| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343 | 
							- /* dgehrd.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- static integer c__3 = 3;
 
- static integer c__2 = 2;
 
- static integer c__65 = 65;
 
- static doublereal c_b25 = -1.;
 
- static doublereal c_b26 = 1.;
 
- /* Subroutine */ int _starpu_dgehrd_(integer *n, integer *ilo, integer *ihi, 
 
- 	doublereal *a, integer *lda, doublereal *tau, doublereal *work, 
 
- 	integer *lwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
 
-     /* Local variables */
 
-     integer i__, j;
 
-     doublereal t[4160]	/* was [65][64] */;
 
-     integer ib;
 
-     doublereal ei;
 
-     integer nb, nh, nx, iws;
 
-     extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *);
 
-     integer nbmin, iinfo;
 
-     extern /* Subroutine */ int _starpu_dtrmm_(char *, char *, char *, char *, 
 
- 	    integer *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), _starpu_daxpy_(
 
- 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 
- 	    integer *), _starpu_dgehd2_(integer *, integer *, integer *, doublereal *, 
 
- 	     integer *, doublereal *, doublereal *, integer *), _starpu_dlahr2_(
 
- 	    integer *, integer *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *), 
 
- 	    _starpu_dlarfb_(char *, char *, char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), _starpu_xerbla_(char *, integer *);
 
-     extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     integer ldwork, lwkopt;
 
-     logical lquery;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGEHRD reduces a real general matrix A to upper Hessenberg form H by */
 
- /*  an orthogonal similarity transformation:  Q' * A * Q = H . */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  ILO     (input) INTEGER */
 
- /*  IHI     (input) INTEGER */
 
- /*          It is assumed that A is already upper triangular in rows */
 
- /*          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */
 
- /*          set by a previous call to DGEBAL; otherwise they should be */
 
- /*          set to 1 and N respectively. See Further Details. */
 
- /*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the N-by-N general matrix to be reduced. */
 
- /*          On exit, the upper triangle and the first subdiagonal of A */
 
- /*          are overwritten with the upper Hessenberg matrix H, and the */
 
- /*          elements below the first subdiagonal, with the array TAU, */
 
- /*          represent the orthogonal matrix Q as a product of elementary */
 
- /*          reflectors. See Further Details. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,N). */
 
- /*  TAU     (output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The scalar factors of the elementary reflectors (see Further */
 
- /*          Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to */
 
- /*          zero. */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The length of the array WORK.  LWORK >= max(1,N). */
 
- /*          For optimum performance LWORK >= N*NB, where NB is the */
 
- /*          optimal blocksize. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The matrix Q is represented as a product of (ihi-ilo) elementary */
 
- /*  reflectors */
 
- /*     Q = H(ilo) H(ilo+1) . . . H(ihi-1). */
 
- /*  Each H(i) has the form */
 
- /*     H(i) = I - tau * v * v' */
 
- /*  where tau is a real scalar, and v is a real vector with */
 
- /*  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on */
 
- /*  exit in A(i+2:ihi,i), and tau in TAU(i). */
 
- /*  The contents of A are illustrated by the following example, with */
 
- /*  n = 7, ilo = 2 and ihi = 6: */
 
- /*  on entry,                        on exit, */
 
- /*  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a ) */
 
- /*  (     a   a   a   a   a   a )    (      a   h   h   h   h   a ) */
 
- /*  (     a   a   a   a   a   a )    (      h   h   h   h   h   h ) */
 
- /*  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h ) */
 
- /*  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h ) */
 
- /*  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h ) */
 
- /*  (                         a )    (                          a ) */
 
- /*  where a denotes an element of the original matrix A, h denotes a */
 
- /*  modified element of the upper Hessenberg matrix H, and vi denotes an */
 
- /*  element of the vector defining H(i). */
 
- /*  This file is a slight modification of LAPACK-3.0's DGEHRD */
 
- /*  subroutine incorporating improvements proposed by Quintana-Orti and */
 
- /*  Van de Geijn (2005). */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --tau;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
- /* Computing MIN */
 
-     i__1 = 64, i__2 = _starpu_ilaenv_(&c__1, "DGEHRD", " ", n, ilo, ihi, &c_n1);
 
-     nb = min(i__1,i__2);
 
-     lwkopt = *n * nb;
 
-     work[1] = (doublereal) lwkopt;
 
-     lquery = *lwork == -1;
 
-     if (*n < 0) {
 
- 	*info = -1;
 
-     } else if (*ilo < 1 || *ilo > max(1,*n)) {
 
- 	*info = -2;
 
-     } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
 
- 	*info = -3;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -5;
 
-     } else if (*lwork < max(1,*n) && ! lquery) {
 
- 	*info = -8;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DGEHRD", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Set elements 1:ILO-1 and IHI:N-1 of TAU to zero */
 
-     i__1 = *ilo - 1;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	tau[i__] = 0.;
 
- /* L10: */
 
-     }
 
-     i__1 = *n - 1;
 
-     for (i__ = max(1,*ihi); i__ <= i__1; ++i__) {
 
- 	tau[i__] = 0.;
 
- /* L20: */
 
-     }
 
- /*     Quick return if possible */
 
-     nh = *ihi - *ilo + 1;
 
-     if (nh <= 1) {
 
- 	work[1] = 1.;
 
- 	return 0;
 
-     }
 
- /*     Determine the block size */
 
- /* Computing MIN */
 
-     i__1 = 64, i__2 = _starpu_ilaenv_(&c__1, "DGEHRD", " ", n, ilo, ihi, &c_n1);
 
-     nb = min(i__1,i__2);
 
-     nbmin = 2;
 
-     iws = 1;
 
-     if (nb > 1 && nb < nh) {
 
- /*        Determine when to cross over from blocked to unblocked code */
 
- /*        (last block is always handled by unblocked code) */
 
- /* Computing MAX */
 
- 	i__1 = nb, i__2 = _starpu_ilaenv_(&c__3, "DGEHRD", " ", n, ilo, ihi, &c_n1);
 
- 	nx = max(i__1,i__2);
 
- 	if (nx < nh) {
 
- /*           Determine if workspace is large enough for blocked code */
 
- 	    iws = *n * nb;
 
- 	    if (*lwork < iws) {
 
- /*              Not enough workspace to use optimal NB:  determine the */
 
- /*              minimum value of NB, and reduce NB or force use of */
 
- /*              unblocked code */
 
- /* Computing MAX */
 
- 		i__1 = 2, i__2 = _starpu_ilaenv_(&c__2, "DGEHRD", " ", n, ilo, ihi, &
 
- 			c_n1);
 
- 		nbmin = max(i__1,i__2);
 
- 		if (*lwork >= *n * nbmin) {
 
- 		    nb = *lwork / *n;
 
- 		} else {
 
- 		    nb = 1;
 
- 		}
 
- 	    }
 
- 	}
 
-     }
 
-     ldwork = *n;
 
-     if (nb < nbmin || nb >= nh) {
 
- /*        Use unblocked code below */
 
- 	i__ = *ilo;
 
-     } else {
 
- /*        Use blocked code */
 
- 	i__1 = *ihi - 1 - nx;
 
- 	i__2 = nb;
 
- 	for (i__ = *ilo; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
 
- /* Computing MIN */
 
- 	    i__3 = nb, i__4 = *ihi - i__;
 
- 	    ib = min(i__3,i__4);
 
- /*           Reduce columns i:i+ib-1 to Hessenberg form, returning the */
 
- /*           matrices V and T of the block reflector H = I - V*T*V' */
 
- /*           which performs the reduction, and also the matrix Y = A*V*T */
 
- 	    _starpu_dlahr2_(ihi, &i__, &ib, &a[i__ * a_dim1 + 1], lda, &tau[i__], t, &
 
- 		    c__65, &work[1], &ldwork);
 
- /*           Apply the block reflector H to A(1:ihi,i+ib:ihi) from the */
 
- /*           right, computing  A := A - Y * V'. V(i+ib,ib-1) must be set */
 
- /*           to 1 */
 
- 	    ei = a[i__ + ib + (i__ + ib - 1) * a_dim1];
 
- 	    a[i__ + ib + (i__ + ib - 1) * a_dim1] = 1.;
 
- 	    i__3 = *ihi - i__ - ib + 1;
 
- 	    _starpu_dgemm_("No transpose", "Transpose", ihi, &i__3, &ib, &c_b25, &
 
- 		    work[1], &ldwork, &a[i__ + ib + i__ * a_dim1], lda, &
 
- 		    c_b26, &a[(i__ + ib) * a_dim1 + 1], lda);
 
- 	    a[i__ + ib + (i__ + ib - 1) * a_dim1] = ei;
 
- /*           Apply the block reflector H to A(1:i,i+1:i+ib-1) from the */
 
- /*           right */
 
- 	    i__3 = ib - 1;
 
- 	    _starpu_dtrmm_("Right", "Lower", "Transpose", "Unit", &i__, &i__3, &c_b26, 
 
- 		     &a[i__ + 1 + i__ * a_dim1], lda, &work[1], &ldwork);
 
- 	    i__3 = ib - 2;
 
- 	    for (j = 0; j <= i__3; ++j) {
 
- 		_starpu_daxpy_(&i__, &c_b25, &work[ldwork * j + 1], &c__1, &a[(i__ + 
 
- 			j + 1) * a_dim1 + 1], &c__1);
 
- /* L30: */
 
- 	    }
 
- /*           Apply the block reflector H to A(i+1:ihi,i+ib:n) from the */
 
- /*           left */
 
- 	    i__3 = *ihi - i__;
 
- 	    i__4 = *n - i__ - ib + 1;
 
- 	    _starpu_dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__3, &
 
- 		    i__4, &ib, &a[i__ + 1 + i__ * a_dim1], lda, t, &c__65, &a[
 
- 		    i__ + 1 + (i__ + ib) * a_dim1], lda, &work[1], &ldwork);
 
- /* L40: */
 
- 	}
 
-     }
 
- /*     Use unblocked code to reduce the rest of the matrix */
 
-     _starpu_dgehd2_(n, &i__, ihi, &a[a_offset], lda, &tau[1], &work[1], &iinfo);
 
-     work[1] = (doublereal) iws;
 
-     return 0;
 
- /*     End of DGEHRD */
 
- } /* _starpu_dgehrd_ */
 
 
  |