sched.r 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205
  1. # StarPU --- Runtime system for heterogeneous multicore architectures.
  2. #
  3. # Copyright (C) 2008-2010,2014 Université de Bordeaux
  4. # Copyright (C) 2010,2011,2015,2017 CNRS
  5. #
  6. # StarPU is free software; you can redistribute it and/or modify
  7. # it under the terms of the GNU Lesser General Public License as published by
  8. # the Free Software Foundation; either version 2.1 of the License, or (at
  9. # your option) any later version.
  10. #
  11. # StarPU is distributed in the hope that it will be useful, but
  12. # WITHOUT ANY WARRANTY; without even the implied warranty of
  13. # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. #
  15. # See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. #
  17. schedlist <- c("greedy", "dm", "random");
  18. sizelist <- seq(2048, 16384, 1024);
  19. #sizelist <- seq(2048, 16384, 2048);
  20. print(schedlist);
  21. print(sizelist);
  22. gflops <- function (x, size)
  23. {
  24. (2*size*size*size)/(1000000*x);
  25. }
  26. parse <- function (size, sched)
  27. {
  28. filename = paste("timings-sched/sched", sched, size, sep=".");
  29. if (file.exists(filename))
  30. {
  31. ret <- scan(paste("timings-sched/sched", sched, size, sep="."));
  32. return(ret);
  33. };
  34. return(NULL);
  35. }
  36. handle_size <- function (size, sched)
  37. {
  38. gflops <- gflops(parse(size, sched), size);
  39. return(gflops);
  40. }
  41. handle_sched <- function(sched)
  42. {
  43. gflopstab <- NULL;
  44. sizetab <- NULL;
  45. for (size in sizelist)
  46. {
  47. list <- handle_size(size, sched);
  48. gflopstab <- c(gflopstab, list);
  49. sizetab <- c(sizetab, array(size, c(length(list))));
  50. }
  51. return(
  52. data.frame(gflops=gflopstab, size=sizetab, sched=array(sched, c(length(gflopstab)) ))
  53. );
  54. }
  55. handle_sched_mean <- function(sched)
  56. {
  57. meantab <- NULL;
  58. sizetab <- NULL;
  59. for (size in sizelist)
  60. {
  61. list <- mean(handle_size(size, sched));
  62. meantab <- c(meantab, list);
  63. sizetab <- c(sizetab, array(size, c(length(list))));
  64. }
  65. return(
  66. data.frame(gflops=meantab, size=sizetab, sched=array(sched, c(length(meantab)) ))
  67. # meantab
  68. );
  69. }
  70. handle_sched_max <- function(sched)
  71. {
  72. gflopstab <- NULL;
  73. sizetab <- NULL;
  74. for (size in sizelist)
  75. {
  76. prout <- handle_size(size, sched);
  77. list <- max(prout);
  78. print(list);
  79. gflopstab <- c(gflopstab, list);
  80. sizetab <- c(sizetab, size);
  81. }
  82. return(
  83. data.frame(gflops=gflopstab, size=sizetab, sched=array(sched, c(length(gflopstab)) ))
  84. );
  85. }
  86. handle_sched_min <- function(sched)
  87. {
  88. gflopstab <- NULL;
  89. sizetab <- NULL;
  90. for (size in sizelist)
  91. {
  92. list <- min((handle_size(size, sched)));
  93. print("MIN"); print( list);
  94. gflopstab <- c(gflopstab, list);
  95. sizetab <- c(sizetab, size);
  96. }
  97. return(
  98. data.frame(gflops=gflopstab, size=sizetab, sched=array(sched, c(length(gflopstab)) ))
  99. );
  100. }
  101. trace_sched <- function(sched, color, style, prout)
  102. {
  103. #lines(handle_sched_mean(sched)$size, handle_sched_mean(sched)$gflops, col=color, legend.text=TRUE);
  104. if (length(handle_sched_mean(sched)))
  105. {
  106. if (prout)
  107. {
  108. #for (size in sizelist)
  109. #{
  110. # #lines(array(size, c(length( handle_size(size, sched) )) ), handle_size(size, sched));
  111. #}
  112. convexx <- NULL;
  113. convexy <- NULL;
  114. for (point in (handle_sched_min(sched)$size))
  115. {
  116. convexx <- c(convexx, point);
  117. }
  118. for (point in (handle_sched_min(sched)$gflops))
  119. {
  120. convexy <- c(convexy, point);
  121. }
  122. for (point in (handle_sched_max(sched)$size))
  123. {
  124. convexx <- c(point, convexx);
  125. }
  126. for (point in (handle_sched_max(sched)$gflops))
  127. {
  128. convexy <- c(point, convexy);
  129. }
  130. #lines(handle_sched_min(sched)$size, handle_sched_min(sched)$gflops);
  131. #lines(handle_sched_max(sched)$size, handle_sched_max(sched)$gflops);
  132. polygon(convexx, convexy, col="light gray", border=-1);
  133. lines(handle_sched_mean(sched)$size, handle_sched_mean(sched)$gflops, col=color, type = "o", pch=style, lty=2);
  134. }
  135. else
  136. {
  137. lines(handle_sched_mean(sched)$size, handle_sched_mean(sched)$gflops, col=color, type = "o", pch=style);
  138. }
  139. };
  140. }
  141. display_sched <- function()
  142. {
  143. xlist <- range(sizelist);
  144. ylist <- range(c(0,110));
  145. plot.new();
  146. plot.window(xlist, ylist);
  147. trace_sched("random", "black",1, 1);
  148. trace_sched("dm", "black", 0, 0);
  149. trace_sched("greedy", "black", 2, 0);
  150. axis(1, at=sizelist)
  151. axis(2, at=seq(0, 120, 10), tck=1)
  152. # axis(4, at=seq(0, 120, 10))
  153. box(bty="u")
  154. labels <- c("model", "greedy", "weighted random (mean)")
  155. legend("bottomright", inset=.05, title="Scheduling policy", labels, lwd=1, pch=c(0, 2, 1),lty=c(1, 1, 2, 1), col="black", bty="y", bg="white")
  156. mtext("matrix size", side=1, line=2, cex=1.6)
  157. mtext("GFlops", side=2, line=2, las=0, cex=1.6)
  158. # title("Impact of the scheduling strategy on blocked Matrix Multiplication");
  159. }
  160. display_sched()