| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204 | /* dgttrf.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dgttrf_(integer *n, doublereal *dl, doublereal *d__, 	doublereal *du, doublereal *du2, integer *ipiv, integer *info){    /* System generated locals */    integer i__1;    doublereal d__1, d__2;    /* Local variables */    integer i__;    doublereal fact, temp;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DGTTRF computes an LU factorization of a real tridiagonal matrix A *//*  using elimination with partial pivoting and row interchanges. *//*  The factorization has the form *//*     A = L * U *//*  where L is a product of permutation and unit lower bidiagonal *//*  matrices and U is upper triangular with nonzeros in only the main *//*  diagonal and first two superdiagonals. *//*  Arguments *//*  ========= *//*  N       (input) INTEGER *//*          The order of the matrix A. *//*  DL      (input/output) DOUBLE PRECISION array, dimension (N-1) *//*          On entry, DL must contain the (n-1) sub-diagonal elements of *//*          A. *//*          On exit, DL is overwritten by the (n-1) multipliers that *//*          define the matrix L from the LU factorization of A. *//*  D       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, D must contain the diagonal elements of A. *//*          On exit, D is overwritten by the n diagonal elements of the *//*          upper triangular matrix U from the LU factorization of A. *//*  DU      (input/output) DOUBLE PRECISION array, dimension (N-1) *//*          On entry, DU must contain the (n-1) super-diagonal elements *//*          of A. *//*          On exit, DU is overwritten by the (n-1) elements of the first *//*          super-diagonal of U. *//*  DU2     (output) DOUBLE PRECISION array, dimension (N-2) *//*          On exit, DU2 is overwritten by the (n-2) elements of the *//*          second super-diagonal of U. *//*  IPIV    (output) INTEGER array, dimension (N) *//*          The pivot indices; for 1 <= i <= n, row i of the matrix was *//*          interchanged with row IPIV(i).  IPIV(i) will always be either *//*          i or i+1; IPIV(i) = i indicates a row interchange was not *//*          required. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -k, the k-th argument had an illegal value *//*          > 0:  if INFO = k, U(k,k) is exactly zero. The factorization *//*                has been completed, but the factor U is exactly *//*                singular, and division by zero will occur if it is used *//*                to solve a system of equations. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Executable Statements .. */    /* Parameter adjustments */    --ipiv;    --du2;    --du;    --d__;    --dl;    /* Function Body */    *info = 0;    if (*n < 0) {	*info = -1;	i__1 = -(*info);	_starpu_xerbla_("DGTTRF", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Initialize IPIV(i) = i and DU2(I) = 0 */    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {	ipiv[i__] = i__;/* L10: */    }    i__1 = *n - 2;    for (i__ = 1; i__ <= i__1; ++i__) {	du2[i__] = 0.;/* L20: */    }    i__1 = *n - 2;    for (i__ = 1; i__ <= i__1; ++i__) {	if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) {/*           No row interchange required, eliminate DL(I) */	    if (d__[i__] != 0.) {		fact = dl[i__] / d__[i__];		dl[i__] = fact;		d__[i__ + 1] -= fact * du[i__];	    }	} else {/*           Interchange rows I and I+1, eliminate DL(I) */	    fact = d__[i__] / dl[i__];	    d__[i__] = dl[i__];	    dl[i__] = fact;	    temp = du[i__];	    du[i__] = d__[i__ + 1];	    d__[i__ + 1] = temp - fact * d__[i__ + 1];	    du2[i__] = du[i__ + 1];	    du[i__ + 1] = -fact * du[i__ + 1];	    ipiv[i__] = i__ + 1;	}/* L30: */    }    if (*n > 1) {	i__ = *n - 1;	if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) {	    if (d__[i__] != 0.) {		fact = dl[i__] / d__[i__];		dl[i__] = fact;		d__[i__ + 1] -= fact * du[i__];	    }	} else {	    fact = d__[i__] / dl[i__];	    d__[i__] = dl[i__];	    dl[i__] = fact;	    temp = du[i__];	    du[i__] = d__[i__ + 1];	    d__[i__ + 1] = temp - fact * d__[i__ + 1];	    ipiv[i__] = i__ + 1;	}    }/*     Check for a zero on the diagonal of U. */    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {	if (d__[i__] == 0.) {	    *info = i__;	    goto L50;	}/* L40: */    }L50:    return 0;/*     End of DGTTRF */} /* _starpu_dgttrf_ */
 |