cg_kernels.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010, 2012-2016 Université de Bordeaux
  4. *
  5. * StarPU is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * StarPU is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. /*
  17. * Standard BLAS kernels used by CG
  18. */
  19. #include "cg.h"
  20. #include <math.h>
  21. #include <limits.h>
  22. #ifdef STARPU_USE_CUDA
  23. #include <starpu_cublas_v2.h>
  24. static const TYPE p1 = 1.0;
  25. static const TYPE m1 = -1.0;
  26. #endif
  27. #if 0
  28. static void print_vector_from_descr(unsigned nx, TYPE *v)
  29. {
  30. unsigned i;
  31. for (i = 0; i < nx; i++)
  32. {
  33. fprintf(stderr, "%2.2e ", v[i]);
  34. }
  35. fprintf(stderr, "\n");
  36. }
  37. static void print_matrix_from_descr(unsigned nx, unsigned ny, unsigned ld, TYPE *mat)
  38. {
  39. unsigned i, j;
  40. for (j = 0; j < nx; j++)
  41. {
  42. for (i = 0; i < ny; i++)
  43. {
  44. fprintf(stderr, "%2.2e ", mat[j+i*ld]);
  45. }
  46. fprintf(stderr, "\n");
  47. }
  48. }
  49. #endif
  50. static int can_execute(unsigned workerid, struct starpu_task *task, unsigned nimpl)
  51. {
  52. enum starpu_worker_archtype type = starpu_worker_get_type(workerid);
  53. if (type == STARPU_CPU_WORKER || type == STARPU_OPENCL_WORKER || type == STARPU_MIC_WORKER || type == STARPU_SCC_WORKER)
  54. return 1;
  55. #ifdef STARPU_USE_CUDA
  56. #ifdef STARPU_SIMGRID
  57. /* We don't know, let's assume it can */
  58. return 1;
  59. #else
  60. /* Cuda device */
  61. const struct cudaDeviceProp *props;
  62. props = starpu_cuda_get_device_properties(workerid);
  63. if (props->major >= 2 || props->minor >= 3)
  64. /* At least compute capability 1.3, supports doubles */
  65. return 1;
  66. #endif
  67. #endif
  68. /* Old card, does not support doubles */
  69. return 0;
  70. }
  71. /*
  72. * Reduction accumulation methods
  73. */
  74. #ifdef STARPU_USE_CUDA
  75. static void accumulate_variable_cuda(void *descr[], void *cl_arg)
  76. {
  77. TYPE *v_dst = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  78. TYPE *v_src = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[1]);
  79. cublasStatus_t status = cublasaxpy(starpu_cublas_get_local_handle(), 1, &p1, v_src, 1, v_dst, 1);
  80. if (status != CUBLAS_STATUS_SUCCESS)
  81. STARPU_CUBLAS_REPORT_ERROR(status);
  82. }
  83. #endif
  84. void accumulate_variable_cpu(void *descr[], void *cl_arg)
  85. {
  86. TYPE *v_dst = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  87. TYPE *v_src = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[1]);
  88. *v_dst = *v_dst + *v_src;
  89. }
  90. static struct starpu_perfmodel accumulate_variable_model =
  91. {
  92. .type = STARPU_HISTORY_BASED,
  93. .symbol = "accumulate_variable"
  94. };
  95. struct starpu_codelet accumulate_variable_cl =
  96. {
  97. .can_execute = can_execute,
  98. .cpu_funcs = {accumulate_variable_cpu},
  99. .cpu_funcs_name = {"accumulate_variable_cpu"},
  100. #ifdef STARPU_USE_CUDA
  101. .cuda_funcs = {accumulate_variable_cuda},
  102. .cuda_flags = {STARPU_CUDA_ASYNC},
  103. #endif
  104. .modes = {STARPU_RW, STARPU_R},
  105. .nbuffers = 2,
  106. .model = &accumulate_variable_model
  107. };
  108. #ifdef STARPU_USE_CUDA
  109. static void accumulate_vector_cuda(void *descr[], void *cl_arg)
  110. {
  111. TYPE *v_dst = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  112. TYPE *v_src = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  113. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  114. cublasStatus_t status = cublasaxpy(starpu_cublas_get_local_handle(), n, &p1, v_src, 1, v_dst, 1);
  115. if (status != CUBLAS_STATUS_SUCCESS)
  116. STARPU_CUBLAS_REPORT_ERROR(status);
  117. }
  118. #endif
  119. void accumulate_vector_cpu(void *descr[], void *cl_arg)
  120. {
  121. TYPE *v_dst = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  122. TYPE *v_src = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  123. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  124. AXPY(n, (TYPE)1.0, v_src, 1, v_dst, 1);
  125. }
  126. static struct starpu_perfmodel accumulate_vector_model =
  127. {
  128. .type = STARPU_HISTORY_BASED,
  129. .symbol = "accumulate_vector"
  130. };
  131. struct starpu_codelet accumulate_vector_cl =
  132. {
  133. .can_execute = can_execute,
  134. .cpu_funcs = {accumulate_vector_cpu},
  135. .cpu_funcs_name = {"accumulate_vector_cpu"},
  136. #ifdef STARPU_USE_CUDA
  137. .cuda_funcs = {accumulate_vector_cuda},
  138. .cuda_flags = {STARPU_CUDA_ASYNC},
  139. #endif
  140. .modes = {STARPU_RW, STARPU_R},
  141. .nbuffers = 2,
  142. .model = &accumulate_vector_model
  143. };
  144. /*
  145. * Reduction initialization methods
  146. */
  147. #ifdef STARPU_USE_CUDA
  148. extern void zero_vector(TYPE *x, unsigned nelems);
  149. static void bzero_variable_cuda(void *descr[], void *cl_arg)
  150. {
  151. TYPE *v = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  152. size_t size = STARPU_VARIABLE_GET_ELEMSIZE(descr[0]);
  153. cudaMemsetAsync(v, 0, size, starpu_cuda_get_local_stream());
  154. }
  155. #endif
  156. void bzero_variable_cpu(void *descr[], void *cl_arg)
  157. {
  158. TYPE *v = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  159. *v = (TYPE)0.0;
  160. }
  161. static struct starpu_perfmodel bzero_variable_model =
  162. {
  163. .type = STARPU_HISTORY_BASED,
  164. .symbol = "bzero_variable"
  165. };
  166. struct starpu_codelet bzero_variable_cl =
  167. {
  168. .can_execute = can_execute,
  169. .cpu_funcs = {bzero_variable_cpu},
  170. .cpu_funcs_name = {"bzero_variable_cpu"},
  171. #ifdef STARPU_USE_CUDA
  172. .cuda_funcs = {bzero_variable_cuda},
  173. .cuda_flags = {STARPU_CUDA_ASYNC},
  174. #endif
  175. .modes = {STARPU_W},
  176. .nbuffers = 1,
  177. .model = &bzero_variable_model
  178. };
  179. #ifdef STARPU_USE_CUDA
  180. static void bzero_vector_cuda(void *descr[], void *cl_arg)
  181. {
  182. TYPE *v = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  183. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  184. size_t elemsize = STARPU_VECTOR_GET_ELEMSIZE(descr[0]);
  185. cudaMemsetAsync(v, 0, n * elemsize, starpu_cuda_get_local_stream());
  186. }
  187. #endif
  188. void bzero_vector_cpu(void *descr[], void *cl_arg)
  189. {
  190. TYPE *v = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  191. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  192. memset(v, 0, n*sizeof(TYPE));
  193. }
  194. static struct starpu_perfmodel bzero_vector_model =
  195. {
  196. .type = STARPU_HISTORY_BASED,
  197. .symbol = "bzero_vector"
  198. };
  199. struct starpu_codelet bzero_vector_cl =
  200. {
  201. .can_execute = can_execute,
  202. .cpu_funcs = {bzero_vector_cpu},
  203. .cpu_funcs_name = {"bzero_vector_cpu"},
  204. #ifdef STARPU_USE_CUDA
  205. .cuda_funcs = {bzero_vector_cuda},
  206. .cuda_flags = {STARPU_CUDA_ASYNC},
  207. #endif
  208. .modes = {STARPU_W},
  209. .nbuffers = 1,
  210. .model = &bzero_vector_model
  211. };
  212. /*
  213. * DOT kernel : s = dot(v1, v2)
  214. */
  215. #ifdef STARPU_USE_CUDA
  216. static void dot_kernel_cuda(void *descr[], void *cl_arg)
  217. {
  218. TYPE *dot = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  219. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  220. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);
  221. unsigned n = STARPU_VECTOR_GET_NX(descr[1]);
  222. cublasHandle_t handle = starpu_cublas_get_local_handle();
  223. cublasSetPointerMode(handle, CUBLAS_POINTER_MODE_DEVICE);
  224. cublasStatus_t status = cublasdot(handle,
  225. n, v1, 1, v2, 1, dot);
  226. if (status != CUBLAS_STATUS_SUCCESS)
  227. STARPU_CUBLAS_REPORT_ERROR(status);
  228. cublasSetPointerMode(handle, CUBLAS_POINTER_MODE_HOST);
  229. }
  230. #endif
  231. void dot_kernel_cpu(void *descr[], void *cl_arg)
  232. {
  233. TYPE *dot = (TYPE *)STARPU_VARIABLE_GET_PTR(descr[0]);
  234. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  235. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);
  236. unsigned n = STARPU_VECTOR_GET_NX(descr[1]);
  237. TYPE local_dot;
  238. /* Note that we explicitely cast the result of the DOT kernel because
  239. * some BLAS library will return a double for sdot for instance. */
  240. local_dot = (TYPE)DOT(n, v1, 1, v2, 1);
  241. *dot = *dot + local_dot;
  242. }
  243. static struct starpu_perfmodel dot_kernel_model =
  244. {
  245. .type = STARPU_HISTORY_BASED,
  246. .symbol = "dot_kernel"
  247. };
  248. static struct starpu_codelet dot_kernel_cl =
  249. {
  250. .can_execute = can_execute,
  251. .cpu_funcs = {dot_kernel_cpu},
  252. .cpu_funcs_name = {"dot_kernel_cpu"},
  253. #ifdef STARPU_USE_CUDA
  254. .cuda_funcs = {dot_kernel_cuda},
  255. #endif
  256. .cuda_flags = {STARPU_CUDA_ASYNC},
  257. .nbuffers = 3,
  258. .model = &dot_kernel_model
  259. };
  260. int dot_kernel(starpu_data_handle_t v1,
  261. starpu_data_handle_t v2,
  262. starpu_data_handle_t s,
  263. unsigned nblocks,
  264. int use_reduction)
  265. {
  266. int ret;
  267. /* Blank the accumulation variable */
  268. if (use_reduction)
  269. starpu_data_invalidate_submit(s);
  270. else
  271. {
  272. ret = starpu_task_insert(&bzero_variable_cl, STARPU_W, s, 0);
  273. if (ret == -ENODEV) return ret;
  274. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");
  275. }
  276. unsigned b;
  277. for (b = 0; b < nblocks; b++)
  278. {
  279. ret = starpu_task_insert(&dot_kernel_cl,
  280. use_reduction?STARPU_REDUX:STARPU_RW, s,
  281. STARPU_R, starpu_data_get_sub_data(v1, 1, b),
  282. STARPU_R, starpu_data_get_sub_data(v2, 1, b),
  283. STARPU_TAG_ONLY, (starpu_tag_t) b,
  284. 0);
  285. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");
  286. }
  287. return 0;
  288. }
  289. /*
  290. * SCAL kernel : v1 = p1 v1
  291. */
  292. #ifdef STARPU_USE_CUDA
  293. static void scal_kernel_cuda(void *descr[], void *cl_arg)
  294. {
  295. TYPE p1;
  296. starpu_codelet_unpack_args(cl_arg, &p1);
  297. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  298. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  299. /* v1 = p1 v1 */
  300. TYPE alpha = p1;
  301. cublasStatus_t status = cublasscal(starpu_cublas_get_local_handle(), n, &alpha, v1, 1);
  302. if (status != CUBLAS_STATUS_SUCCESS)
  303. STARPU_CUBLAS_REPORT_ERROR(status);
  304. }
  305. #endif
  306. void scal_kernel_cpu(void *descr[], void *cl_arg)
  307. {
  308. TYPE alpha;
  309. starpu_codelet_unpack_args(cl_arg, &alpha);
  310. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  311. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  312. /* v1 = alpha v1 */
  313. SCAL(n, alpha, v1, 1);
  314. }
  315. static struct starpu_perfmodel scal_kernel_model =
  316. {
  317. .type = STARPU_HISTORY_BASED,
  318. .symbol = "scal_kernel"
  319. };
  320. static struct starpu_codelet scal_kernel_cl =
  321. {
  322. .can_execute = can_execute,
  323. .cpu_funcs = {scal_kernel_cpu},
  324. .cpu_funcs_name = {"scal_kernel_cpu"},
  325. #ifdef STARPU_USE_CUDA
  326. .cuda_funcs = {scal_kernel_cuda},
  327. .cuda_flags = {STARPU_CUDA_ASYNC},
  328. #endif
  329. .nbuffers = 1,
  330. .model = &scal_kernel_model
  331. };
  332. /*
  333. * GEMV kernel : v1 = p1 * v1 + p2 * M v2
  334. */
  335. #ifdef STARPU_USE_CUDA
  336. static void gemv_kernel_cuda(void *descr[], void *cl_arg)
  337. {
  338. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  339. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);
  340. TYPE *M = (TYPE *)STARPU_MATRIX_GET_PTR(descr[1]);
  341. unsigned ld = STARPU_MATRIX_GET_LD(descr[1]);
  342. unsigned nx = STARPU_MATRIX_GET_NX(descr[1]);
  343. unsigned ny = STARPU_MATRIX_GET_NY(descr[1]);
  344. TYPE alpha, beta;
  345. starpu_codelet_unpack_args(cl_arg, &beta, &alpha);
  346. /* Compute v1 = alpha M v2 + beta v1 */
  347. cublasStatus_t status = cublasgemv(starpu_cublas_get_local_handle(),
  348. CUBLAS_OP_N, nx, ny, &alpha, M, ld, v2, 1, &beta, v1, 1);
  349. if (status != CUBLAS_STATUS_SUCCESS)
  350. STARPU_CUBLAS_REPORT_ERROR(status);
  351. }
  352. #endif
  353. void gemv_kernel_cpu(void *descr[], void *cl_arg)
  354. {
  355. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  356. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[2]);
  357. TYPE *M = (TYPE *)STARPU_MATRIX_GET_PTR(descr[1]);
  358. unsigned ld = STARPU_MATRIX_GET_LD(descr[1]);
  359. unsigned nx = STARPU_MATRIX_GET_NX(descr[1]);
  360. unsigned ny = STARPU_MATRIX_GET_NY(descr[1]);
  361. TYPE alpha, beta;
  362. starpu_codelet_unpack_args(cl_arg, &beta, &alpha);
  363. int worker_size = starpu_combined_worker_get_size();
  364. if (worker_size > 1)
  365. {
  366. /* Parallel CPU task */
  367. unsigned rank = starpu_combined_worker_get_rank();
  368. unsigned block_size = (ny + worker_size - 1)/worker_size;
  369. unsigned new_nx = STARPU_MIN(nx, block_size*(rank+1)) - block_size*rank;
  370. nx = new_nx;
  371. v1 = &v1[block_size*rank];
  372. M = &M[block_size*rank];
  373. }
  374. /* Compute v1 = alpha M v2 + beta v1 */
  375. GEMV("N", nx, ny, alpha, M, ld, v2, 1, beta, v1, 1);
  376. }
  377. static struct starpu_perfmodel gemv_kernel_model =
  378. {
  379. .type = STARPU_HISTORY_BASED,
  380. .symbol = "gemv_kernel"
  381. };
  382. static struct starpu_codelet gemv_kernel_cl =
  383. {
  384. .can_execute = can_execute,
  385. .type = STARPU_SPMD,
  386. .max_parallelism = INT_MAX,
  387. .cpu_funcs = {gemv_kernel_cpu},
  388. .cpu_funcs_name = {"gemv_kernel_cpu"},
  389. #ifdef STARPU_USE_CUDA
  390. .cuda_funcs = {gemv_kernel_cuda},
  391. .cuda_flags = {STARPU_CUDA_ASYNC},
  392. #endif
  393. .nbuffers = 3,
  394. .model = &gemv_kernel_model
  395. };
  396. int gemv_kernel(starpu_data_handle_t v1,
  397. starpu_data_handle_t matrix,
  398. starpu_data_handle_t v2,
  399. TYPE p1, TYPE p2,
  400. unsigned nblocks,
  401. int use_reduction)
  402. {
  403. unsigned b1, b2;
  404. int ret;
  405. for (b2 = 0; b2 < nblocks; b2++)
  406. {
  407. ret = starpu_task_insert(&scal_kernel_cl,
  408. STARPU_RW, starpu_data_get_sub_data(v1, 1, b2),
  409. STARPU_VALUE, &p1, sizeof(p1),
  410. STARPU_TAG_ONLY, (starpu_tag_t) b2,
  411. 0);
  412. if (ret == -ENODEV) return ret;
  413. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");
  414. }
  415. for (b2 = 0; b2 < nblocks; b2++)
  416. {
  417. for (b1 = 0; b1 < nblocks; b1++)
  418. {
  419. TYPE one = 1.0;
  420. ret = starpu_task_insert(&gemv_kernel_cl,
  421. use_reduction?STARPU_REDUX:STARPU_RW, starpu_data_get_sub_data(v1, 1, b2),
  422. STARPU_R, starpu_data_get_sub_data(matrix, 2, b2, b1),
  423. STARPU_R, starpu_data_get_sub_data(v2, 1, b1),
  424. STARPU_VALUE, &one, sizeof(one),
  425. STARPU_VALUE, &p2, sizeof(p2),
  426. STARPU_TAG_ONLY, ((starpu_tag_t)b2) * nblocks + b1,
  427. 0);
  428. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");
  429. }
  430. }
  431. return 0;
  432. }
  433. /*
  434. * AXPY + SCAL kernel : v1 = p1 * v1 + p2 * v2
  435. */
  436. #ifdef STARPU_USE_CUDA
  437. static void scal_axpy_kernel_cuda(void *descr[], void *cl_arg)
  438. {
  439. TYPE p1, p2;
  440. starpu_codelet_unpack_args(cl_arg, &p1, &p2);
  441. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  442. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  443. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  444. /* Compute v1 = p1 * v1 + p2 * v2.
  445. * v1 = p1 v1
  446. * v1 = v1 + p2 v2
  447. */
  448. cublasStatus_t status;
  449. status = cublasscal(starpu_cublas_get_local_handle(), n, &p1, v1, 1);
  450. if (status != CUBLAS_STATUS_SUCCESS)
  451. STARPU_CUBLAS_REPORT_ERROR(status);
  452. status = cublasaxpy(starpu_cublas_get_local_handle(), n, &p2, v2, 1, v1, 1);
  453. if (status != CUBLAS_STATUS_SUCCESS)
  454. STARPU_CUBLAS_REPORT_ERROR(status);
  455. }
  456. #endif
  457. void scal_axpy_kernel_cpu(void *descr[], void *cl_arg)
  458. {
  459. TYPE p1, p2;
  460. starpu_codelet_unpack_args(cl_arg, &p1, &p2);
  461. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  462. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  463. unsigned nx = STARPU_VECTOR_GET_NX(descr[0]);
  464. /* Compute v1 = p1 * v1 + p2 * v2.
  465. * v1 = p1 v1
  466. * v1 = v1 + p2 v2
  467. */
  468. SCAL(nx, p1, v1, 1);
  469. AXPY(nx, p2, v2, 1, v1, 1);
  470. }
  471. static struct starpu_perfmodel scal_axpy_kernel_model =
  472. {
  473. .type = STARPU_HISTORY_BASED,
  474. .symbol = "scal_axpy_kernel"
  475. };
  476. static struct starpu_codelet scal_axpy_kernel_cl =
  477. {
  478. .can_execute = can_execute,
  479. .cpu_funcs = {scal_axpy_kernel_cpu},
  480. .cpu_funcs_name = {"scal_axpy_kernel_cpu"},
  481. #ifdef STARPU_USE_CUDA
  482. .cuda_funcs = {scal_axpy_kernel_cuda},
  483. .cuda_flags = {STARPU_CUDA_ASYNC},
  484. #endif
  485. .nbuffers = 2,
  486. .model = &scal_axpy_kernel_model
  487. };
  488. int scal_axpy_kernel(starpu_data_handle_t v1, TYPE p1,
  489. starpu_data_handle_t v2, TYPE p2,
  490. unsigned nblocks)
  491. {
  492. unsigned b;
  493. for (b = 0; b < nblocks; b++)
  494. {
  495. int ret;
  496. ret = starpu_task_insert(&scal_axpy_kernel_cl,
  497. STARPU_RW, starpu_data_get_sub_data(v1, 1, b),
  498. STARPU_R, starpu_data_get_sub_data(v2, 1, b),
  499. STARPU_VALUE, &p1, sizeof(p1),
  500. STARPU_VALUE, &p2, sizeof(p2),
  501. STARPU_TAG_ONLY, (starpu_tag_t) b,
  502. 0);
  503. if (ret == -ENODEV) return ret;
  504. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");
  505. }
  506. return 0;
  507. }
  508. /*
  509. * AXPY kernel : v1 = v1 + p1 * v2
  510. */
  511. #ifdef STARPU_USE_CUDA
  512. static void axpy_kernel_cuda(void *descr[], void *cl_arg)
  513. {
  514. TYPE p1;
  515. starpu_codelet_unpack_args(cl_arg, &p1);
  516. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  517. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  518. unsigned n = STARPU_VECTOR_GET_NX(descr[0]);
  519. /* Compute v1 = v1 + p1 * v2.
  520. */
  521. cublasStatus_t status = cublasaxpy(starpu_cublas_get_local_handle(),
  522. n, &p1, v2, 1, v1, 1);
  523. if (status != CUBLAS_STATUS_SUCCESS)
  524. STARPU_CUBLAS_REPORT_ERROR(status);
  525. }
  526. #endif
  527. void axpy_kernel_cpu(void *descr[], void *cl_arg)
  528. {
  529. TYPE p1;
  530. starpu_codelet_unpack_args(cl_arg, &p1);
  531. TYPE *v1 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[0]);
  532. TYPE *v2 = (TYPE *)STARPU_VECTOR_GET_PTR(descr[1]);
  533. unsigned nx = STARPU_VECTOR_GET_NX(descr[0]);
  534. /* Compute v1 = p1 * v1 + p2 * v2.
  535. */
  536. AXPY(nx, p1, v2, 1, v1, 1);
  537. }
  538. static struct starpu_perfmodel axpy_kernel_model =
  539. {
  540. .type = STARPU_HISTORY_BASED,
  541. .symbol = "axpy_kernel"
  542. };
  543. static struct starpu_codelet axpy_kernel_cl =
  544. {
  545. .can_execute = can_execute,
  546. .cpu_funcs = {axpy_kernel_cpu},
  547. .cpu_funcs_name = {"axpy_kernel_cpu"},
  548. #ifdef STARPU_USE_CUDA
  549. .cuda_funcs = {axpy_kernel_cuda},
  550. .cuda_flags = {STARPU_CUDA_ASYNC},
  551. #endif
  552. .nbuffers = 2,
  553. .model = &axpy_kernel_model
  554. };
  555. int axpy_kernel(starpu_data_handle_t v1,
  556. starpu_data_handle_t v2, TYPE p1,
  557. unsigned nblocks)
  558. {
  559. unsigned b;
  560. for (b = 0; b < nblocks; b++)
  561. {
  562. int ret;
  563. ret = starpu_task_insert(&axpy_kernel_cl,
  564. STARPU_RW, starpu_data_get_sub_data(v1, 1, b),
  565. STARPU_R, starpu_data_get_sub_data(v2, 1, b),
  566. STARPU_VALUE, &p1, sizeof(p1),
  567. STARPU_TAG_ONLY, (starpu_tag_t) b,
  568. 0);
  569. if (ret == -ENODEV) return ret;
  570. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_insert");
  571. }
  572. return 0;
  573. }
  574. int copy_handle(starpu_data_handle_t dst, starpu_data_handle_t src, unsigned nblocks)
  575. {
  576. unsigned b;
  577. for (b = 0; b < nblocks; b++)
  578. starpu_data_cpy(starpu_data_get_sub_data(dst, 1, b), starpu_data_get_sub_data(src, 1, b), 1, NULL, NULL);
  579. return 0;
  580. }