basic-api.texi 130 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Versioning::
  9. * Initialization and Termination::
  10. * Standard memory library::
  11. * Workers' Properties::
  12. * Data Management::
  13. * Data Interfaces::
  14. * Data Partition::
  15. * Codelets and Tasks::
  16. * Explicit Dependencies::
  17. * Implicit Data Dependencies::
  18. * Performance Model API::
  19. * Profiling API::
  20. * CUDA extensions::
  21. * OpenCL extensions::
  22. * Miscellaneous helpers::
  23. @end menu
  24. @node Versioning
  25. @section Versioning
  26. @defmac STARPU_MAJOR_VERSION
  27. Define the major version of StarPU
  28. @end defmac
  29. @defmac STARPU_MINOR_VERSION
  30. Define the minor version of StarPU
  31. @end defmac
  32. @node Initialization and Termination
  33. @section Initialization and Termination
  34. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  35. This is StarPU initialization method, which must be called prior to any other
  36. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  37. policy, number of cores, ...) by passing a non-null argument. Default
  38. configuration is used if the passed argument is @code{NULL}.
  39. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  40. indicates that no worker was available (so that StarPU was not initialized).
  41. @end deftypefun
  42. @deftp {Data Type} {struct starpu_driver}
  43. @table @asis
  44. @item @code{enum starpu_archtype type}
  45. The type of the driver. Only STARPU_CPU_DRIVER, STARPU_CUDA_DRIVER and
  46. STARPU_OPENCL_DRIVER are currently supported.
  47. @item @code{union id} Anonymous union
  48. @table @asis
  49. @item @code{unsigned cpu_id}
  50. Should only be used if type is STARPU_CPU_WORKER.
  51. @item @code{unsigned cuda_id}
  52. Should only be used if type is STARPU_CUDA_WORKER.
  53. @item @code{cl_device_id opencl_id}
  54. Should only be used if type is STARPU_OPENCL_WORKER.
  55. @end table
  56. @end table
  57. @end deftp
  58. @deftp {Data Type} {struct starpu_conf}
  59. This structure is passed to the @code{starpu_init} function in order
  60. to configure StarPU. It has to be initialized with @code{starpu_conf_init}.
  61. When the default value is used, StarPU automatically selects the number of
  62. processing units and takes the default scheduling policy. The environment
  63. variables overwrite the equivalent parameters.
  64. @table @asis
  65. @item @code{const char *sched_policy_name} (default = NULL)
  66. This is the name of the scheduling policy. This can also be specified
  67. with the @code{STARPU_SCHED} environment variable.
  68. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  69. This is the definition of the scheduling policy. This field is ignored
  70. if @code{sched_policy_name} is set.
  71. @item @code{int ncpus} (default = -1)
  72. This is the number of CPU cores that StarPU can use. This can also be
  73. specified with the @code{STARPU_NCPU} environment variable.
  74. @item @code{int ncuda} (default = -1)
  75. This is the number of CUDA devices that StarPU can use. This can also
  76. be specified with the @code{STARPU_NCUDA} environment variable.
  77. @item @code{int nopencl} (default = -1)
  78. This is the number of OpenCL devices that StarPU can use. This can
  79. also be specified with the @code{STARPU_NOPENCL} environment variable.
  80. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  81. If this flag is set, the @code{workers_bindid} array indicates where the
  82. different workers are bound, otherwise StarPU automatically selects where to
  83. bind the different workers. This can also be specified with the
  84. @code{STARPU_WORKERS_CPUID} environment variable.
  85. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  86. If the @code{use_explicit_workers_bindid} flag is set, this array
  87. indicates where to bind the different workers. The i-th entry of the
  88. @code{workers_bindid} indicates the logical identifier of the
  89. processor which should execute the i-th worker. Note that the logical
  90. ordering of the CPUs is either determined by the OS, or provided by
  91. the @code{hwloc} library in case it is available.
  92. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  93. If this flag is set, the CUDA workers will be attached to the CUDA devices
  94. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  95. CUDA devices in a round-robin fashion. This can also be specified with the
  96. @code{STARPU_WORKERS_CUDAID} environment variable.
  97. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  98. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  99. contains the logical identifiers of the CUDA devices (as used by
  100. @code{cudaGetDevice}).
  101. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  102. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  103. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects
  104. the OpenCL devices in a round-robin fashion. This can also be specified with
  105. the @code{STARPU_WORKERS_OPENCLID} environment variable.
  106. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  107. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  108. contains the logical identifiers of the OpenCL devices to be used.
  109. @item @code{int calibrate} (default = 0)
  110. If this flag is set, StarPU will calibrate the performance models when
  111. executing tasks. If this value is equal to @code{-1}, the default value is
  112. used. If the value is equal to @code{1}, it will force continuing
  113. calibration. If the value is equal to @code{2}, the existing performance
  114. models will be overwritten. This can also be specified with the
  115. @code{STARPU_CALIBRATE} environment variable.
  116. @item @code{int bus_calibrate} (default = 0)
  117. If this flag is set, StarPU will recalibrate the bus. If this value is equal
  118. to @code{-1}, the default value is used. This can also be specified with the
  119. @code{STARPU_BUS_CALIBRATE} environment variable.
  120. @item @code{int single_combined_worker} (default = 0)
  121. By default, StarPU executes parallel tasks concurrently.
  122. Some parallel libraries (e.g. most OpenMP implementations) however do
  123. not support concurrent calls to parallel code. In such case, setting this flag
  124. makes StarPU only start one parallel task at a time (but other
  125. CPU and GPU tasks are not affected and can be run concurrently). The parallel
  126. task scheduler will however still however still try varying combined worker
  127. sizes to look for the most efficient ones.
  128. This can also be specified with the @code{STARPU_SINGLE_COMBINED_WORKER} environment variable.
  129. @item @code{int disable_asynchronous_copy} (default = 0)
  130. This flag should be set to 1 to disable asynchronous copies between
  131. CPUs and all accelerators. This can also be specified with the
  132. @code{STARPU_DISABLE_ASYNCHRONOUS_COPY} environment variable.
  133. The AMD implementation of OpenCL is known to
  134. fail when copying data asynchronously. When using this implementation,
  135. it is therefore necessary to disable asynchronous data transfers.
  136. This can also be specified at compilation time by giving to the
  137. configure script the option @code{--disable-asynchronous-copy}.
  138. @item @code{int disable_asynchronous_cuda_copy} (default = 0)
  139. This flag should be set to 1 to disable asynchronous copies between
  140. CPUs and CUDA accelerators. This can also be specified with the
  141. @code{STARPU_DISABLE_ASYNCHRONOUS_CUDA_COPY} environment variable.
  142. This can also be specified at compilation time by giving to the
  143. configure script the option @code{--disable-asynchronous-cuda-copy}.
  144. @item @code{int disable_asynchronous_opencl_copy} (default = 0)
  145. This flag should be set to 1 to disable asynchronous copies between
  146. CPUs and OpenCL accelerators. This can also be specified with the
  147. @code{STARPU_DISABLE_ASYNCHRONOUS_OPENCL_COPY} environment variable.
  148. The AMD implementation of OpenCL is known to
  149. fail when copying data asynchronously. When using this implementation,
  150. it is therefore necessary to disable asynchronous data transfers.
  151. This can also be specified at compilation time by giving to the
  152. configure script the option @code{--disable-asynchronous-opencl-copy}.
  153. @item @code{int *cuda_opengl_interoperability} (default = NULL)
  154. This can be set to an array of CUDA device identifiers for which
  155. @code{cudaGLSetGLDevice} should be called instead of @code{cudaSetDevice}. Its
  156. size is specified by the @code{n_cuda_opengl_interoperability} field below
  157. @item @code{int *n_cuda_opengl_interoperability} (default = 0)
  158. This has to be set to the size of the array pointed to by the
  159. @code{cuda_opengl_interoperability} field.
  160. @item @code{struct starpu_driver *not_launched_drivers}
  161. The drivers that should not be launched by StarPU.
  162. @item @code{unsigned n_not_launched_drivers}
  163. The number of StarPU drivers that should not be launched by StarPU.
  164. @item @code{trace_buffer_size}
  165. Specifies the buffer size used for FxT tracing. Starting from FxT version
  166. 0.2.12, the buffer will automatically be flushed when it fills in, but it may
  167. still be interesting to specify a bigger value to avoid any flushing (which
  168. would disturb the trace).
  169. @end table
  170. @end deftp
  171. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  172. This function initializes the @var{conf} structure passed as argument
  173. with the default values. In case some configuration parameters are already
  174. specified through environment variables, @code{starpu_conf_init} initializes
  175. the fields of the structure according to the environment variables. For
  176. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  177. @code{.calibrate} field of the structure passed as argument.
  178. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  179. indicates that the argument was NULL.
  180. @end deftypefun
  181. @deftypefun void starpu_shutdown (void)
  182. This is StarPU termination method. It must be called at the end of the
  183. application: statistics and other post-mortem debugging information are not
  184. guaranteed to be available until this method has been called.
  185. @end deftypefun
  186. @deftypefun int starpu_asynchronous_copy_disabled (void)
  187. Return 1 if asynchronous data transfers between CPU and accelerators
  188. are disabled.
  189. @end deftypefun
  190. @deftypefun int starpu_asynchronous_cuda_copy_disabled (void)
  191. Return 1 if asynchronous data transfers between CPU and CUDA accelerators
  192. are disabled.
  193. @end deftypefun
  194. @deftypefun int starpu_asynchronous_opencl_copy_disabled (void)
  195. Return 1 if asynchronous data transfers between CPU and OpenCL accelerators
  196. are disabled.
  197. @end deftypefun
  198. @node Standard memory library
  199. @section Standard memory library
  200. @defmac STARPU_MALLOC_PINNED
  201. Value passed to the function @code{starpu_malloc_flags} to
  202. indicate the memory allocation should be pinned.
  203. @end defmac
  204. @defmac STARPU_MALLOC_COUNT
  205. Value passed to the function @code{starpu_malloc_flags} to
  206. indicate the memory allocation should be in the limit defined by
  207. the environment variables @code{STARPU_LIMIT_CUDA_devid_MEM},
  208. @code{STARPU_LIMIT_CUDA_MEM}, @code{STARPU_LIMIT_OPENCL_devid_MEM},
  209. @code{STARPU_LIMIT_OPENCL_MEM} and @code{STARPU_LIMIT_CPU_MEM}
  210. (@pxref{Limit memory}). If no memory is available, it tries to reclaim
  211. memory from StarPU. Memory allocated this way needs to be freed by
  212. calling the @code{starpu_free_flags} function with the same flag.
  213. @end defmac
  214. @deftypefun int starpu_malloc_flags (void **@var{A}, size_t @var{dim}, int @var{flags})
  215. Performs a memory allocation based on the constraints defined by the
  216. given @var{flag}.
  217. @end deftypefun
  218. @deftypefun void starpu_malloc_set_align (size_t @var{align})
  219. This functions sets an alignment constraints for @code{starpu_malloc}
  220. allocations. @var{align} must be a power of two. This is for instance called
  221. automatically by the OpenCL driver to specify its own alignment constraints.
  222. @end deftypefun
  223. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  224. This function allocates data of the given size in main memory. It will also try to pin it in
  225. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  226. thus permit data transfer and computation overlapping. The allocated buffer must
  227. be freed thanks to the @code{starpu_free} function.
  228. @end deftypefun
  229. @deftypefun int starpu_free (void *@var{A})
  230. This function frees memory which has previously been allocated with
  231. @code{starpu_malloc}.
  232. @end deftypefun
  233. @deftypefun int starpu_free_flags (void *@var{A}, size_t @var{dim}, int @var{flags})
  234. This function frees memory by specifying its size. The given
  235. @var{flags} should be consistent with the ones given to
  236. @code{starpu_malloc_flags} when allocating the memory.
  237. @end deftypefun
  238. @deftypefun ssize_t starpu_memory_get_available (unsigned @var{node})
  239. If a memory limit is defined on the given node (@pxref{Limit memory}),
  240. return the amount of available memory on the node. Otherwise return
  241. @code{-1}.
  242. @end deftypefun
  243. @node Workers' Properties
  244. @section Workers' Properties
  245. @deftp {Data Type} {enum starpu_archtype}
  246. The different values are:
  247. @table @asis
  248. @item @code{STARPU_CPU_WORKER}
  249. @item @code{STARPU_CUDA_WORKER}
  250. @item @code{STARPU_OPENCL_WORKER}
  251. @end table
  252. @end deftp
  253. @deftypefun unsigned starpu_worker_get_count (void)
  254. This function returns the number of workers (i.e. processing units executing
  255. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  256. @end deftypefun
  257. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  258. Returns the number of workers of the given @var{type}. A positive
  259. (or @code{NULL}) value is returned in case of success, @code{-EINVAL} indicates that
  260. the type is not valid otherwise.
  261. @end deftypefun
  262. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  263. This function returns the number of CPUs controlled by StarPU. The returned
  264. value should be at most @code{STARPU_MAXCPUS}.
  265. @end deftypefun
  266. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  267. This function returns the number of CUDA devices controlled by StarPU. The returned
  268. value should be at most @code{STARPU_MAXCUDADEVS}.
  269. @end deftypefun
  270. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  271. This function returns the number of OpenCL devices controlled by StarPU. The returned
  272. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  273. @end deftypefun
  274. @deftypefun int starpu_worker_get_id (void)
  275. This function returns the identifier of the current worker, i.e the one associated to the calling
  276. thread. The returned value is either -1 if the current context is not a StarPU
  277. worker (i.e. when called from the application outside a task or a callback), or
  278. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  279. @end deftypefun
  280. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  281. This function gets the list of identifiers of workers with the given
  282. type. It fills the workerids array with the identifiers of the workers that have the type
  283. indicated in the first argument. The maxsize argument indicates the size of the
  284. workids array. The returned value gives the number of identifiers that were put
  285. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  286. workers with the appropriate type: in that case, the array is filled with the
  287. maxsize first elements. To avoid such overflows, the value of maxsize can be
  288. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  289. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  290. @end deftypefun
  291. @deftypefun int starpu_worker_get_by_type ({enum starpu_archtype} @var{type}, int @var{num})
  292. This returns the identifier of the @var{num}-th worker that has the specified type
  293. @var{type}. If there are no such worker, -1 is returned.
  294. @end deftypefun
  295. @deftypefun int starpu_worker_get_by_devid ({enum starpu_archtype} @var{type}, int @var{devid})
  296. This returns the identifier of the worker that has the specified type
  297. @var{type} and devid @var{devid} (which may not be the n-th, if some devices are
  298. skipped for instance). If there are no such worker, -1 is returned.
  299. @end deftypefun
  300. @deftypefun int starpu_worker_get_devid (int @var{id})
  301. This functions returns the device id of the given worker. The worker
  302. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  303. CUDA worker, this device identifier is the logical device identifier exposed by
  304. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  305. identifier of a CPU worker is the logical identifier of the core on which the
  306. worker was bound; this identifier is either provided by the OS or by the
  307. @code{hwloc} library in case it is available.
  308. @end deftypefun
  309. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  310. This function returns the type of processing unit associated to a
  311. worker. The worker identifier is a value returned by the
  312. @code{starpu_worker_get_id} function). The returned value
  313. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  314. core, @code{STARPU_CUDA_WORKER} for a CUDA device, and
  315. @code{STARPU_OPENCL_WORKER} for a OpenCL device. The value returned for an invalid
  316. identifier is unspecified.
  317. @end deftypefun
  318. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  319. This function allows to get the name of a given worker.
  320. StarPU associates a unique human readable string to each processing unit. This
  321. function copies at most the @var{maxlen} first bytes of the unique string
  322. associated to a worker identified by its identifier @var{id} into the
  323. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  324. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  325. function on an invalid identifier results in an unspecified behaviour.
  326. @end deftypefun
  327. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  328. This function returns the identifier of the memory node associated to the
  329. worker identified by @var{workerid}.
  330. @end deftypefun
  331. @deftp {Data Type} {enum starpu_node_kind}
  332. todo
  333. @table @asis
  334. @item @code{STARPU_UNUSED}
  335. @item @code{STARPU_CPU_RAM}
  336. @item @code{STARPU_CUDA_RAM}
  337. @item @code{STARPU_OPENCL_RAM}
  338. @end table
  339. @end deftp
  340. @deftypefun {enum starpu_node_kind} starpu_node_get_kind (unsigned @var{node})
  341. Returns the type of the given node as defined by @code{enum
  342. starpu_node_kind}. For example, when defining a new data interface,
  343. this function should be used in the allocation function to determine
  344. on which device the memory needs to be allocated.
  345. @end deftypefun
  346. @node Data Management
  347. @section Data Management
  348. @menu
  349. * Introduction to Data Management::
  350. * Basic Data Management API::
  351. * Access registered data from the application::
  352. @end menu
  353. This section describes the data management facilities provided by StarPU.
  354. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  355. design their own data interfaces if required.
  356. @node Introduction to Data Management
  357. @subsection Introduction
  358. Data management is done at a high-level in StarPU: rather than accessing a mere
  359. list of contiguous buffers, the tasks may manipulate data that are described by
  360. a high-level construct which we call data interface.
  361. An example of data interface is the "vector" interface which describes a
  362. contiguous data array on a spefic memory node. This interface is a simple
  363. structure containing the number of elements in the array, the size of the
  364. elements, and the address of the array in the appropriate address space (this
  365. address may be invalid if there is no valid copy of the array in the memory
  366. node). More informations on the data interfaces provided by StarPU are
  367. given in @ref{Data Interfaces}.
  368. When a piece of data managed by StarPU is used by a task, the task
  369. implementation is given a pointer to an interface describing a valid copy of
  370. the data that is accessible from the current processing unit.
  371. Every worker is associated to a memory node which is a logical abstraction of
  372. the address space from which the processing unit gets its data. For instance,
  373. the memory node associated to the different CPU workers represents main memory
  374. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  375. Every memory node is identified by a logical index which is accessible from the
  376. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  377. to StarPU, the specified memory node indicates where the piece of data
  378. initially resides (we also call this memory node the home node of a piece of
  379. data).
  380. @node Basic Data Management API
  381. @subsection Basic Data Management API
  382. @deftp {Data Type} {enum starpu_access_mode}
  383. This datatype describes a data access mode. The different available modes are:
  384. @table @asis
  385. @item @code{STARPU_R}: read-only mode.
  386. @item @code{STARPU_W}: write-only mode.
  387. @item @code{STARPU_RW}: read-write mode.
  388. This is equivalent to @code{STARPU_R|STARPU_W}.
  389. @item @code{STARPU_SCRATCH}: scratch memory.
  390. A temporary buffer is allocated for the task, but StarPU does not
  391. enforce data consistency---i.e. each device has its own buffer,
  392. independently from each other (even for CPUs), and no data transfer is
  393. ever performed. This is useful for temporary variables to avoid
  394. allocating/freeing buffers inside each task.
  395. Currently, no behavior is defined concerning the relation with the
  396. @code{STARPU_R} and @code{STARPU_W} modes and the value provided at
  397. registration---i.e., the value of the scratch buffer is undefined at
  398. entry of the codelet function. It is being considered for future
  399. extensions at least to define the initial value. For now, data to be
  400. used in @code{SCRATCH} mode should be registered with node @code{-1} and
  401. a @code{NULL} pointer, since the value of the provided buffer is simply
  402. ignored for now.
  403. @item @code{STARPU_REDUX}: reduction mode. TODO!
  404. @end table
  405. @end deftp
  406. @deftp {Data Type} {starpu_data_handle_t}
  407. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  408. data. Once a piece of data has been registered to StarPU, it is associated to a
  409. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  410. over the entire machine, so that we can maintain data consistency and locate
  411. data replicates for instance.
  412. @end deftp
  413. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, unsigned @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  414. Register a piece of data into the handle located at the @var{handleptr}
  415. address. The @var{data_interface} buffer contains the initial description of the
  416. data in the home node. The @var{ops} argument is a pointer to a structure
  417. describing the different methods used to manipulate this type of interface. See
  418. @ref{struct starpu_data_interface_ops} for more details on this structure.
  419. If @code{home_node} is -1, StarPU will automatically
  420. allocate the memory when it is used for the
  421. first time in write-only mode. Once such data handle has been automatically
  422. allocated, it is possible to access it using any access mode.
  423. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  424. matrix) which can be registered by the means of helper functions (e.g.
  425. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  426. @end deftypefun
  427. @deftypefun void starpu_data_register_same ({starpu_data_handle_t *}@var{handledst}, starpu_data_handle_t @var{handlesrc})
  428. Register a new piece of data into the handle @var{handledst} with the
  429. same interface as the handle @var{handlesrc}.
  430. @end deftypefun
  431. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  432. This function unregisters a data handle from StarPU. If the data was
  433. automatically allocated by StarPU because the home node was -1, all
  434. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  435. is put back into the home node in the buffer that was initially registered.
  436. Using a data handle that has been unregistered from StarPU results in an
  437. undefined behaviour.
  438. @end deftypefun
  439. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  440. This is the same as starpu_data_unregister, except that StarPU does not put back
  441. a valid copy into the home node, in the buffer that was initially registered.
  442. @end deftypefun
  443. @deftypefun void starpu_data_unregister_submit (starpu_data_handle_t @var{handle})
  444. Destroy the data handle once it is not needed anymore by any submitted
  445. task. No coherency is assumed.
  446. @end deftypefun
  447. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  448. Destroy all replicates of the data handle immediately. After data invalidation,
  449. the first access to the handle must be performed in write-only mode.
  450. Accessing an invalidated data in read-mode results in undefined
  451. behaviour.
  452. @end deftypefun
  453. @deftypefun void starpu_data_invalidate_submit (starpu_data_handle_t @var{handle})
  454. Submits invalidation of the data handle after completion of previously submitted tasks.
  455. @end deftypefun
  456. @c TODO create a specific sections about user interaction with the DSM ?
  457. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  458. This function sets the write-through mask of a given data, i.e. a bitmask of
  459. nodes where the data should be always replicated after modification. It also
  460. prevents the data from being evicted from these nodes when memory gets scarse.
  461. @end deftypefun
  462. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  463. Issue a prefetch request for a given data to a given node, i.e.
  464. requests that the data be replicated to the given node, so that it is available
  465. there for tasks. If the @var{async} parameter is 0, the call will block until
  466. the transfer is achieved, else the call will return as soon as the request is
  467. scheduled (which may however have to wait for a task completion).
  468. @end deftypefun
  469. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  470. Return the handle corresponding to the data pointed to by the @var{ptr}
  471. host pointer.
  472. @end deftypefun
  473. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, unsigned @var{node})
  474. Explicitly ask StarPU to allocate room for a piece of data on the specified
  475. memory node.
  476. @end deftypefun
  477. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  478. Query the status of the handle on the specified memory node.
  479. @end deftypefun
  480. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  481. This function allows to specify that a piece of data can be discarded
  482. without impacting the application.
  483. @end deftypefun
  484. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  485. This sets the codelets to be used for the @var{handle} when it is accessed in
  486. REDUX mode. Per-worker buffers will be initialized with the @var{init_cl}
  487. codelet, and reduction between per-worker buffers will be done with the
  488. @var{redux_cl} codelet.
  489. @end deftypefun
  490. @node Access registered data from the application
  491. @subsection Access registered data from the application
  492. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode})
  493. The application must call this function prior to accessing registered data from
  494. main memory outside tasks. StarPU ensures that the application will get an
  495. up-to-date copy of the data in main memory located where the data was
  496. originally registered, and that all concurrent accesses (e.g. from tasks) will
  497. be consistent with the access mode specified in the @var{mode} argument.
  498. @code{starpu_data_release} must be called once the application does not need to
  499. access the piece of data anymore. Note that implicit data
  500. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  501. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  502. the data, unless they have been disabled explictly by calling
  503. @code{starpu_data_set_default_sequential_consistency_flag} or
  504. @code{starpu_data_set_sequential_consistency_flag}.
  505. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  506. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  507. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  508. @end deftypefun
  509. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  510. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  511. @code{starpu_data_acquire}. When the data specified in the first argument is
  512. available in the appropriate access mode, the callback function is executed.
  513. The application may access the requested data during the execution of this
  514. callback. The callback function must call @code{starpu_data_release} once the
  515. application does not need to access the piece of data anymore.
  516. Note that implicit data dependencies are also enforced by
  517. @code{starpu_data_acquire_cb} in case they are not disabled.
  518. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  519. be called from task callbacks. Upon successful completion, this function
  520. returns 0.
  521. @end deftypefun
  522. @deftypefun int starpu_data_acquire_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode})
  523. This is the same as @code{starpu_data_acquire}, except that the data will be
  524. available on the given memory node instead of main memory.
  525. @end deftypefun
  526. @deftypefun int starpu_data_acquire_on_node_cb (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  527. This is the same as @code{starpu_data_acquire_cb}, except that the data will be
  528. available on the given memory node instead of main memory.
  529. @end deftypefun
  530. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, code)
  531. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  532. except that the code to be executed in a callback is directly provided as a
  533. macro parameter, and the data handle is automatically released after it. This
  534. permits to easily execute code which depends on the value of some registered
  535. data. This is non-blocking too and may be called from task callbacks.
  536. @end defmac
  537. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  538. This function releases the piece of data acquired by the application either by
  539. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  540. @end deftypefun
  541. @deftypefun void starpu_data_release_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node})
  542. This is the same as @code{starpu_data_release}, except that the data will be
  543. available on the given memory node instead of main memory.
  544. @end deftypefun
  545. @node Data Interfaces
  546. @section Data Interfaces
  547. @menu
  548. * Registering Data::
  549. * Accessing Data Interfaces::
  550. * Defining Interface::
  551. @end menu
  552. @node Registering Data
  553. @subsection Registering Data
  554. There are several ways to register a memory region so that it can be managed by
  555. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  556. matrices as well as BCSR and CSR sparse matrices.
  557. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  558. Register a void interface. There is no data really associated to that
  559. interface, but it may be used as a synchronization mechanism. It also
  560. permits to express an abstract piece of data that is managed by the
  561. application internally: this makes it possible to forbid the
  562. concurrent execution of different tasks accessing the same "void" data
  563. in read-write concurrently.
  564. @end deftypefun
  565. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  566. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  567. typically a scalar, and initialize @var{handle} to represent this data
  568. item.
  569. @cartouche
  570. @smallexample
  571. float var;
  572. starpu_data_handle_t var_handle;
  573. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  574. @end smallexample
  575. @end cartouche
  576. @end deftypefun
  577. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  578. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  579. @var{ptr} and initialize @var{handle} to represent it.
  580. @cartouche
  581. @smallexample
  582. float vector[NX];
  583. starpu_data_handle_t vector_handle;
  584. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  585. sizeof(vector[0]));
  586. @end smallexample
  587. @end cartouche
  588. @end deftypefun
  589. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  590. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  591. pointed by @var{ptr} and initialize @var{handle} to represent it.
  592. @var{ld} specifies the number of elements between rows.
  593. a value greater than @var{nx} adds padding, which can be useful for
  594. alignment purposes.
  595. @cartouche
  596. @smallexample
  597. float *matrix;
  598. starpu_data_handle_t matrix_handle;
  599. matrix = (float*)malloc(width * height * sizeof(float));
  600. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  601. width, width, height, sizeof(float));
  602. @end smallexample
  603. @end cartouche
  604. @end deftypefun
  605. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  606. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  607. elements pointed by @var{ptr} and initialize @var{handle} to represent
  608. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  609. between rows and between z planes.
  610. @cartouche
  611. @smallexample
  612. float *block;
  613. starpu_data_handle_t block_handle;
  614. block = (float*)malloc(nx*ny*nz*sizeof(float));
  615. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  616. nx, nx*ny, nx, ny, nz, sizeof(float));
  617. @end smallexample
  618. @end cartouche
  619. @end deftypefun
  620. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, unsigned @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  621. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  622. Compressed Sparse Row Representation) sparse matrix interface.
  623. Register the sparse matrix made of @var{nnz} non-zero blocks of elements of size
  624. @var{elemsize} stored in @var{nzval} and initializes @var{handle} to represent
  625. it. Blocks have size @var{r} * @var{c}. @var{nrow} is the number of rows (in
  626. terms of blocks), @code{colind[i]} is the block-column index for block @code{i}
  627. in @code{nzval}, @code{rowptr[i]} is the block-index (in nzval) of the first block of row @code{i}.
  628. @var{firstentry} is the index of the first entry of the given arrays (usually 0
  629. or 1).
  630. @end deftypefun
  631. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, unsigned @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  632. This variant of @code{starpu_data_register} uses the CSR (Compressed
  633. Sparse Row Representation) sparse matrix interface.
  634. TODO
  635. @end deftypefun
  636. @deftypefun void starpu_coo_data_register (starpu_data_handle_t *@var{handleptr}, unsigned @var{home_node}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{n_values}, uint32_t *@var{columns}, uint32_t *@var{rows}, uintptr_t @var{values}, size_t @var{elemsize});
  637. Register the @var{nx}x@var{ny} 2D matrix given in the COO format, using the
  638. @var{columns}, @var{rows}, @var{values} arrays, which must have @var{n_values}
  639. elements of size @var{elemsize}. Initialize @var{handleptr}.
  640. @end deftypefun
  641. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  642. Return the interface associated with @var{handle} on @var{memory_node}.
  643. @end deftypefun
  644. @node Accessing Data Interfaces
  645. @subsection Accessing Data Interfaces
  646. Each data interface is provided with a set of field access functions.
  647. The ones using a @code{void *} parameter aimed to be used in codelet
  648. implementations (see for example the code in @ref{Vector Scaling Using StarPU's API}).
  649. @deftp {Data Type} {enum starpu_data_interface_id}
  650. The different values are:
  651. @table @asis
  652. @item @code{STARPU_MATRIX_INTERFACE_ID}
  653. @item @code{STARPU_BLOCK_INTERFACE_ID}
  654. @item @code{STARPU_VECTOR_INTERFACE_ID}
  655. @item @code{STARPU_CSR_INTERFACE_ID}
  656. @item @code{STARPU_BCSR_INTERFACE_ID}
  657. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  658. @item @code{STARPU_VOID_INTERFACE_ID}
  659. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  660. @item @code{STARPU_COO_INTERCACE_ID}
  661. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  662. @end table
  663. @end deftp
  664. @menu
  665. * Accessing Handle::
  666. * Accessing Variable Data Interfaces::
  667. * Accessing Vector Data Interfaces::
  668. * Accessing Matrix Data Interfaces::
  669. * Accessing Block Data Interfaces::
  670. * Accessing BCSR Data Interfaces::
  671. * Accessing CSR Data Interfaces::
  672. * Accessing COO Data Interfaces::
  673. @end menu
  674. @node Accessing Handle
  675. @subsubsection Handle
  676. @deftypefun {void *} starpu_handle_to_pointer (starpu_data_handle_t @var{handle}, unsigned @var{node})
  677. Return the pointer associated with @var{handle} on node @var{node} or
  678. @code{NULL} if @var{handle}'s interface does not support this
  679. operation or data for this handle is not allocated on that node.
  680. @end deftypefun
  681. @deftypefun {void *} starpu_handle_get_local_ptr (starpu_data_handle_t @var{handle})
  682. Return the local pointer associated with @var{handle} or @code{NULL}
  683. if @var{handle}'s interface does not have data allocated locally
  684. @end deftypefun
  685. @deftypefun {enum starpu_data_interface_id} starpu_handle_get_interface_id (starpu_data_handle_t @var{handle})
  686. Return the unique identifier of the interface associated with the given @var{handle}.
  687. @end deftypefun
  688. @deftypefun size_t starpu_handle_get_size (starpu_data_handle_t @var{handle})
  689. Return the size of the data associated with @var{handle}
  690. @end deftypefun
  691. @deftypefun int starpu_handle_pack_data (starpu_data_handle_t @var{handle}, {void **}@var{ptr}, {ssize_t *}@var{count})
  692. Execute the packing operation of the interface of the data registered
  693. at @var{handle} (@pxref{struct starpu_data_interface_ops}). This
  694. packing operation must allocate a buffer large enough at @var{ptr} and
  695. copy into the newly allocated buffer the data associated to
  696. @var{handle}. @var{count} will be set to the size of the allocated
  697. buffer.
  698. If @var{ptr} is @code{NULL}, the function should not copy the data in the
  699. buffer but just set @var{count} to the size of the buffer which
  700. would have been allocated. The special value @code{-1} indicates the
  701. size is yet unknown.
  702. @end deftypefun
  703. @deftypefun int starpu_handle_unpack_data (starpu_data_handle_t @var{handle}, {void *}@var{ptr}, size_t @var{count})
  704. Unpack in @var{handle} the data located at @var{ptr} of size
  705. @var{count} as described by the interface of the data. The interface
  706. registered at @var{handle} must define a unpacking operation
  707. (@pxref{struct starpu_data_interface_ops}). The memory at the address @code{ptr}
  708. is freed after calling the data unpacking operation.
  709. @end deftypefun
  710. @node Accessing Variable Data Interfaces
  711. @subsubsection Variable Data Interfaces
  712. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  713. Return the size of the variable designated by @var{handle}.
  714. @end deftypefun
  715. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  716. Return a pointer to the variable designated by @var{handle}.
  717. @end deftypefun
  718. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  719. Return a pointer to the variable designated by @var{interface}.
  720. @end defmac
  721. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  722. Return the size of the variable designated by @var{interface}.
  723. @end defmac
  724. @defmac STARPU_VARIABLE_GET_DEV_HANDLE ({void *}@var{interface})
  725. Return a device handle for the variable designated by @var{interface}, to be
  726. used on OpenCL. The offset documented below has to be used in addition to this.
  727. @end defmac
  728. @defmac STARPU_VARIABLE_GET_OFFSET ({void *}@var{interface})
  729. Return the offset in the variable designated by @var{interface}, to be used
  730. with the device handle.
  731. @end defmac
  732. @node Accessing Vector Data Interfaces
  733. @subsubsection Vector Data Interfaces
  734. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  735. Return the number of elements registered into the array designated by @var{handle}.
  736. @end deftypefun
  737. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  738. Return the size of each element of the array designated by @var{handle}.
  739. @end deftypefun
  740. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  741. Return the local pointer associated with @var{handle}.
  742. @end deftypefun
  743. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  744. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  745. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  746. @end defmac
  747. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  748. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  749. documented below has to be used in addition to this.
  750. @end defmac
  751. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  752. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  753. @end defmac
  754. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  755. Return the number of elements registered into the array designated by @var{interface}.
  756. @end defmac
  757. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  758. Return the size of each element of the array designated by @var{interface}.
  759. @end defmac
  760. @node Accessing Matrix Data Interfaces
  761. @subsubsection Matrix Data Interfaces
  762. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  763. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  764. @end deftypefun
  765. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  766. Return the number of elements on the y-axis of the matrix designated by
  767. @var{handle}.
  768. @end deftypefun
  769. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  770. Return the number of elements between each row of the matrix designated by
  771. @var{handle}. Maybe be equal to nx when there is no padding.
  772. @end deftypefun
  773. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  774. Return the local pointer associated with @var{handle}.
  775. @end deftypefun
  776. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  777. Return the size of the elements registered into the matrix designated by
  778. @var{handle}.
  779. @end deftypefun
  780. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  781. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  782. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  783. used instead.
  784. @end defmac
  785. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  786. Return a device handle for the matrix designated by @var{interface}, to be used
  787. on OpenCL. The offset documented below has to be used in addition to this.
  788. @end defmac
  789. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  790. Return the offset in the matrix designated by @var{interface}, to be used with
  791. the device handle.
  792. @end defmac
  793. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  794. Return the number of elements on the x-axis of the matrix designated by
  795. @var{interface}.
  796. @end defmac
  797. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  798. Return the number of elements on the y-axis of the matrix designated by
  799. @var{interface}.
  800. @end defmac
  801. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  802. Return the number of elements between each row of the matrix designated by
  803. @var{interface}. May be equal to nx when there is no padding.
  804. @end defmac
  805. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  806. Return the size of the elements registered into the matrix designated by
  807. @var{interface}.
  808. @end defmac
  809. @node Accessing Block Data Interfaces
  810. @subsubsection Block Data Interfaces
  811. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  812. Return the number of elements on the x-axis of the block designated by @var{handle}.
  813. @end deftypefun
  814. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  815. Return the number of elements on the y-axis of the block designated by @var{handle}.
  816. @end deftypefun
  817. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  818. Return the number of elements on the z-axis of the block designated by @var{handle}.
  819. @end deftypefun
  820. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  821. Return the number of elements between each row of the block designated by
  822. @var{handle}, in the format of the current memory node.
  823. @end deftypefun
  824. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  825. Return the number of elements between each z plane of the block designated by
  826. @var{handle}, in the format of the current memory node.
  827. @end deftypefun
  828. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  829. Return the local pointer associated with @var{handle}.
  830. @end deftypefun
  831. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  832. Return the size of the elements of the block designated by @var{handle}.
  833. @end deftypefun
  834. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  835. Return a pointer to the block designated by @var{interface}.
  836. @end defmac
  837. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  838. Return a device handle for the block designated by @var{interface}, to be used
  839. on OpenCL. The offset document below has to be used in addition to this.
  840. @end defmac
  841. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  842. Return the offset in the block designated by @var{interface}, to be used with
  843. the device handle.
  844. @end defmac
  845. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  846. Return the number of elements on the x-axis of the block designated by @var{handle}.
  847. @end defmac
  848. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  849. Return the number of elements on the y-axis of the block designated by @var{handle}.
  850. @end defmac
  851. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  852. Return the number of elements on the z-axis of the block designated by @var{handle}.
  853. @end defmac
  854. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  855. Return the number of elements between each row of the block designated by
  856. @var{interface}. May be equal to nx when there is no padding.
  857. @end defmac
  858. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  859. Return the number of elements between each z plane of the block designated by
  860. @var{interface}. May be equal to nx*ny when there is no padding.
  861. @end defmac
  862. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  863. Return the size of the elements of the matrix designated by @var{interface}.
  864. @end defmac
  865. @node Accessing BCSR Data Interfaces
  866. @subsubsection BCSR Data Interfaces
  867. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  868. Return the number of non-zero elements in the matrix designated by @var{handle}.
  869. @end deftypefun
  870. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  871. Return the number of rows (in terms of blocks of size r*c) in the matrix
  872. designated by @var{handle}.
  873. @end deftypefun
  874. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  875. Return the index at which all arrays (the column indexes, the row pointers...)
  876. of the matrix desginated by @var{handle} start.
  877. @end deftypefun
  878. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  879. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  880. @end deftypefun
  881. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  882. Return a pointer to the column index, which holds the positions of the non-zero
  883. entries in the matrix designated by @var{handle}.
  884. @end deftypefun
  885. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  886. Return the row pointer array of the matrix designated by @var{handle}.
  887. @end deftypefun
  888. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  889. Return the number of rows in a block.
  890. @end deftypefun
  891. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  892. Return the numberof columns in a block.
  893. @end deftypefun
  894. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  895. Return the size of the elements in the matrix designated by @var{handle}.
  896. @end deftypefun
  897. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  898. Return the number of non-zero values in the matrix designated by @var{interface}.
  899. @end defmac
  900. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  901. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  902. @end defmac
  903. @defmac STARPU_BCSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  904. Return a device handle for the array of non-zero values in the matrix designated
  905. by @var{interface}. The offset documented below has to be used in addition to
  906. this.
  907. @end defmac
  908. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  909. Return a pointer to the column index of the matrix designated by @var{interface}.
  910. @end defmac
  911. @defmac STARPU_BCSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  912. Return a device handle for the column index of the matrix designated by
  913. @var{interface}. The offset documented below has to be used in addition to
  914. this.
  915. @end defmac
  916. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  917. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  918. @end defmac
  919. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  920. Return a device handle for the row pointer array of the matrix designated by
  921. @var{interface}. The offset documented below has to be used in addition to
  922. this.
  923. @end defmac
  924. @defmac STARPU_BCSR_GET_OFFSET ({void *}@var{interface})
  925. Return the offset in the arrays (coling, rowptr, nzval) of the matrix
  926. designated by @var{interface}, to be used with the device handles.
  927. @end defmac
  928. @node Accessing CSR Data Interfaces
  929. @subsubsection CSR Data Interfaces
  930. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  931. Return the number of non-zero values in the matrix designated by @var{handle}.
  932. @end deftypefun
  933. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  934. Return the size of the row pointer array of the matrix designated by @var{handle}.
  935. @end deftypefun
  936. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  937. Return the index at which all arrays (the column indexes, the row pointers...)
  938. of the matrix designated by @var{handle} start.
  939. @end deftypefun
  940. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  941. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  942. @end deftypefun
  943. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  944. Return a local pointer to the column index of the matrix designated by @var{handle}.
  945. @end deftypefun
  946. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  947. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  948. @end deftypefun
  949. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  950. Return the size of the elements registered into the matrix designated by @var{handle}.
  951. @end deftypefun
  952. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  953. Return the number of non-zero values in the matrix designated by @var{interface}.
  954. @end defmac
  955. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  956. Return the size of the row pointer array of the matrix designated by @var{interface}.
  957. @end defmac
  958. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  959. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  960. @end defmac
  961. @defmac STARPU_CSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  962. Return a device handle for the array of non-zero values in the matrix designated
  963. by @var{interface}. The offset documented below has to be used in addition to
  964. this.
  965. @end defmac
  966. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  967. Return a pointer to the column index of the matrix designated by @var{interface}.
  968. @end defmac
  969. @defmac STARPU_CSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  970. Return a device handle for the column index of the matrix designated by
  971. @var{interface}. The offset documented below has to be used in addition to
  972. this.
  973. @end defmac
  974. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  975. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  976. @end defmac
  977. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  978. Return a device handle for the row pointer array of the matrix designated by
  979. @var{interface}. The offset documented below has to be used in addition to
  980. this.
  981. @end defmac
  982. @defmac STARPU_CSR_GET_OFFSET ({void *}@var{interface})
  983. Return the offset in the arrays (colind, rowptr, nzval) of the matrix
  984. designated by @var{interface}, to be used with the device handles.
  985. @end defmac
  986. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  987. Return the index at which all arrays (the column indexes, the row pointers...)
  988. of the @var{interface} start.
  989. @end defmac
  990. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  991. Return the size of the elements registered into the matrix designated by @var{interface}.
  992. @end defmac
  993. @node Accessing COO Data Interfaces
  994. @subsubsection COO Data Interfaces
  995. @defmac STARPU_COO_GET_COLUMNS ({void *}@var{interface})
  996. Return a pointer to the column array of the matrix designated by
  997. @var{interface}.
  998. @end defmac
  999. @defmac STARPU_COO_GET_COLUMNS_DEV_HANDLE ({void *}@var{interface})
  1000. Return a device handle for the column array of the matrix designated by
  1001. @var{interface}, to be used on OpenCL. The offset documented below has to be
  1002. used in addition to this.
  1003. @end defmac
  1004. @defmac STARPU_COO_GET_ROWS (interface)
  1005. Return a pointer to the rows array of the matrix designated by @var{interface}.
  1006. @end defmac
  1007. @defmac STARPU_COO_GET_ROWS_DEV_HANDLE ({void *}@var{interface})
  1008. Return a device handle for the row array of the matrix designated by
  1009. @var{interface}, to be used on OpenCL. The offset documented below has to be
  1010. used in addition to this.
  1011. @end defmac
  1012. @defmac STARPU_COO_GET_VALUES (interface)
  1013. Return a pointer to the values array of the matrix designated by
  1014. @var{interface}.
  1015. @end defmac
  1016. @defmac STARPU_COO_GET_VALUES_DEV_HANDLE ({void *}@var{interface})
  1017. Return a device handle for the value array of the matrix designated by
  1018. @var{interface}, to be used on OpenCL. The offset documented below has to be
  1019. used in addition to this.
  1020. @end defmac
  1021. @defmac STARPU_COO_GET_OFFSET ({void *}@var{itnerface})
  1022. Return the offset in the arrays of the COO matrix designated by @var{interface}.
  1023. @end defmac
  1024. @defmac STARPU_COO_GET_NX (interface)
  1025. Return the number of elements on the x-axis of the matrix designated by
  1026. @var{interface}.
  1027. @end defmac
  1028. @defmac STARPU_COO_GET_NY (interface)
  1029. Return the number of elements on the y-axis of the matrix designated by
  1030. @var{interface}.
  1031. @end defmac
  1032. @defmac STARPU_COO_GET_NVALUES (interface)
  1033. Return the number of values registered in the matrix designated by
  1034. @var{interface}.
  1035. @end defmac
  1036. @defmac STARPU_COO_GET_ELEMSIZE (interface)
  1037. Return the size of the elements registered into the matrix designated by
  1038. @var{interface}.
  1039. @end defmac
  1040. @node Defining Interface
  1041. @subsection Defining Interface
  1042. Applications can provide their own interface. An example is provided in
  1043. @code{examples/interface}. A few helpers are provided.
  1044. @deftypefun uintptr_t starpu_malloc_on_node (unsigned @var{dst_node}, size_t @var{size})
  1045. Allocate @var{size} bytes on node @var{dst_node}. This returns 0 if allocation
  1046. failed, the allocation method should then return -ENOMEM as allocated size.
  1047. @end deftypefun
  1048. @deftypefun void starpu_free_on_node (unsigned @var{dst_node}, uintptr_t @var{addr}, size_t @var{size})
  1049. Free @var{addr} of @var{size} bytes on node @var{dst_node}.
  1050. @end deftypefun
  1051. @node Data Partition
  1052. @section Data Partition
  1053. @menu
  1054. * Basic API::
  1055. * Predefined filter functions::
  1056. @end menu
  1057. @node Basic API
  1058. @subsection Basic API
  1059. @deftp {Data Type} {struct starpu_data_filter}
  1060. The filter structure describes a data partitioning operation, to be given to the
  1061. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  1062. for an example. The different fields are:
  1063. @table @asis
  1064. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  1065. This function fills the @code{child_interface} structure with interface
  1066. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  1067. @item @code{unsigned nchildren}
  1068. This is the number of parts to partition the data into.
  1069. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  1070. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  1071. children depends on the actual data (e.g. the number of blocks in a sparse
  1072. matrix).
  1073. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  1074. In case the resulting children use a different data interface, this function
  1075. returns which interface is used by child number @code{id}.
  1076. @item @code{unsigned filter_arg}
  1077. Allow to define an additional parameter for the filter function.
  1078. @item @code{void *filter_arg_ptr}
  1079. Allow to define an additional pointer parameter for the filter
  1080. function, such as the sizes of the different parts.
  1081. @end table
  1082. @end deftp
  1083. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  1084. @anchor{starpu_data_partition}
  1085. This requests partitioning one StarPU data @var{initial_handle} into several
  1086. subdata according to the filter @var{f}, as shown in the following example:
  1087. @cartouche
  1088. @smallexample
  1089. struct starpu_data_filter f = @{
  1090. .filter_func = starpu_matrix_filter_block,
  1091. .nchildren = nslicesx,
  1092. .get_nchildren = NULL,
  1093. .get_child_ops = NULL
  1094. @};
  1095. starpu_data_partition(A_handle, &f);
  1096. @end smallexample
  1097. @end cartouche
  1098. @end deftypefun
  1099. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, unsigned @var{gathering_node})
  1100. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  1101. collected back into one big piece in the @var{gathering_node} (usually 0). Tasks
  1102. working on the partitioned data must be already finished when calling @code{starpu_data_unpartition}.
  1103. @cartouche
  1104. @smallexample
  1105. starpu_data_unpartition(A_handle, 0);
  1106. @end smallexample
  1107. @end cartouche
  1108. @end deftypefun
  1109. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  1110. This function returns the number of children.
  1111. @end deftypefun
  1112. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  1113. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  1114. @end deftypefun
  1115. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  1116. After partitioning a StarPU data by applying a filter,
  1117. @code{starpu_data_get_sub_data} can be used to get handles for each of
  1118. the data portions. @var{root_data} is the parent data that was
  1119. partitioned. @var{depth} is the number of filters to traverse (in
  1120. case several filters have been applied, to e.g. partition in row
  1121. blocks, and then in column blocks), and the subsequent
  1122. parameters are the indexes. The function returns a handle to the
  1123. subdata.
  1124. @cartouche
  1125. @smallexample
  1126. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  1127. @end smallexample
  1128. @end cartouche
  1129. @end deftypefun
  1130. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  1131. This function is similar to @code{starpu_data_get_sub_data} but uses a
  1132. va_list for the parameter list.
  1133. @end deftypefun
  1134. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  1135. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1136. recursively. @var{nfilters} pointers to variables of the type
  1137. starpu_data_filter should be given.
  1138. @end deftypefun
  1139. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  1140. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1141. recursively. It uses a va_list of pointers to variables of the typer
  1142. starpu_data_filter.
  1143. @end deftypefun
  1144. @node Predefined filter functions
  1145. @subsection Predefined filter functions
  1146. @menu
  1147. * Partitioning Vector Data::
  1148. * Partitioning Matrix Data::
  1149. * Partitioning 3D Matrix Data::
  1150. * Partitioning BCSR Data::
  1151. @end menu
  1152. This section gives a partial list of the predefined partitioning functions.
  1153. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  1154. list can be found in @code{starpu_data_filters.h} .
  1155. @node Partitioning Vector Data
  1156. @subsubsection Partitioning Vector Data
  1157. @deftypefun void starpu_vector_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1158. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1159. vector represented by @var{father_interface} once partitioned in
  1160. @var{nparts} chunks of equal size.
  1161. @end deftypefun
  1162. @deftypefun void starpu_vector_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1163. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1164. vector represented by @var{father_interface} once partitioned in
  1165. @var{nparts} chunks of equal size with a shadow border @code{filter_arg_ptr}, thus getting a vector of size (n-2*shadow)/nparts+2*shadow
  1166. The @code{filter_arg_ptr} field must be the shadow size casted into @code{void*}.
  1167. IMPORTANT: This can only be used for read-only access, as no coherency is
  1168. enforced for the shadowed parts.
  1169. A usage example is available in examples/filters/shadow.c
  1170. @end deftypefun
  1171. @deftypefun void starpu_vector_filter_list (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1172. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1173. vector represented by @var{father_interface} once partitioned into
  1174. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  1175. @code{*@var{f}}.
  1176. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  1177. @code{uint32_t} elements, each of which specifies the number of elements
  1178. in each chunk of the partition.
  1179. @end deftypefun
  1180. @deftypefun void starpu_vector_filter_divide_in_2 (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1181. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1182. vector represented by @var{father_interface} once partitioned in two
  1183. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  1184. @code{0} or @code{1}.
  1185. @end deftypefun
  1186. @node Partitioning Matrix Data
  1187. @subsubsection Partitioning Matrix Data
  1188. @deftypefun void starpu_matrix_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1189. This partitions a dense Matrix along the x dimension, thus getting (x/nparts,y)
  1190. matrices. If nparts does not divide x, the last submatrix contains the
  1191. remainder.
  1192. @end deftypefun
  1193. @deftypefun void starpu_matrix_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1194. This partitions a dense Matrix along the x dimension, with a shadow border
  1195. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y)
  1196. matrices. If nparts does not divide x-2*shadow, the last submatrix contains the
  1197. remainder.
  1198. IMPORTANT: This can only be used for read-only access, as no coherency is
  1199. enforced for the shadowed parts.
  1200. A usage example is available in examples/filters/shadow2d.c
  1201. @end deftypefun
  1202. @deftypefun void starpu_matrix_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1203. This partitions a dense Matrix along the y dimension, thus getting (x,y/nparts)
  1204. matrices. If nparts does not divide y, the last submatrix contains the
  1205. remainder.
  1206. @end deftypefun
  1207. @deftypefun void starpu_matrix_filter_vertical_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1208. This partitions a dense Matrix along the y dimension, with a shadow border
  1209. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow)
  1210. matrices. If nparts does not divide y-2*shadow, the last submatrix contains the
  1211. remainder.
  1212. IMPORTANT: This can only be used for read-only access, as no coherency is
  1213. enforced for the shadowed parts.
  1214. A usage example is available in examples/filters/shadow2d.c
  1215. @end deftypefun
  1216. @node Partitioning 3D Matrix Data
  1217. @subsubsection Partitioning 3D Matrix Data
  1218. A usage example is available in examples/filters/shadow3d.c
  1219. @deftypefun void starpu_block_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1220. This partitions a 3D matrix along the X dimension, thus getting (x/nparts,y,z)
  1221. 3D matrices. If nparts does not divide x, the last submatrix contains the
  1222. remainder.
  1223. @end deftypefun
  1224. @deftypefun void starpu_block_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1225. This partitions a 3D matrix along the X dimension, with a shadow border
  1226. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y,z) 3D
  1227. matrices. If nparts does not divide x, the last submatrix contains the
  1228. remainder.
  1229. IMPORTANT: This can only be used for read-only access, as no coherency is
  1230. enforced for the shadowed parts.
  1231. @end deftypefun
  1232. @deftypefun void starpu_block_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1233. This partitions a 3D matrix along the Y dimension, thus getting (x,y/nparts,z)
  1234. 3D matrices. If nparts does not divide y, the last submatrix contains the
  1235. remainder.
  1236. @end deftypefun
  1237. @deftypefun void starpu_block_filter_vertical_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1238. This partitions a 3D matrix along the Y dimension, with a shadow border
  1239. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow,z) 3D
  1240. matrices. If nparts does not divide y, the last submatrix contains the
  1241. remainder.
  1242. IMPORTANT: This can only be used for read-only access, as no coherency is
  1243. enforced for the shadowed parts.
  1244. @end deftypefun
  1245. @deftypefun void starpu_block_filter_depth_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1246. This partitions a 3D matrix along the Z dimension, thus getting (x,y,z/nparts)
  1247. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1248. remainder.
  1249. @end deftypefun
  1250. @deftypefun void starpu_block_filter_depth_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1251. This partitions a 3D matrix along the Z dimension, with a shadow border
  1252. @code{filter_arg_ptr}, thus getting (x,y,(z-2*shadow)/nparts+2*shadow)
  1253. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1254. remainder.
  1255. IMPORTANT: This can only be used for read-only access, as no coherency is
  1256. enforced for the shadowed parts.
  1257. @end deftypefun
  1258. @node Partitioning BCSR Data
  1259. @subsubsection Partitioning BCSR Data
  1260. @deftypefun void starpu_bcsr_filter_canonical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1261. This partitions a block-sparse matrix into dense matrices.
  1262. @end deftypefun
  1263. @deftypefun void starpu_csr_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1264. This partitions a block-sparse matrix into vertical block-sparse matrices.
  1265. @end deftypefun
  1266. @node Codelets and Tasks
  1267. @section Codelets and Tasks
  1268. This section describes the interface to manipulate codelets and tasks.
  1269. @deftp {Data Type} {enum starpu_codelet_type}
  1270. Describes the type of parallel task. The different values are:
  1271. @table @asis
  1272. @item @code{STARPU_SEQ} (default) for classical sequential tasks.
  1273. @item @code{STARPU_SPMD} for a parallel task whose threads are handled by
  1274. StarPU, the code has to use @code{starpu_combined_worker_get_size} and
  1275. @code{starpu_combined_worker_get_rank} to distribute the work
  1276. @item @code{STARPU_FORKJOIN} for a parallel task whose threads are started by
  1277. the codelet function, which has to use @code{starpu_combined_worker_get_size} to
  1278. determine how many threads should be started.
  1279. @end table
  1280. See @ref{Parallel Tasks} for details.
  1281. @end deftp
  1282. @defmac STARPU_CPU
  1283. This macro is used when setting the field @code{where} of a @code{struct
  1284. starpu_codelet} to specify the codelet may be executed on a CPU
  1285. processing unit.
  1286. @end defmac
  1287. @defmac STARPU_CUDA
  1288. This macro is used when setting the field @code{where} of a @code{struct
  1289. starpu_codelet} to specify the codelet may be executed on a CUDA
  1290. processing unit.
  1291. @end defmac
  1292. @defmac STARPU_OPENCL
  1293. This macro is used when setting the field @code{where} of a @code{struct
  1294. starpu_codelet} to specify the codelet may be executed on a OpenCL
  1295. processing unit.
  1296. @end defmac
  1297. @defmac STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
  1298. Setting the field @code{cpu_func} of a @code{struct starpu_codelet}
  1299. with this macro indicates the codelet will have several
  1300. implementations. The use of this macro is deprecated. One should
  1301. always only define the field @code{cpu_funcs}.
  1302. @end defmac
  1303. @defmac STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
  1304. Setting the field @code{cuda_func} of a @code{struct starpu_codelet}
  1305. with this macro indicates the codelet will have several
  1306. implementations. The use of this macro is deprecated. One should
  1307. always only define the field @code{cuda_funcs}.
  1308. @end defmac
  1309. @defmac STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
  1310. Setting the field @code{opencl_func} of a @code{struct starpu_codelet}
  1311. with this macro indicates the codelet will have several
  1312. implementations. The use of this macro is deprecated. One should
  1313. always only define the field @code{opencl_funcs}.
  1314. @end defmac
  1315. @deftp {Data Type} {struct starpu_codelet}
  1316. The codelet structure describes a kernel that is possibly implemented on various
  1317. targets. For compatibility, make sure to initialize the whole structure to zero,
  1318. either by using explicit memset, or by letting the compiler implicitly do it in
  1319. e.g. static storage case.
  1320. @table @asis
  1321. @item @code{uint32_t where} (optional)
  1322. Indicates which types of processing units are able to execute the
  1323. codelet. The different values
  1324. @code{STARPU_CPU}, @code{STARPU_CUDA},
  1325. @code{STARPU_OPENCL} can be combined to specify
  1326. on which types of processing units the codelet can be executed.
  1327. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  1328. implemented for both CPU cores and CUDA devices while @code{STARPU_OPENCL}
  1329. indicates that it is only available on OpenCL devices. If the field is
  1330. unset, its value will be automatically set based on the availability
  1331. of the @code{XXX_funcs} fields defined below.
  1332. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  1333. Defines a function which should return 1 if the worker designated by
  1334. @var{workerid} can execute the @var{nimpl}th implementation of the
  1335. given @var{task}, 0 otherwise.
  1336. @item @code{enum starpu_codelet_type type} (optional)
  1337. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  1338. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  1339. implementation is also available. See @ref{Parallel Tasks} for details.
  1340. @item @code{int max_parallelism} (optional)
  1341. If a parallel implementation is available, this denotes the maximum combined
  1342. worker size that StarPU will use to execute parallel tasks for this codelet.
  1343. @item @code{starpu_cpu_func_t cpu_func} (optional)
  1344. This field has been made deprecated. One should use instead the
  1345. @code{cpu_funcs} field.
  1346. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1347. Is an array of function pointers to the CPU implementations of the codelet.
  1348. It must be terminated by a NULL value.
  1349. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  1350. argument being the array of data managed by the data management library, and
  1351. the second argument is a pointer to the argument passed from the @code{cl_arg}
  1352. field of the @code{starpu_task} structure.
  1353. If the @code{where} field is set, then the @code{cpu_funcs} field is
  1354. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  1355. field, it must be non-null otherwise.
  1356. @item @code{starpu_cuda_func_t cuda_func} (optional)
  1357. This field has been made deprecated. One should use instead the
  1358. @code{cuda_funcs} field.
  1359. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1360. Is an array of function pointers to the CUDA implementations of the codelet.
  1361. It must be terminated by a NULL value.
  1362. @emph{The functions must be host-functions written in the CUDA runtime
  1363. API}. Their prototype must
  1364. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  1365. If the @code{where} field is set, then the @code{cuda_funcs}
  1366. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  1367. field, it must be non-null otherwise.
  1368. @item @code{starpu_opencl_func_t opencl_func} (optional)
  1369. This field has been made deprecated. One should use instead the
  1370. @code{opencl_funcs} field.
  1371. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1372. Is an array of function pointers to the OpenCL implementations of the codelet.
  1373. It must be terminated by a NULL value.
  1374. The functions prototype must be:
  1375. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  1376. If the @code{where} field is set, then the @code{opencl_funcs} field
  1377. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  1378. field, it must be non-null otherwise.
  1379. @item @code{unsigned nbuffers}
  1380. Specifies the number of arguments taken by the codelet. These arguments are
  1381. managed by the DSM and are accessed from the @code{void *buffers[]}
  1382. array. The constant argument passed with the @code{cl_arg} field of the
  1383. @code{starpu_task} structure is not counted in this number. This value should
  1384. not be above @code{STARPU_NMAXBUFS}.
  1385. @item @code{enum starpu_access_mode modes[STARPU_NMAXBUFS]}
  1386. Is an array of @code{enum starpu_access_mode}. It describes the
  1387. required access modes to the data neeeded by the codelet (e.g.
  1388. @code{STARPU_RW}). The number of entries in this array must be
  1389. specified in the @code{nbuffers} field (defined above), and should not
  1390. exceed @code{STARPU_NMAXBUFS}.
  1391. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1392. option when configuring StarPU.
  1393. @item @code{struct starpu_perfmodel *model} (optional)
  1394. This is a pointer to the task duration performance model associated to this
  1395. codelet. This optional field is ignored when set to @code{NULL} or
  1396. when its @code{symbol} field is not set.
  1397. @item @code{struct starpu_perfmodel *power_model} (optional)
  1398. This is a pointer to the task power consumption performance model associated
  1399. to this codelet. This optional field is ignored when set to
  1400. @code{NULL} or when its @code{symbol} field is not set.
  1401. In the case of parallel codelets, this has to account for all processing units
  1402. involved in the parallel execution.
  1403. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  1404. Statistics collected at runtime: this is filled by StarPU and should not be
  1405. accessed directly, but for example by calling the
  1406. @code{starpu_display_codelet_stats} function (See
  1407. @ref{starpu_display_codelet_stats} for details).
  1408. @item @code{const char *name} (optional)
  1409. Define the name of the codelet. This can be useful for debugging purposes.
  1410. @end table
  1411. @end deftp
  1412. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  1413. Initialize @var{cl} with default values. Codelets should preferably be
  1414. initialized statically as shown in @ref{Defining a Codelet}. However
  1415. such a initialisation is not always possible, e.g. when using C++.
  1416. @end deftypefun
  1417. @deftp {Data Type} {enum starpu_task_status}
  1418. State of a task, can be either of
  1419. @table @asis
  1420. @item @code{STARPU_TASK_INVALID} The task has just been initialized.
  1421. @item @code{STARPU_TASK_BLOCKED} The task has just been submitted, and its dependencies has not been checked yet.
  1422. @item @code{STARPU_TASK_READY} The task is ready for execution.
  1423. @item @code{STARPU_TASK_RUNNING} The task is running on some worker.
  1424. @item @code{STARPU_TASK_FINISHED} The task is finished executing.
  1425. @item @code{STARPU_TASK_BLOCKED_ON_TAG} The task is waiting for a tag.
  1426. @item @code{STARPU_TASK_BLOCKED_ON_TASK} The task is waiting for a task.
  1427. @item @code{STARPU_TASK_BLOCKED_ON_DATA} The task is waiting for some data.
  1428. @end table
  1429. @end deftp
  1430. @deftp {Data Type} {struct starpu_buffer_descr}
  1431. This type is used to describe a data handle along with an
  1432. access mode.
  1433. @table @asis
  1434. @item @code{starpu_data_handle_t handle} describes a data,
  1435. @item @code{enum starpu_access_mode mode} describes its access mode
  1436. @end table
  1437. @end deftp
  1438. @deftp {Data Type} {struct starpu_task}
  1439. The @code{starpu_task} structure describes a task that can be offloaded on the various
  1440. processing units managed by StarPU. It instantiates a codelet. It can either be
  1441. allocated dynamically with the @code{starpu_task_create} method, or declared
  1442. statically. In the latter case, the programmer has to zero the
  1443. @code{starpu_task} structure and to fill the different fields properly. The
  1444. indicated default values correspond to the configuration of a task allocated
  1445. with @code{starpu_task_create}.
  1446. @table @asis
  1447. @item @code{struct starpu_codelet *cl}
  1448. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1449. describes where the kernel should be executed, and supplies the appropriate
  1450. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1451. such empty tasks can be useful for synchronization purposes.
  1452. @item @code{struct starpu_buffer_descr buffers[STARPU_NMAXBUFS]}
  1453. This field has been made deprecated. One should use instead the
  1454. @code{handles} field to specify the handles to the data accessed by
  1455. the task. The access modes are now defined in the @code{mode} field of
  1456. the @code{struct starpu_codelet cl} field defined above.
  1457. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1458. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1459. to the different pieces of data accessed by the task. The number
  1460. of entries in this array must be specified in the @code{nbuffers} field of the
  1461. @code{struct starpu_codelet} structure, and should not exceed
  1462. @code{STARPU_NMAXBUFS}.
  1463. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1464. option when configuring StarPU.
  1465. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1466. The actual data pointers to the memory node where execution will happen, managed
  1467. by the DSM.
  1468. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1469. This pointer is passed to the codelet through the second argument
  1470. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1471. @item @code{size_t cl_arg_size} (optional)
  1472. For some specific drivers, the @code{cl_arg} pointer cannot not be directly
  1473. given to the driver function. A buffer of size @code{cl_arg_size}
  1474. needs to be allocated on the driver. This buffer is then filled with
  1475. the @code{cl_arg_size} bytes starting at address @code{cl_arg}. In
  1476. this case, the argument given to the codelet is therefore not the
  1477. @code{cl_arg} pointer, but the address of the buffer in local store
  1478. (LS) instead.
  1479. This field is ignored for CPU, CUDA and OpenCL codelets, where the
  1480. @code{cl_arg} pointer is given as such.
  1481. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1482. This is a function pointer of prototype @code{void (*f)(void *)} which
  1483. specifies a possible callback. If this pointer is non-null, the callback
  1484. function is executed @emph{on the host} after the execution of the task. Tasks
  1485. which depend on it might already be executing. The callback is passed the
  1486. value contained in the @code{callback_arg} field. No callback is executed if the
  1487. field is set to @code{NULL}.
  1488. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1489. This is the pointer passed to the callback function. This field is ignored if
  1490. the @code{callback_func} is set to @code{NULL}.
  1491. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1492. If set, this flag indicates that the task should be associated with the tag
  1493. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1494. with the task and to express task dependencies easily.
  1495. @item @code{starpu_tag_t tag_id}
  1496. This field contains the tag associated to the task if the @code{use_tag} field
  1497. was set, it is ignored otherwise.
  1498. @item @code{unsigned sequential_consistency}
  1499. If this flag is set (which is the default), sequential consistency is enforced
  1500. for the data parameters of this task for which sequential consistency is
  1501. enabled. Clearing this flag permits to disable sequential consistency for this
  1502. task, even if data have it enabled.
  1503. @item @code{unsigned synchronous}
  1504. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1505. returns only when the task has been executed (or if no worker is able to
  1506. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1507. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1508. This field indicates a level of priority for the task. This is an integer value
  1509. that must be set between the return values of the
  1510. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1511. and that of the @code{starpu_sched_get_max_priority} for the most important
  1512. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1513. are provided for convenience and respectively returns value of
  1514. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1515. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1516. order to allow static task initialization. Scheduling strategies that take
  1517. priorities into account can use this parameter to take better scheduling
  1518. decisions, but the scheduling policy may also ignore it.
  1519. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1520. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1521. task to the worker specified by the @code{workerid} field.
  1522. @item @code{unsigned workerid} (optional)
  1523. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1524. which is the identifier of the worker that should process this task (as
  1525. returned by @code{starpu_worker_get_id}). This field is ignored if
  1526. @code{execute_on_a_specific_worker} field is set to 0.
  1527. @item @code{starpu_task_bundle_t bundle} (optional)
  1528. The bundle that includes this task. If no bundle is used, this should be NULL.
  1529. @item @code{int detach} (optional) (default: @code{1})
  1530. If this flag is set, it is not possible to synchronize with the task
  1531. by the means of @code{starpu_task_wait} later on. Internal data structures
  1532. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1533. flag is not set.
  1534. @item @code{int destroy} (optional) (default: @code{0} for starpu_task_init, @code{1} for starpu_task_create)
  1535. If this flag is set, the task structure will automatically be freed, either
  1536. after the execution of the callback if the task is detached, or during
  1537. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1538. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1539. called explicitly. Setting this flag for a statically allocated task structure
  1540. will result in undefined behaviour. The flag is set to 1 when the task is
  1541. created by calling @code{starpu_task_create()}. Note that
  1542. @code{starpu_task_wait_for_all} will not free any task.
  1543. @item @code{int regenerate} (optional)
  1544. If this flag is set, the task will be re-submitted to StarPU once it has been
  1545. executed. This flag must not be set if the destroy flag is set too.
  1546. @item @code{enum starpu_task_status status} (optional)
  1547. Current state of the task.
  1548. @item @code{struct starpu_task_profiling_info *profiling_info} (optional)
  1549. Profiling information for the task.
  1550. @item @code{double predicted} (output field)
  1551. Predicted duration of the task. This field is only set if the scheduling
  1552. strategy used performance models.
  1553. @item @code{double predicted_transfer} (optional)
  1554. Predicted data transfer duration for the task in microseconds. This field is
  1555. only valid if the scheduling strategy uses performance models.
  1556. @item @code{struct starpu_task *prev}
  1557. A pointer to the previous task. This should only be used by StarPU.
  1558. @item @code{struct starpu_task *next}
  1559. A pointer to the next task. This should only be used by StarPU.
  1560. @item @code{unsigned int mf_skip}
  1561. This is only used for tasks that use multiformat handle. This should only be
  1562. used by StarPU.
  1563. @item @code{double flops}
  1564. This can be set to the number of floating points operations that the task
  1565. will have to achieve. This is useful for easily getting GFlops curves from
  1566. @code{starpu_perfmodel_plot}, and for the hypervisor load balancing.
  1567. @item @code{void *starpu_private}
  1568. This is private to StarPU, do not modify. If the task is allocated by hand
  1569. (without starpu_task_create), this field should be set to NULL.
  1570. @item @code{int magic}
  1571. This field is set when initializing a task. It prevents a task from being
  1572. submitted if it has not been properly initialized.
  1573. @end table
  1574. @end deftp
  1575. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1576. Initialize @var{task} with default values. This function is implicitly
  1577. called by @code{starpu_task_create}. By default, tasks initialized with
  1578. @code{starpu_task_init} must be deinitialized explicitly with
  1579. @code{starpu_task_clean}. Tasks can also be initialized statically,
  1580. using @code{STARPU_TASK_INITIALIZER} defined below.
  1581. @end deftypefun
  1582. @defmac STARPU_TASK_INITIALIZER
  1583. It is possible to initialize statically allocated tasks with this
  1584. value. This is equivalent to initializing a starpu_task structure with
  1585. the @code{starpu_task_init} function defined above.
  1586. @end defmac
  1587. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1588. Allocate a task structure and initialize it with default values. Tasks
  1589. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1590. task is terminated. This means that the task pointer can not be used any more
  1591. once the task is submitted, since it can be executed at any time (unless
  1592. dependencies make it wait) and thus freed at any time.
  1593. If the destroy flag is explicitly unset, the resources used
  1594. by the task have to be freed by calling
  1595. @code{starpu_task_destroy}.
  1596. @end deftypefun
  1597. @deftypefun void starpu_task_clean ({struct starpu_task} *@var{task})
  1598. Release all the structures automatically allocated to execute @var{task}, but
  1599. not the task structure itself and values set by the user remain unchanged.
  1600. It is thus useful for statically allocated tasks for instance.
  1601. It is also useful when the user wants to execute the same operation several
  1602. times with as least overhead as possible.
  1603. It is called automatically by @code{starpu_task_destroy}.
  1604. It has to be called only after explicitly waiting for the task or after
  1605. @code{starpu_shutdown} (waiting for the callback is not enough, since starpu
  1606. still manipulates the task after calling the callback).
  1607. @end deftypefun
  1608. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1609. Free the resource allocated during @code{starpu_task_create} and
  1610. associated with @var{task}. This function is already called automatically
  1611. after the execution of a task when the @code{destroy} flag of the
  1612. @code{starpu_task} structure is set, which is the default for tasks created by
  1613. @code{starpu_task_create}. Calling this function on a statically allocated task
  1614. results in an undefined behaviour.
  1615. @end deftypefun
  1616. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1617. This function blocks until @var{task} has been executed. It is not possible to
  1618. synchronize with a task more than once. It is not possible to wait for
  1619. synchronous or detached tasks.
  1620. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1621. indicates that the specified task was either synchronous or detached.
  1622. @end deftypefun
  1623. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1624. This function submits @var{task} to StarPU. Calling this function does
  1625. not mean that the task will be executed immediately as there can be data or task
  1626. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1627. scheduling this task with respect to such dependencies.
  1628. This function returns immediately if the @code{synchronous} field of the
  1629. @code{starpu_task} structure was set to 0, and block until the termination of
  1630. the task otherwise. It is also possible to synchronize the application with
  1631. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1632. function for instance.
  1633. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1634. means that there is no worker able to process this task (e.g. there is no GPU
  1635. available and this task is only implemented for CUDA devices).
  1636. starpu_task_submit() can be called from anywhere, including codelet
  1637. functions and callbacks, provided that the @code{synchronous} field of the
  1638. @code{starpu_task} structure is left to 0.
  1639. @end deftypefun
  1640. @deftypefun int starpu_task_wait_for_all (void)
  1641. This function blocks until all the tasks that were submitted are terminated. It
  1642. does not destroy these tasks.
  1643. @end deftypefun
  1644. @deftypefun int starpu_task_nready (void)
  1645. @end deftypefun
  1646. @deftypefun int starpu_task_nsubmitted (void)
  1647. Return the number of submitted tasks which have not completed yet.
  1648. @end deftypefun
  1649. @deftypefun int starpu_task_nready (void)
  1650. Return the number of submitted tasks which are ready for execution are already
  1651. executing. It thus does not include tasks waiting for dependencies.
  1652. @end deftypefun
  1653. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1654. This function returns the task currently executed by the worker, or
  1655. NULL if it is called either from a thread that is not a task or simply
  1656. because there is no task being executed at the moment.
  1657. @end deftypefun
  1658. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet} *@var{cl})
  1659. @anchor{starpu_display_codelet_stats}
  1660. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1661. @end deftypefun
  1662. @deftypefun int starpu_task_wait_for_no_ready (void)
  1663. This function waits until there is no more ready task.
  1664. @end deftypefun
  1665. @c Callbacks: what can we put in callbacks ?
  1666. @node Explicit Dependencies
  1667. @section Explicit Dependencies
  1668. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1669. Declare task dependencies between a @var{task} and an array of tasks of length
  1670. @var{ndeps}. This function must be called prior to the submission of the task,
  1671. but it may called after the submission or the execution of the tasks in the
  1672. array, provided the tasks are still valid (ie. they were not automatically
  1673. destroyed). Calling this function on a task that was already submitted or with
  1674. an entry of @var{task_array} that is not a valid task anymore results in an
  1675. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1676. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1677. same task, in this case, the dependencies are added. It is possible to have
  1678. redundancy in the task dependencies.
  1679. @end deftypefun
  1680. @deftp {Data Type} {starpu_tag_t}
  1681. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1682. dependencies between tasks by the means of those tags. To do so, fill the
  1683. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1684. be arbitrary) and set the @code{use_tag} field to 1.
  1685. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1686. not be started until the tasks which holds the declared dependency tags are
  1687. completed.
  1688. @end deftp
  1689. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  1690. Specify the dependencies of the task identified by tag @var{id}. The first
  1691. argument specifies the tag which is configured, the second argument gives the
  1692. number of tag(s) on which @var{id} depends. The following arguments are the
  1693. tags which have to be terminated to unlock the task.
  1694. This function must be called before the associated task is submitted to StarPU
  1695. with @code{starpu_task_submit}.
  1696. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  1697. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  1698. typically need to be explicitly casted. Using the
  1699. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  1700. @cartouche
  1701. @smallexample
  1702. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1703. starpu_tag_declare_deps((starpu_tag_t)0x1,
  1704. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  1705. @end smallexample
  1706. @end cartouche
  1707. @end deftypefun
  1708. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  1709. This function is similar to @code{starpu_tag_declare_deps}, except
  1710. that its does not take a variable number of arguments but an array of
  1711. tags of size @var{ndeps}.
  1712. @cartouche
  1713. @smallexample
  1714. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1715. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  1716. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  1717. @end smallexample
  1718. @end cartouche
  1719. @end deftypefun
  1720. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  1721. This function blocks until the task associated to tag @var{id} has been
  1722. executed. This is a blocking call which must therefore not be called within
  1723. tasks or callbacks, but only from the application directly. It is possible to
  1724. synchronize with the same tag multiple times, as long as the
  1725. @code{starpu_tag_remove} function is not called. Note that it is still
  1726. possible to synchronize with a tag associated to a task which @code{starpu_task}
  1727. data structure was freed (e.g. if the @code{destroy} flag of the
  1728. @code{starpu_task} was enabled).
  1729. @end deftypefun
  1730. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  1731. This function is similar to @code{starpu_tag_wait} except that it blocks until
  1732. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  1733. terminated.
  1734. @end deftypefun
  1735. @deftypefun void starpu_tag_restart (starpu_tag_t @var{id})
  1736. This function can be used to clear the "already notified" status
  1737. of a tag which is not associated with a task. Before that, calling
  1738. @code{starpu_tag_notify_from_apps} again will not notify the successors. After
  1739. that, the next call to @code{starpu_tag_notify_from_apps} will notify the
  1740. successors.
  1741. @end deftypefun
  1742. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  1743. This function releases the resources associated to tag @var{id}. It can be
  1744. called once the corresponding task has been executed and when there is
  1745. no other tag that depend on this tag anymore.
  1746. @end deftypefun
  1747. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  1748. This function explicitly unlocks tag @var{id}. It may be useful in the
  1749. case of applications which execute part of their computation outside StarPU
  1750. tasks (e.g. third-party libraries). It is also provided as a
  1751. convenient tool for the programmer, for instance to entirely construct the task
  1752. DAG before actually giving StarPU the opportunity to execute the tasks. When
  1753. called several times on the same tag, notification will be done only on first
  1754. call, thus implementing "OR" dependencies, until the tag is restarted using
  1755. @code{starpu_tag_restart}.
  1756. @end deftypefun
  1757. @node Implicit Data Dependencies
  1758. @section Implicit Data Dependencies
  1759. In this section, we describe how StarPU makes it possible to insert implicit
  1760. task dependencies in order to enforce sequential data consistency. When this
  1761. data consistency is enabled on a specific data handle, any data access will
  1762. appear as sequentially consistent from the application. For instance, if the
  1763. application submits two tasks that access the same piece of data in read-only
  1764. mode, and then a third task that access it in write mode, dependencies will be
  1765. added between the two first tasks and the third one. Implicit data dependencies
  1766. are also inserted in the case of data accesses from the application.
  1767. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  1768. Set the default sequential consistency flag. If a non-zero value is passed, a
  1769. sequential data consistency will be enforced for all handles registered after
  1770. this function call, otherwise it is disabled. By default, StarPU enables
  1771. sequential data consistency. It is also possible to select the data consistency
  1772. mode of a specific data handle with the
  1773. @code{starpu_data_set_sequential_consistency_flag} function.
  1774. @end deftypefun
  1775. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  1776. Return the default sequential consistency flag
  1777. @end deftypefun
  1778. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  1779. Sets the data consistency mode associated to a data handle. The consistency
  1780. mode set using this function has the priority over the default mode which can
  1781. be set with @code{starpu_data_set_default_sequential_consistency_flag}.
  1782. @end deftypefun
  1783. @node Performance Model API
  1784. @section Performance Model API
  1785. @deftp {Data Type} {enum starpu_perf_archtype}
  1786. Enumerates the various types of architectures.
  1787. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  1788. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  1789. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  1790. @table @asis
  1791. @item @code{STARPU_CPU_DEFAULT}
  1792. @item @code{STARPU_CUDA_DEFAULT}
  1793. @item @code{STARPU_OPENCL_DEFAULT}
  1794. @end table
  1795. @end deftp
  1796. @deftp {Data Type} {enum starpu_perfmodel_type}
  1797. The possible values are:
  1798. @table @asis
  1799. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  1800. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  1801. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  1802. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  1803. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  1804. @end table
  1805. @end deftp
  1806. @deftp {Data Type} {struct starpu_perfmodel}
  1807. @anchor{struct starpu_perfmodel}
  1808. contains all information about a performance model. At least the
  1809. @code{type} and @code{symbol} fields have to be filled when defining a
  1810. performance model for a codelet. For compatibility, make sure to initialize the
  1811. whole structure to zero, either by using explicit memset, or by letting the
  1812. compiler implicitly do it in e.g. static storage case.
  1813. If not provided, other fields have to be zero.
  1814. @table @asis
  1815. @item @code{type}
  1816. is the type of performance model @code{enum starpu_perfmodel_type}:
  1817. @code{STARPU_HISTORY_BASED},
  1818. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  1819. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  1820. @code{per_arch} has to be filled with functions which return the cost in
  1821. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  1822. a function that returns the cost in micro-seconds on a CPU, timing on other
  1823. archs will be determined by multiplying by an arch-specific factor.
  1824. @item @code{const char *symbol}
  1825. is the symbol name for the performance model, which will be used as
  1826. file name to store the model. It must be set otherwise the model will
  1827. be ignored.
  1828. @item @code{double (*cost_model)(struct starpu_buffer_descr *)}
  1829. This field is deprecated. Use instead the @code{cost_function} field.
  1830. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  1831. Used by @code{STARPU_COMMON}: takes a task and
  1832. implementation number, and must return a task duration estimation in micro-seconds.
  1833. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  1834. Used by @code{STARPU_HISTORY_BASED} and
  1835. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  1836. implementation number, and returns the size to be used as index for
  1837. history and regression.
  1838. @item @code{struct starpu_perfmodel_per_arch per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  1839. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  1840. starpu_per_arch_perfmodel} structures.
  1841. @item @code{unsigned is_loaded}
  1842. Whether the performance model is already loaded from the disk.
  1843. @item @code{unsigned benchmarking}
  1844. Whether the performance model is still being calibrated.
  1845. @item @code{pthread_rwlock_t model_rwlock}
  1846. Lock to protect concurrency between loading from disk (W), updating the values
  1847. (W), and making a performance estimation (R).
  1848. @end table
  1849. @end deftp
  1850. @deftp {Data Type} {struct starpu_perfmodel_regression_model}
  1851. @table @asis
  1852. @item @code{double sumlny} sum of ln(measured)
  1853. @item @code{double sumlnx} sum of ln(size)
  1854. @item @code{double sumlnx2} sum of ln(size)^2
  1855. @item @code{unsigned long minx} minimum size
  1856. @item @code{unsigned long maxx} maximum size
  1857. @item @code{double sumlnxlny} sum of ln(size)*ln(measured)
  1858. @item @code{double alpha} estimated = alpha * size ^ beta
  1859. @item @code{double beta}
  1860. @item @code{unsigned valid} whether the linear regression model is valid (i.e. enough measures)
  1861. @item @code{double a, b, c} estimaed = a size ^b + c
  1862. @item @code{unsigned nl_valid} whether the non-linear regression model is valid (i.e. enough measures)
  1863. @item @code{unsigned nsample} number of sample values for non-linear regression
  1864. @end table
  1865. @end deftp
  1866. @deftp {Data Type} {struct starpu_perfmodel_per_arch}
  1867. contains information about the performance model of a given arch.
  1868. @table @asis
  1869. @item @code{double (*cost_model)(struct starpu_buffer_descr *t)}
  1870. This field is deprecated. Use instead the @code{cost_function} field.
  1871. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perf_archtype arch, unsigned nimpl)}
  1872. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  1873. target arch and implementation number (as mere conveniency, since the array
  1874. is already indexed by these), and must return a task duration estimation in
  1875. micro-seconds.
  1876. @item @code{size_t (*size_base)(struct starpu_task *, enum
  1877. starpu_perf_archtype arch, unsigned nimpl)}
  1878. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  1879. case it depends on the architecture-specific implementation.
  1880. @item @code{struct starpu_htbl32_node *history}
  1881. The history of performance measurements.
  1882. @item @code{struct starpu_perfmodel_history_list *list}
  1883. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  1884. records all execution history measures.
  1885. @item @code{struct starpu_perfmodel_regression_model regression}
  1886. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  1887. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  1888. regression.
  1889. @end table
  1890. @end deftp
  1891. @deftypefun int starpu_perfmodel_load_symbol ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  1892. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{$STARPU_HOME/.starpu}.
  1893. @end deftypefun
  1894. @deftypefun int starpu_perfmodel_unload_model ({struct starpu_perfmodel} *@var{model})
  1895. unloads the given model which has been previously loaded through the function @code{starpu_perfmodel_load_symbol}
  1896. @end deftypefun
  1897. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  1898. returns the path to the debugging information for the performance model.
  1899. @end deftypefun
  1900. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  1901. returns the architecture name for @var{arch}.
  1902. @end deftypefun
  1903. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  1904. returns the architecture type of a given worker.
  1905. @end deftypefun
  1906. @deftypefun int starpu_perfmodel_list ({FILE *}@var{output})
  1907. prints a list of all performance models on @var{output}.
  1908. @end deftypefun
  1909. @deftypefun void starpu_perfmodel_print ({struct starpu_perfmodel *}@var{model}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl}, {char *}@var{parameter}, {uint32_t *}footprint, {FILE *}@var{output})
  1910. todo
  1911. @end deftypefun
  1912. @deftypefun int starpu_perfmodel_print_all ({struct starpu_perfmodel *}@var{model}, {char *}@var{arch}, @var{char *}parameter, {uint32_t *}@var{footprint}, {FILE *}@var{output})
  1913. todo
  1914. @end deftypefun
  1915. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  1916. prints a matrix of bus bandwidths on @var{f}.
  1917. @end deftypefun
  1918. @deftypefun void starpu_bus_print_affinity ({FILE *}@var{f})
  1919. prints the affinity devices on @var{f}.
  1920. @end deftypefun
  1921. @deftypefun void starpu_topology_print ({FILE *}@var{f})
  1922. prints a description of the topology on @var{f}.
  1923. @end deftypefun
  1924. @deftypefun void starpu_perfmodel_update_history ({struct starpu_perfmodel *}@var{model}, {struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{cpuid}, unsigned @var{nimpl}, double @var{measured});
  1925. This feeds the performance model @var{model} with an explicit measurement
  1926. @var{measured}, in addition to measurements done by StarPU itself. This can be
  1927. useful when the application already has an existing set of measurements done
  1928. in good conditions, that StarPU could benefit from instead of doing on-line
  1929. measurements. And example of use can be see in @ref{Performance model example}.
  1930. @end deftypefun
  1931. @node Profiling API
  1932. @section Profiling API
  1933. @deftypefun int starpu_profiling_status_set (int @var{status})
  1934. Thie function sets the profiling status. Profiling is activated by passing
  1935. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  1936. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  1937. resets all profiling measurements. When profiling is enabled, the
  1938. @code{profiling_info} field of the @code{struct starpu_task} structure points
  1939. to a valid @code{struct starpu_task_profiling_info} structure containing
  1940. information about the execution of the task.
  1941. Negative return values indicate an error, otherwise the previous status is
  1942. returned.
  1943. @end deftypefun
  1944. @deftypefun int starpu_profiling_status_get (void)
  1945. Return the current profiling status or a negative value in case there was an error.
  1946. @end deftypefun
  1947. @deftypefun void starpu_set_profiling_id (int @var{new_id})
  1948. This function sets the ID used for profiling trace filename. It needs to be
  1949. called before starpu_init.
  1950. @end deftypefun
  1951. @deftp {Data Type} {struct starpu_task_profiling_info}
  1952. This structure contains information about the execution of a task. It is
  1953. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  1954. structure if profiling was enabled. The different fields are:
  1955. @table @asis
  1956. @item @code{struct timespec submit_time}
  1957. Date of task submission (relative to the initialization of StarPU).
  1958. @item @code{struct timespec push_start_time}
  1959. Time when the task was submitted to the scheduler.
  1960. @item @code{struct timespec push_end_time}
  1961. Time when the scheduler finished with the task submission.
  1962. @item @code{struct timespec pop_start_time}
  1963. Time when the scheduler started to be requested for a task, and eventually gave
  1964. that task.
  1965. @item @code{struct timespec pop_end_time}
  1966. Time when the scheduler finished providing the task for execution.
  1967. @item @code{struct timespec acquire_data_start_time}
  1968. Time when the worker started fetching input data.
  1969. @item @code{struct timespec acquire_data_end_time}
  1970. Time when the worker finished fetching input data.
  1971. @item @code{struct timespec start_time}
  1972. Date of task execution beginning (relative to the initialization of StarPU).
  1973. @item @code{struct timespec end_time}
  1974. Date of task execution termination (relative to the initialization of StarPU).
  1975. @item @code{struct timespec release_data_start_time}
  1976. Time when the worker started releasing data.
  1977. @item @code{struct timespec release_data_end_time}
  1978. Time when the worker finished releasing data.
  1979. @item @code{struct timespec callback_start_time}
  1980. Time when the worker started the application callback for the task.
  1981. @item @code{struct timespec callback_end_time}
  1982. Time when the worker finished the application callback for the task.
  1983. @item @code{workerid}
  1984. Identifier of the worker which has executed the task.
  1985. @item @code{uint64_t used_cycles}
  1986. Number of cycles used by the task, only available in the MoviSim
  1987. @item @code{uint64_t stall_cycles}
  1988. Number of cycles stalled within the task, only available in the MoviSim
  1989. @item @code{double power_consumed}
  1990. Power consumed by the task, only available in the MoviSim
  1991. @end table
  1992. @end deftp
  1993. @deftp {Data Type} {struct starpu_worker_profiling_info}
  1994. This structure contains the profiling information associated to a
  1995. worker. The different fields are:
  1996. @table @asis
  1997. @item @code{struct timespec start_time}
  1998. Starting date for the reported profiling measurements.
  1999. @item @code{struct timespec total_time}
  2000. Duration of the profiling measurement interval.
  2001. @item @code{struct timespec executing_time}
  2002. Time spent by the worker to execute tasks during the profiling measurement interval.
  2003. @item @code{struct timespec sleeping_time}
  2004. Time spent idling by the worker during the profiling measurement interval.
  2005. @item @code{int executed_tasks}
  2006. Number of tasks executed by the worker during the profiling measurement interval.
  2007. @item @code{uint64_t used_cycles}
  2008. Number of cycles used by the worker, only available in the MoviSim
  2009. @item @code{uint64_t stall_cycles}
  2010. Number of cycles stalled within the worker, only available in the MoviSim
  2011. @item @code{double power_consumed}
  2012. Power consumed by the worker, only available in the MoviSim
  2013. @end table
  2014. @end deftp
  2015. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  2016. Get the profiling info associated to the worker identified by @var{workerid},
  2017. and reset the profiling measurements. If the @var{worker_info} argument is
  2018. NULL, only reset the counters associated to worker @var{workerid}.
  2019. Upon successful completion, this function returns 0. Otherwise, a negative
  2020. value is returned.
  2021. @end deftypefun
  2022. @deftp {Data Type} {struct starpu_bus_profiling_info}
  2023. The different fields are:
  2024. @table @asis
  2025. @item @code{struct timespec start_time}
  2026. Time of bus profiling startup.
  2027. @item @code{struct timespec total_time}
  2028. Total time of bus profiling.
  2029. @item @code{int long long transferred_bytes}
  2030. Number of bytes transferred during profiling.
  2031. @item @code{int transfer_count}
  2032. Number of transfers during profiling.
  2033. @end table
  2034. @end deftp
  2035. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_bus_profiling_info *}@var{bus_info})
  2036. Get the profiling info associated to the worker designated by @var{workerid},
  2037. and reset the profiling measurements. If worker_info is NULL, only reset the
  2038. counters.
  2039. @end deftypefun
  2040. @deftypefun int starpu_bus_get_count (void)
  2041. Return the number of buses in the machine.
  2042. @end deftypefun
  2043. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  2044. Return the identifier of the bus between @var{src} and @var{dst}
  2045. @end deftypefun
  2046. @deftypefun int starpu_bus_get_src (int @var{busid})
  2047. Return the source point of bus @var{busid}
  2048. @end deftypefun
  2049. @deftypefun int starpu_bus_get_dst (int @var{busid})
  2050. Return the destination point of bus @var{busid}
  2051. @end deftypefun
  2052. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  2053. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  2054. @end deftypefun
  2055. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  2056. Converts the given timespec @var{ts} into microseconds.
  2057. @end deftypefun
  2058. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  2059. Displays statistics about the bus on stderr. if the environment
  2060. variable @code{STARPU_BUS_STATS} is defined. The function is called
  2061. automatically by @code{starpu_shutdown()}.
  2062. @end deftypefun
  2063. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  2064. Displays statistics about the workers on stderr if the environment
  2065. variable @code{STARPU_WORKER_STATS} is defined. The function is called
  2066. automatically by @code{starpu_shutdown()}.
  2067. @end deftypefun
  2068. @deftypefun void starpu_memory_display_stats ()
  2069. Display statistics about the current data handles registered within
  2070. StarPU. StarPU must have been configured with the option
  2071. @code{----enable-memory-stats} (@pxref{Memory feedback}).
  2072. @end deftypefun
  2073. @node CUDA extensions
  2074. @section CUDA extensions
  2075. @defmac STARPU_USE_CUDA
  2076. This macro is defined when StarPU has been installed with CUDA
  2077. support. It should be used in your code to detect the availability of
  2078. CUDA as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2079. @end defmac
  2080. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  2081. This function gets the current worker's CUDA stream.
  2082. StarPU provides a stream for every CUDA device controlled by StarPU. This
  2083. function is only provided for convenience so that programmers can easily use
  2084. asynchronous operations within codelets without having to create a stream by
  2085. hand. Note that the application is not forced to use the stream provided by
  2086. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  2087. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  2088. the likelihood of having all transfers overlapped.
  2089. @end deftypefun
  2090. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  2091. This function returns a pointer to device properties for worker @var{workerid}
  2092. (assumed to be a CUDA worker).
  2093. @end deftypefun
  2094. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  2095. Report a CUDA error.
  2096. @end deftypefun
  2097. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  2098. Calls starpu_cuda_report_error, passing the current function, file and line
  2099. position.
  2100. @end defmac
  2101. @deftypefun int starpu_cuda_copy_async_sync ({void *}@var{src_ptr}, unsigned @var{src_node}, {void *}@var{dst_ptr}, unsigned @var{dst_node}, size_t @var{ssize}, cudaStream_t @var{stream}, {enum cudaMemcpyKind} @var{kind})
  2102. Copy @var{ssize} bytes from the pointer @var{src_ptr} on
  2103. @var{src_node} to the pointer @var{dst_ptr} on @var{dst_node}.
  2104. The function first tries to copy the data asynchronous (unless
  2105. @var{stream} is @code{NULL}. If the asynchronous copy fails or if
  2106. @var{stream} is @code{NULL}, it copies the data synchronously.
  2107. The function returns @code{-EAGAIN} if the asynchronous launch was
  2108. successfull. It returns 0 if the synchronous copy was successful, or
  2109. fails otherwise.
  2110. @end deftypefun
  2111. @deftypefun void starpu_cuda_set_device (unsigned @var{devid})
  2112. Calls @code{cudaSetDevice(devid)} or @code{cudaGLSetGLDevice(devid)}, according to
  2113. whether @code{devid} is among the @code{cuda_opengl_interoperability} field of
  2114. the @code{starpu_conf} structure.
  2115. @end deftypefun
  2116. @deftypefun void starpu_cublas_init (void)
  2117. This function initializes CUBLAS on every CUDA device.
  2118. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  2119. @code{starpu_cublas_init} will initialize CUBLAS on every CUDA device
  2120. controlled by StarPU. This call blocks until CUBLAS has been properly
  2121. initialized on every device.
  2122. @end deftypefun
  2123. @deftypefun void starpu_cublas_shutdown (void)
  2124. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  2125. @end deftypefun
  2126. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  2127. Report a cublas error.
  2128. @end deftypefun
  2129. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  2130. Calls starpu_cublas_report_error, passing the current function, file and line
  2131. position.
  2132. @end defmac
  2133. @node OpenCL extensions
  2134. @section OpenCL extensions
  2135. @menu
  2136. * Writing OpenCL kernels:: Writing OpenCL kernels
  2137. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  2138. * Loading OpenCL kernels:: Loading OpenCL kernels
  2139. * OpenCL statistics:: Collecting statistics from OpenCL
  2140. * OpenCL utilities:: Utilities for OpenCL
  2141. @end menu
  2142. @defmac STARPU_USE_OPENCL
  2143. This macro is defined when StarPU has been installed with OpenCL
  2144. support. It should be used in your code to detect the availability of
  2145. OpenCL as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2146. @end defmac
  2147. @node Writing OpenCL kernels
  2148. @subsection Writing OpenCL kernels
  2149. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  2150. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  2151. @end deftypefun
  2152. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  2153. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  2154. @end deftypefun
  2155. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  2156. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  2157. @end deftypefun
  2158. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  2159. Return the context of the current worker.
  2160. @end deftypefun
  2161. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  2162. Return the computation kernel command queue of the current worker.
  2163. @end deftypefun
  2164. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  2165. Sets the arguments of a given kernel. The list of arguments must be given as
  2166. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  2167. The last argument must be 0. Returns the number of arguments that were
  2168. successfully set. In case of failure, returns the id of the argument
  2169. that could not be set and @var{err} is set to the error returned by
  2170. OpenCL. Otherwise, returns the number of arguments that were set.
  2171. @cartouche
  2172. @smallexample
  2173. int n;
  2174. cl_int err;
  2175. cl_kernel kernel;
  2176. n = starpu_opencl_set_kernel_args(&err, 2, &kernel,
  2177. sizeof(foo), &foo,
  2178. sizeof(bar), &bar,
  2179. 0);
  2180. if (n != 2)
  2181. fprintf(stderr, "Error : %d\n", err);
  2182. @end smallexample
  2183. @end cartouche
  2184. @end deftypefun
  2185. @node Compiling OpenCL kernels
  2186. @subsection Compiling OpenCL kernels
  2187. Source codes for OpenCL kernels can be stored in a file or in a
  2188. string. StarPU provides functions to build the program executable for
  2189. each available OpenCL device as a @code{cl_program} object. This
  2190. program executable can then be loaded within a specific queue as
  2191. explained in the next section. These are only helpers, Applications
  2192. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  2193. use (e.g. different programs on the different OpenCL devices, for
  2194. relocation purpose for instance).
  2195. @deftp {Data Type} {struct starpu_opencl_program}
  2196. Stores the OpenCL programs as compiled for the different OpenCL
  2197. devices. The different fields are:
  2198. @table @asis
  2199. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  2200. Stores each program for each OpenCL device.
  2201. @end table
  2202. @end deftp
  2203. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2204. @anchor{starpu_opencl_load_opencl_from_file}
  2205. This function compiles an OpenCL source code stored in a file.
  2206. @end deftypefun
  2207. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2208. This function compiles an OpenCL source code stored in a string.
  2209. @end deftypefun
  2210. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  2211. This function unloads an OpenCL compiled code.
  2212. @end deftypefun
  2213. @deftypefun void starpu_opencl_load_program_source ({const char *}@var{source_file_name}, char *@var{located_file_name}, char *@var{located_dir_name}, char *@var{opencl_program_source})
  2214. @anchor{starpu_opencl_load_program_source}
  2215. Store the contents of the file @var{source_file_name} in the buffer
  2216. @var{opencl_program_source}. The file @var{source_file_name} can be
  2217. located in the current directory, or in the directory specified by the
  2218. environment variable @code{STARPU_OPENCL_PROGRAM_DIR} (@pxref{STARPU_OPENCL_PROGRAM_DIR}), or in the
  2219. directory @code{share/starpu/opencl} of the installation directory of
  2220. StarPU, or in the source directory of StarPU.
  2221. When the file is found, @code{located_file_name} is the full name of
  2222. the file as it has been located on the system, @code{located_dir_name}
  2223. the directory where it has been located. Otherwise, they are both set
  2224. to the empty string.
  2225. @end deftypefun
  2226. @deftypefun int starpu_opencl_compile_opencl_from_file ({const char *}@var{source_file_name}, {const char *} @var{build_options})
  2227. Compile the OpenCL kernel stored in the file @code{source_file_name}
  2228. with the given options @code{build_options} and stores the result in
  2229. the directory @code{$STARPU_HOME/.starpu/opencl} with the same
  2230. filename as @code{source_file_name}. The compilation is done for every
  2231. OpenCL device, and the filename is suffixed with the vendor id and the
  2232. device id of the OpenCL device.
  2233. @end deftypefun
  2234. @deftypefun int starpu_opencl_compile_opencl_from_string ({const char *}@var{opencl_program_source}, {const char *}@var{file_name}, {const char* }@var{build_options})
  2235. Compile the OpenCL kernel in the string @code{opencl_program_source}
  2236. with the given options @code{build_options} and stores the result in
  2237. the directory @code{$STARPU_HOME/.starpu/opencl}
  2238. with the filename
  2239. @code{file_name}. The compilation is done for every
  2240. OpenCL device, and the filename is suffixed with the vendor id and the
  2241. device id of the OpenCL device.
  2242. @end deftypefun
  2243. @deftypefun int starpu_opencl_load_binary_opencl ({const char *}@var{kernel_id}, {struct starpu_opencl_program *}@var{opencl_programs})
  2244. Compile the binary OpenCL kernel identified with @var{id}. For every
  2245. OpenCL device, the binary OpenCL kernel will be loaded from the file
  2246. @code{$STARPU_HOME/.starpu/opencl/<kernel_id>.<device_type>.vendor_id_<vendor_id>_device_id_<device_id>}.
  2247. @end deftypefun
  2248. @node Loading OpenCL kernels
  2249. @subsection Loading OpenCL kernels
  2250. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  2251. Create a kernel @var{kernel} for device @var{devid}, on its computation command
  2252. queue returned in @var{queue}, using program @var{opencl_programs} and name
  2253. @var{kernel_name}
  2254. @end deftypefun
  2255. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  2256. Release the given @var{kernel}, to be called after kernel execution.
  2257. @end deftypefun
  2258. @node OpenCL statistics
  2259. @subsection OpenCL statistics
  2260. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  2261. This function allows to collect statistics on a kernel execution.
  2262. After termination of the kernels, the OpenCL codelet should call this function
  2263. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  2264. collect statistics about the kernel execution (used cycles, consumed power).
  2265. @end deftypefun
  2266. @node OpenCL utilities
  2267. @subsection OpenCL utilities
  2268. @deftypefun {const char *} starpu_opencl_error_string (cl_int @var{status})
  2269. Return the error message in English corresponding to @var{status}, an
  2270. OpenCL error code.
  2271. @end deftypefun
  2272. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2273. Given a valid error @var{status}, prints the corresponding error message on
  2274. stdout, along with the given function name @var{func}, the given filename
  2275. @var{file}, the given line number @var{line} and the given message @var{msg}.
  2276. @end deftypefun
  2277. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  2278. Call the function @code{starpu_opencl_display_error} with the given
  2279. error @var{status}, the current function name, current file and line
  2280. number, and a empty message.
  2281. @end defmac
  2282. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2283. Call the function @code{starpu_opencl_display_error} and abort.
  2284. @end deftypefun
  2285. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  2286. Call the function @code{starpu_opencl_report_error} with the given
  2287. error @var{status}, with the current function name, current file and
  2288. line number, and a empty message.
  2289. @end defmac
  2290. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  2291. Call the function @code{starpu_opencl_report_error} with the given
  2292. message and the given error @var{status}, with the current function
  2293. name, current file and line number.
  2294. @end defmac
  2295. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  2296. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  2297. valid combination of cl_mem_flags values.
  2298. @end deftypefun
  2299. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2300. Copy @var{size} bytes from the given @var{ptr} on
  2301. RAM @var{src_node} to the given @var{buffer} on OpenCL @var{dst_node}.
  2302. @var{offset} is the offset, in bytes, in @var{buffer}.
  2303. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2304. synchronised before returning. If non NULL, @var{event} can be used
  2305. after the call to wait for this particular copy to complete.
  2306. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2307. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2308. was successful, or to 0 if event was NULL.
  2309. @end deftypefun
  2310. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2311. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  2312. OpenCL @var{src_node} to the given @var{ptr} on RAM @var{dst_node}.
  2313. @var{offset} is the offset, in bytes, in @var{buffer}.
  2314. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2315. synchronised before returning. If non NULL, @var{event} can be used
  2316. after the call to wait for this particular copy to complete.
  2317. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2318. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2319. was successful, or to 0 if event was NULL.
  2320. @end deftypefun
  2321. @deftypefun cl_int starpu_opencl_copy_opencl_to_opencl (cl_mem @var{src}, unsigned @var{src_node}, size_t @var{src_offset}, cl_mem @var{dst}, unsigned @var{dst_node}, size_t @var{dst_offset}, size_t @var{size}, {cl_event *}@var{event}, {int *}@var{ret})
  2322. Copy @var{size} bytes asynchronously from byte offset @var{src_offset} of
  2323. @var{src} on OpenCL @var{src_node} to byte offset @var{dst_offset} of @var{dst} on
  2324. OpenCL @var{dst_node}.
  2325. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2326. synchronised before returning. If non NULL, @var{event} can be used
  2327. after the call to wait for this particular copy to complete.
  2328. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2329. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2330. was successful, or to 0 if event was NULL.
  2331. @end deftypefun
  2332. @deftypefun cl_int starpu_opencl_copy_async_sync (uintptr_t @var{src}, size_t @var{src_offset}, unsigned @var{src_node}, uintptr_t @var{dst}, size_t @var{dst_offset}, unsigned @var{dst_node}, size_t @var{size}, {cl_event *}@var{event})
  2333. Copy @var{size} bytes from byte offset @var{src_offset} of
  2334. @var{src} on @var{src_node} to byte offset @var{dst_offset} of @var{dst} on
  2335. @var{dst_node}. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2336. synchronised before returning. If non NULL, @var{event} can be used
  2337. after the call to wait for this particular copy to complete.
  2338. The function returns @code{-EAGAIN} if the asynchronous launch was
  2339. successfull. It returns 0 if the synchronous copy was successful, or
  2340. fails otherwise.
  2341. @end deftypefun
  2342. @node Miscellaneous helpers
  2343. @section Miscellaneous helpers
  2344. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  2345. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  2346. The @var{asynchronous} parameter indicates whether the function should
  2347. block or not. In the case of an asynchronous call, it is possible to
  2348. synchronize with the termination of this operation either by the means of
  2349. implicit dependencies (if enabled) or by calling
  2350. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  2351. this callback function is executed after the handle has been copied, and it is
  2352. given the @var{callback_arg} pointer as argument.
  2353. @end deftypefun
  2354. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  2355. This function executes the given function on a subset of workers.
  2356. When calling this method, the offloaded function specified by the first argument is
  2357. executed by every StarPU worker that may execute the function.
  2358. The second argument is passed to the offloaded function.
  2359. The last argument specifies on which types of processing units the function
  2360. should be executed. Similarly to the @var{where} field of the
  2361. @code{struct starpu_codelet} structure, it is possible to specify that the function
  2362. should be executed on every CUDA device and every CPU by passing
  2363. @code{STARPU_CPU|STARPU_CUDA}.
  2364. This function blocks until the function has been executed on every appropriate
  2365. processing units, so that it may not be called from a callback function for
  2366. instance.
  2367. @end deftypefun