| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335 | /* dormlq.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static integer c__2 = 2;static integer c__65 = 65;/* Subroutine */ int _starpu_dormlq_(char *side, char *trans, integer *m, integer *n, 	integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *	c__, integer *ldc, doublereal *work, integer *lwork, integer *info){    /* System generated locals */    address a__1[2];    integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4, 	    i__5;    char ch__1[2];    /* Builtin functions */    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);    /* Local variables */    integer i__;    doublereal t[4160]	/* was [65][64] */;    integer i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw, iws;    logical left;    extern logical _starpu_lsame_(char *, char *);    integer nbmin, iinfo;    extern /* Subroutine */ int _starpu_dorml2_(char *, char *, integer *, integer *, 	    integer *, doublereal *, integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *), _starpu_dlarfb_(char 	    *, char *, char *, char *, integer *, integer *, integer *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *, doublereal *, integer *), _starpu_dlarft_(char *, char *, integer *, integer *, doublereal 	    *, integer *, doublereal *, doublereal *, integer *), _starpu_xerbla_(char *, integer *);    extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    logical notran;    integer ldwork;    char transt[1];    integer lwkopt;    logical lquery;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DORMLQ overwrites the general real M-by-N matrix C with *//*                  SIDE = 'L'     SIDE = 'R' *//*  TRANS = 'N':      Q * C          C * Q *//*  TRANS = 'T':      Q**T * C       C * Q**T *//*  where Q is a real orthogonal matrix defined as the product of k *//*  elementary reflectors *//*        Q = H(k) . . . H(2) H(1) *//*  as returned by DGELQF. Q is of order M if SIDE = 'L' and of order N *//*  if SIDE = 'R'. *//*  Arguments *//*  ========= *//*  SIDE    (input) CHARACTER*1 *//*          = 'L': apply Q or Q**T from the Left; *//*          = 'R': apply Q or Q**T from the Right. *//*  TRANS   (input) CHARACTER*1 *//*          = 'N':  No transpose, apply Q; *//*          = 'T':  Transpose, apply Q**T. *//*  M       (input) INTEGER *//*          The number of rows of the matrix C. M >= 0. *//*  N       (input) INTEGER *//*          The number of columns of the matrix C. N >= 0. *//*  K       (input) INTEGER *//*          The number of elementary reflectors whose product defines *//*          the matrix Q. *//*          If SIDE = 'L', M >= K >= 0; *//*          if SIDE = 'R', N >= K >= 0. *//*  A       (input) DOUBLE PRECISION array, dimension *//*                               (LDA,M) if SIDE = 'L', *//*                               (LDA,N) if SIDE = 'R' *//*          The i-th row must contain the vector which defines the *//*          elementary reflector H(i), for i = 1,2,...,k, as returned by *//*          DGELQF in the first k rows of its array argument A. *//*          A is modified by the routine but restored on exit. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A. LDA >= max(1,K). *//*  TAU     (input) DOUBLE PRECISION array, dimension (K) *//*          TAU(i) must contain the scalar factor of the elementary *//*          reflector H(i), as returned by DGELQF. *//*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N) *//*          On entry, the M-by-N matrix C. *//*          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. *//*  LDC     (input) INTEGER *//*          The leading dimension of the array C. LDC >= max(1,M). *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. *//*          If SIDE = 'L', LWORK >= max(1,N); *//*          if SIDE = 'R', LWORK >= max(1,M). *//*          For optimum performance LWORK >= N*NB if SIDE = 'L', and *//*          LWORK >= M*NB if SIDE = 'R', where NB is the optimal *//*          blocksize. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input arguments */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --tau;    c_dim1 = *ldc;    c_offset = 1 + c_dim1;    c__ -= c_offset;    --work;    /* Function Body */    *info = 0;    left = _starpu_lsame_(side, "L");    notran = _starpu_lsame_(trans, "N");    lquery = *lwork == -1;/*     NQ is the order of Q and NW is the minimum dimension of WORK */    if (left) {	nq = *m;	nw = *n;    } else {	nq = *n;	nw = *m;    }    if (! left && ! _starpu_lsame_(side, "R")) {	*info = -1;    } else if (! notran && ! _starpu_lsame_(trans, "T")) {	*info = -2;    } else if (*m < 0) {	*info = -3;    } else if (*n < 0) {	*info = -4;    } else if (*k < 0 || *k > nq) {	*info = -5;    } else if (*lda < max(1,*k)) {	*info = -7;    } else if (*ldc < max(1,*m)) {	*info = -10;    } else if (*lwork < max(1,nw) && ! lquery) {	*info = -12;    }    if (*info == 0) {/*        Determine the block size.  NB may be at most NBMAX, where NBMAX *//*        is used to define the local array T. *//* Computing MIN *//* Writing concatenation */	i__3[0] = 1, a__1[0] = side;	i__3[1] = 1, a__1[1] = trans;	s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);	i__1 = 64, i__2 = _starpu_ilaenv_(&c__1, "DORMLQ", ch__1, m, n, k, &c_n1);	nb = min(i__1,i__2);	lwkopt = max(1,nw) * nb;	work[1] = (doublereal) lwkopt;    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DORMLQ", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*m == 0 || *n == 0 || *k == 0) {	work[1] = 1.;	return 0;    }    nbmin = 2;    ldwork = nw;    if (nb > 1 && nb < *k) {	iws = nw * nb;	if (*lwork < iws) {	    nb = *lwork / ldwork;/* Computing MAX *//* Writing concatenation */	    i__3[0] = 1, a__1[0] = side;	    i__3[1] = 1, a__1[1] = trans;	    s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);	    i__1 = 2, i__2 = _starpu_ilaenv_(&c__2, "DORMLQ", ch__1, m, n, k, &c_n1);	    nbmin = max(i__1,i__2);	}    } else {	iws = nw;    }    if (nb < nbmin || nb >= *k) {/*        Use unblocked code */	_starpu_dorml2_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[		c_offset], ldc, &work[1], &iinfo);    } else {/*        Use blocked code */	if (left && notran || ! left && ! notran) {	    i1 = 1;	    i2 = *k;	    i3 = nb;	} else {	    i1 = (*k - 1) / nb * nb + 1;	    i2 = 1;	    i3 = -nb;	}	if (left) {	    ni = *n;	    jc = 1;	} else {	    mi = *m;	    ic = 1;	}	if (notran) {	    *(unsigned char *)transt = 'T';	} else {	    *(unsigned char *)transt = 'N';	}	i__1 = i2;	i__2 = i3;	for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {/* Computing MIN */	    i__4 = nb, i__5 = *k - i__ + 1;	    ib = min(i__4,i__5);/*           Form the triangular factor of the block reflector *//*           H = H(i) H(i+1) . . . H(i+ib-1) */	    i__4 = nq - i__ + 1;	    _starpu_dlarft_("Forward", "Rowwise", &i__4, &ib, &a[i__ + i__ * a_dim1], 		    lda, &tau[i__], t, &c__65);	    if (left) {/*              H or H' is applied to C(i:m,1:n) */		mi = *m - i__ + 1;		ic = i__;	    } else {/*              H or H' is applied to C(1:m,i:n) */		ni = *n - i__ + 1;		jc = i__;	    }/*           Apply H or H' */	    _starpu_dlarfb_(side, transt, "Forward", "Rowwise", &mi, &ni, &ib, &a[i__ 		    + i__ * a_dim1], lda, t, &c__65, &c__[ic + jc * c_dim1], 		    ldc, &work[1], &ldwork);/* L10: */	}    }    work[1] = (doublereal) lwkopt;    return 0;/*     End of DORMLQ */} /* _starpu_dormlq_ */
 |