| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 | /* dgeqpf.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int _starpu_dgeqpf_(integer *m, integer *n, doublereal *a, integer *	lda, integer *jpvt, doublereal *tau, doublereal *work, integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3;    doublereal d__1, d__2;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, j, ma, mn;    doublereal aii;    integer pvt;    doublereal temp;    extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);    doublereal temp2, tol3z;    extern /* Subroutine */ int _starpu_dlarf_(char *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *);    integer itemp;    extern /* Subroutine */ int _starpu_dswap_(integer *, doublereal *, integer *, 	    doublereal *, integer *), _starpu_dgeqr2_(integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *), 	    _starpu_dorm2r_(char *, char *, integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *);    extern doublereal _starpu_dlamch_(char *);    extern integer _starpu_idamax_(integer *, doublereal *, integer *);    extern /* Subroutine */ int _starpu_dlarfp_(integer *, doublereal *, doublereal *, 	     integer *, doublereal *), _starpu_xerbla_(char *, integer *);/*  -- LAPACK deprecated driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  This routine is deprecated and has been replaced by routine DGEQP3. *//*  DGEQPF computes a QR factorization with column pivoting of a *//*  real M-by-N matrix A: A*P = Q*R. *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows of the matrix A. M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix A. N >= 0 *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the M-by-N matrix A. *//*          On exit, the upper triangle of the array contains the *//*          min(M,N)-by-N upper triangular matrix R; the elements *//*          below the diagonal, together with the array TAU, *//*          represent the orthogonal matrix Q as a product of *//*          min(m,n) elementary reflectors. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A. LDA >= max(1,M). *//*  JPVT    (input/output) INTEGER array, dimension (N) *//*          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted *//*          to the front of A*P (a leading column); if JPVT(i) = 0, *//*          the i-th column of A is a free column. *//*          On exit, if JPVT(i) = k, then the i-th column of A*P *//*          was the k-th column of A. *//*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) *//*          The scalar factors of the elementary reflectors. *//*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  Further Details *//*  =============== *//*  The matrix Q is represented as a product of elementary reflectors *//*     Q = H(1) H(2) . . . H(n) *//*  Each H(i) has the form *//*     H = I - tau * v * v' *//*  where tau is a real scalar, and v is a real vector with *//*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). *//*  The matrix P is represented in jpvt as follows: If *//*     jpvt(j) = i *//*  then the jth column of P is the ith canonical unit vector. *//*  Partial column norm updating strategy modified by *//*    Z. Drmac and Z. Bujanovic, Dept. of Mathematics, *//*    University of Zagreb, Croatia. *//*    June 2006. *//*  For more details see LAPACK Working Note 176. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --jpvt;    --tau;    --work;    /* Function Body */    *info = 0;    if (*m < 0) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*lda < max(1,*m)) {	*info = -4;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DGEQPF", &i__1);	return 0;    }    mn = min(*m,*n);    tol3z = sqrt(_starpu_dlamch_("Epsilon"));/*     Move initial columns up front */    itemp = 1;    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {	if (jpvt[i__] != 0) {	    if (i__ != itemp) {		_starpu_dswap_(m, &a[i__ * a_dim1 + 1], &c__1, &a[itemp * a_dim1 + 1], 			 &c__1);		jpvt[i__] = jpvt[itemp];		jpvt[itemp] = i__;	    } else {		jpvt[i__] = i__;	    }	    ++itemp;	} else {	    jpvt[i__] = i__;	}/* L10: */    }    --itemp;/*     Compute the QR factorization and update remaining columns */    if (itemp > 0) {	ma = min(itemp,*m);	_starpu_dgeqr2_(m, &ma, &a[a_offset], lda, &tau[1], &work[1], info);	if (ma < *n) {	    i__1 = *n - ma;	    _starpu_dorm2r_("Left", "Transpose", m, &i__1, &ma, &a[a_offset], lda, &		    tau[1], &a[(ma + 1) * a_dim1 + 1], lda, &work[1], info);	}    }    if (itemp < mn) {/*        Initialize partial column norms. The first n elements of *//*        work store the exact column norms. */	i__1 = *n;	for (i__ = itemp + 1; i__ <= i__1; ++i__) {	    i__2 = *m - itemp;	    work[i__] = _starpu_dnrm2_(&i__2, &a[itemp + 1 + i__ * a_dim1], &c__1);	    work[*n + i__] = work[i__];/* L20: */	}/*        Compute factorization */	i__1 = mn;	for (i__ = itemp + 1; i__ <= i__1; ++i__) {/*           Determine ith pivot column and swap if necessary */	    i__2 = *n - i__ + 1;	    pvt = i__ - 1 + _starpu_idamax_(&i__2, &work[i__], &c__1);	    if (pvt != i__) {		_starpu_dswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &			c__1);		itemp = jpvt[pvt];		jpvt[pvt] = jpvt[i__];		jpvt[i__] = itemp;		work[pvt] = work[i__];		work[*n + pvt] = work[*n + i__];	    }/*           Generate elementary reflector H(i) */	    if (i__ < *m) {		i__2 = *m - i__ + 1;		_starpu_dlarfp_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + 1 + i__ * 			a_dim1], &c__1, &tau[i__]);	    } else {		_starpu_dlarfp_(&c__1, &a[*m + *m * a_dim1], &a[*m + *m * a_dim1], &			c__1, &tau[*m]);	    }	    if (i__ < *n) {/*              Apply H(i) to A(i:m,i+1:n) from the left */		aii = a[i__ + i__ * a_dim1];		a[i__ + i__ * a_dim1] = 1.;		i__2 = *m - i__ + 1;		i__3 = *n - i__;		_starpu_dlarf_("LEFT", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &			tau[i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[(*			n << 1) + 1]);		a[i__ + i__ * a_dim1] = aii;	    }/*           Update partial column norms */	    i__2 = *n;	    for (j = i__ + 1; j <= i__2; ++j) {		if (work[j] != 0.) {/*                 NOTE: The following 4 lines follow from the analysis in *//*                 Lapack Working Note 176. */		    temp = (d__1 = a[i__ + j * a_dim1], abs(d__1)) / work[j];/* Computing MAX */		    d__1 = 0., d__2 = (temp + 1.) * (1. - temp);		    temp = max(d__1,d__2);/* Computing 2nd power */		    d__1 = work[j] / work[*n + j];		    temp2 = temp * (d__1 * d__1);		    if (temp2 <= tol3z) {			if (*m - i__ > 0) {			    i__3 = *m - i__;			    work[j] = _starpu_dnrm2_(&i__3, &a[i__ + 1 + j * a_dim1], 				    &c__1);			    work[*n + j] = work[j];			} else {			    work[j] = 0.;			    work[*n + j] = 0.;			}		    } else {			work[j] *= sqrt(temp);		    }		}/* L30: */	    }/* L40: */	}    }    return 0;/*     End of DGEQPF */} /* _starpu_dgeqpf_ */
 |