &c__0, &c__0, &c_b7, &orgnrm, &n, &c__1, &d__[1], &n, info);/*     Prepare the IDXQ sorting permutation. */    n1 = k;    n2 = n - k;    _starpu_dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &idxq[1]);    return 0;/*     End of DLASD1 */} /* _starpu_dlasd1_ */
 |