123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286 |
- /* dsygv.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static doublereal c_b16 = 1.;
- /* Subroutine */ int _starpu_dsygv_(integer *itype, char *jobz, char *uplo, integer *
- n, doublereal *a, integer *lda, doublereal *b, integer *ldb,
- doublereal *w, doublereal *work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
- /* Local variables */
- integer nb, neig;
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dtrmm_(char *, char *, char *, char *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *);
- char trans[1];
- extern /* Subroutine */ int _starpu_dtrsm_(char *, char *, char *, char *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *);
- logical upper;
- extern /* Subroutine */ int _starpu_dsyev_(char *, char *, integer *, doublereal *
- , integer *, doublereal *, doublereal *, integer *, integer *);
- logical wantz;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- extern /* Subroutine */ int _starpu_dpotrf_(char *, integer *, doublereal *,
- integer *, integer *);
- integer lwkmin;
- extern /* Subroutine */ int _starpu_dsygst_(integer *, char *, integer *,
- doublereal *, integer *, doublereal *, integer *, integer *);
- integer lwkopt;
- logical lquery;
- /* -- LAPACK driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSYGV computes all the eigenvalues, and optionally, the eigenvectors */
- /* of a real generalized symmetric-definite eigenproblem, of the form */
- /* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. */
- /* Here A and B are assumed to be symmetric and B is also */
- /* positive definite. */
- /* Arguments */
- /* ========= */
- /* ITYPE (input) INTEGER */
- /* Specifies the problem type to be solved: */
- /* = 1: A*x = (lambda)*B*x */
- /* = 2: A*B*x = (lambda)*x */
- /* = 3: B*A*x = (lambda)*x */
- /* JOBZ (input) CHARACTER*1 */
- /* = 'N': Compute eigenvalues only; */
- /* = 'V': Compute eigenvalues and eigenvectors. */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': Upper triangles of A and B are stored; */
- /* = 'L': Lower triangles of A and B are stored. */
- /* N (input) INTEGER */
- /* The order of the matrices A and B. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
- /* On entry, the symmetric matrix A. If UPLO = 'U', the */
- /* leading N-by-N upper triangular part of A contains the */
- /* upper triangular part of the matrix A. If UPLO = 'L', */
- /* the leading N-by-N lower triangular part of A contains */
- /* the lower triangular part of the matrix A. */
- /* On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
- /* matrix Z of eigenvectors. The eigenvectors are normalized */
- /* as follows: */
- /* if ITYPE = 1 or 2, Z**T*B*Z = I; */
- /* if ITYPE = 3, Z**T*inv(B)*Z = I. */
- /* If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') */
- /* or the lower triangle (if UPLO='L') of A, including the */
- /* diagonal, is destroyed. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
- /* On entry, the symmetric positive definite matrix B. */
- /* If UPLO = 'U', the leading N-by-N upper triangular part of B */
- /* contains the upper triangular part of the matrix B. */
- /* If UPLO = 'L', the leading N-by-N lower triangular part of B */
- /* contains the lower triangular part of the matrix B. */
- /* On exit, if INFO <= N, the part of B containing the matrix is */
- /* overwritten by the triangular factor U or L from the Cholesky */
- /* factorization B = U**T*U or B = L*L**T. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* W (output) DOUBLE PRECISION array, dimension (N) */
- /* If INFO = 0, the eigenvalues in ascending order. */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The length of the array WORK. LWORK >= max(1,3*N-1). */
- /* For optimal efficiency, LWORK >= (NB+2)*N, */
- /* where NB is the blocksize for DSYTRD returned by ILAENV. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: DPOTRF or DSYEV returned an error code: */
- /* <= N: if INFO = i, DSYEV failed to converge; */
- /* i off-diagonal elements of an intermediate */
- /* tridiagonal form did not converge to zero; */
- /* > N: if INFO = N + i, for 1 <= i <= N, then the leading */
- /* minor of order i of B is not positive definite. */
- /* The factorization of B could not be completed and */
- /* no eigenvalues or eigenvectors were computed. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- --w;
- --work;
- /* Function Body */
- wantz = _starpu_lsame_(jobz, "V");
- upper = _starpu_lsame_(uplo, "U");
- lquery = *lwork == -1;
- *info = 0;
- if (*itype < 1 || *itype > 3) {
- *info = -1;
- } else if (! (wantz || _starpu_lsame_(jobz, "N"))) {
- *info = -2;
- } else if (! (upper || _starpu_lsame_(uplo, "L"))) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*lda < max(1,*n)) {
- *info = -6;
- } else if (*ldb < max(1,*n)) {
- *info = -8;
- }
- if (*info == 0) {
- /* Computing MAX */
- i__1 = 1, i__2 = *n * 3 - 1;
- lwkmin = max(i__1,i__2);
- nb = _starpu_ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
- /* Computing MAX */
- i__1 = lwkmin, i__2 = (nb + 2) * *n;
- lwkopt = max(i__1,i__2);
- work[1] = (doublereal) lwkopt;
- if (*lwork < lwkmin && ! lquery) {
- *info = -11;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DSYGV ", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* Form a Cholesky factorization of B. */
- _starpu_dpotrf_(uplo, n, &b[b_offset], ldb, info);
- if (*info != 0) {
- *info = *n + *info;
- return 0;
- }
- /* Transform problem to standard eigenvalue problem and solve. */
- _starpu_dsygst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
- _starpu_dsyev_(jobz, uplo, n, &a[a_offset], lda, &w[1], &work[1], lwork, info);
- if (wantz) {
- /* Backtransform eigenvectors to the original problem. */
- neig = *n;
- if (*info > 0) {
- neig = *info - 1;
- }
- if (*itype == 1 || *itype == 2) {
- /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
- /* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
- if (upper) {
- *(unsigned char *)trans = 'N';
- } else {
- *(unsigned char *)trans = 'T';
- }
- _starpu_dtrsm_("Left", uplo, trans, "Non-unit", n, &neig, &c_b16, &b[
- b_offset], ldb, &a[a_offset], lda);
- } else if (*itype == 3) {
- /* For B*A*x=(lambda)*x; */
- /* backtransform eigenvectors: x = L*y or U'*y */
- if (upper) {
- *(unsigned char *)trans = 'T';
- } else {
- *(unsigned char *)trans = 'N';
- }
- _starpu_dtrmm_("Left", uplo, trans, "Non-unit", n, &neig, &c_b16, &b[
- b_offset], ldb, &a[a_offset], lda);
- }
- }
- work[1] = (doublereal) lwkopt;
- return 0;
- /* End of DSYGV */
- } /* _starpu_dsygv_ */
|