starpu.texi 156 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance optimization:: How to optimize performance with StarPU
  31. * Performance feedback:: Performance debugging tools
  32. * StarPU MPI support:: How to combine StarPU with MPI
  33. * Configuring StarPU:: How to configure StarPU
  34. * StarPU API:: The API to use StarPU
  35. * Advanced Topics:: Advanced use of StarPU
  36. * Full source code for the 'Scaling a Vector' example::
  37. @end menu
  38. @c ---------------------------------------------------------------------
  39. @c Introduction to StarPU
  40. @c ---------------------------------------------------------------------
  41. @node Introduction
  42. @chapter Introduction to StarPU
  43. @menu
  44. * Motivation:: Why StarPU ?
  45. * StarPU in a Nutshell:: The Fundamentals of StarPU
  46. @end menu
  47. @node Motivation
  48. @section Motivation
  49. @c complex machines with heterogeneous cores/devices
  50. The use of specialized hardware such as accelerators or coprocessors offers an
  51. interesting approach to overcome the physical limits encountered by processor
  52. architects. As a result, many machines are now equipped with one or several
  53. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  54. efforts have been devoted to offload computation onto such accelerators, very
  55. little attention as been paid to portability concerns on the one hand, and to the
  56. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  57. StarPU is a runtime system that offers support for heterogeneous multicore
  58. architectures, it not only offers a unified view of the computational resources
  59. (i.e. CPUs and accelerators at the same time), but it also takes care of
  60. efficiently mapping and executing tasks onto an heterogeneous machine while
  61. transparently handling low-level issues such as data transfers in a portable
  62. fashion.
  63. @c this leads to a complicated distributed memory design
  64. @c which is not (easily) manageable by hand
  65. @c added value/benefits of StarPU
  66. @c - portability
  67. @c - scheduling, perf. portability
  68. @node StarPU in a Nutshell
  69. @section StarPU in a Nutshell
  70. @menu
  71. * Codelet and Tasks::
  72. * StarPU Data Management Library::
  73. * Research Papers::
  74. @end menu
  75. From a programming point of view, StarPU is not a new language but a library
  76. that executes tasks explicitly submitted by the application. The data that a
  77. task manipulates are automatically transferred onto the accelerator so that the
  78. programmer does not have to take care of complex data movements. StarPU also
  79. takes particular care of scheduling those tasks efficiently and allows
  80. scheduling experts to implement custom scheduling policies in a portable
  81. fashion.
  82. @c explain the notion of codelet and task (i.e. g(A, B)
  83. @node Codelet and Tasks
  84. @subsection Codelet and Tasks
  85. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  86. computational kernel that can possibly be implemented on multiple architectures
  87. such as a CPU, a CUDA device or a Cell's SPU.
  88. @c TODO insert illustration f : f_spu, f_cpu, ...
  89. Another important data structure is the @b{task}. Executing a StarPU task
  90. consists in applying a codelet on a data set, on one of the architectures on
  91. which the codelet is implemented. In addition to the codelet that a task
  92. useuses, it also describes which data are accessed, and how they are
  93. accessed during the computation (read and/or write).
  94. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  95. operation. The task structure can also specify a @b{callback} function that is
  96. called once StarPU has properly executed the task. It also contains optional
  97. fields that the application may use to give hints to the scheduler (such as
  98. priority levels).
  99. A task may be identified by a unique 64-bit number chosen by the application
  100. which we refer as a @b{tag}.
  101. Task dependencies can be enforced either by the means of callback functions, by
  102. expressing dependencies between explicit tasks or by expressing dependencies
  103. between tags (which can thus correspond to tasks that have not been submitted
  104. yet).
  105. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  106. @c DSM
  107. @node StarPU Data Management Library
  108. @subsection StarPU Data Management Library
  109. Because StarPU schedules tasks at runtime, data transfers have to be
  110. done automatically and ``just-in-time'' between processing units,
  111. relieving the application programmer from explicit data transfers.
  112. Moreover, to avoid unnecessary transfers, StarPU keeps data
  113. where it was last needed, even if was modified there, and it
  114. allows multiple copies of the same data to reside at the same time on
  115. several processing units as long as it is not modified.
  116. @node Research Papers
  117. @subsection Research Papers
  118. Research papers about StarPU can be found at
  119. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  120. Notably a good overview in the research report
  121. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  122. @c ---------------------------------------------------------------------
  123. @c Installing StarPU
  124. @c ---------------------------------------------------------------------
  125. @node Installing StarPU
  126. @chapter Installing StarPU
  127. @menu
  128. * Downloading StarPU::
  129. * Configuration of StarPU::
  130. * Building and Installing StarPU::
  131. @end menu
  132. StarPU can be built and installed by the standard means of the GNU
  133. autotools. The following chapter is intended to briefly remind how these tools
  134. can be used to install StarPU.
  135. @node Downloading StarPU
  136. @section Downloading StarPU
  137. @menu
  138. * Getting Sources::
  139. * Optional dependencies::
  140. @end menu
  141. @node Getting Sources
  142. @subsection Getting Sources
  143. The simplest way to get StarPU sources is to download the latest official
  144. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  145. or the latest nightly snapshot from
  146. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  147. how to get the very latest version from the subversion repository itself, it
  148. should be needed only if you need the very latest changes (i.e. less than a
  149. day!)
  150. The source code is managed by a Subversion server hosted by the
  151. InriaGforge. To get the source code, you need:
  152. @itemize
  153. @item
  154. To install the client side of the software Subversion if it is
  155. not already available on your system. The software can be obtained from
  156. @indicateurl{http://subversion.tigris.org} . If you are running
  157. on Windows, you will probably prefer to use TortoiseSVN from
  158. @indicateurl{http://tortoisesvn.tigris.org/} .
  159. @item
  160. You can check out the project's SVN repository through anonymous
  161. access. This will provide you with a read access to the
  162. repository.
  163. If you need to have write access on the StarPU project, you can also choose to
  164. become a member of the project @code{starpu}. For this, you first need to get
  165. an account to the gForge server. You can then send a request to join the project
  166. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  167. @item
  168. More information on how to get a gForge account, to become a member of
  169. a project, or on any other related task can be obtained from the
  170. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  171. thing is to upload your public SSH key on the gForge server (see the
  172. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  173. instructions).
  174. @end itemize
  175. You can now check out the latest version from the Subversion server:
  176. @itemize
  177. @item
  178. using the anonymous access via svn:
  179. @example
  180. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  181. @end example
  182. @item
  183. using the anonymous access via https:
  184. @example
  185. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  186. @end example
  187. The password is @code{anonsvn}.
  188. @item
  189. using your gForge account
  190. @example
  191. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  192. @end example
  193. @end itemize
  194. These steps require to run autoconf and automake to generate the
  195. @code{./configure} script. This can be done by calling
  196. @code{./autogen.sh}. The required version for autoconf is 2.60 or
  197. higher. You will also need makeinfo.
  198. @example
  199. % ./autogen.sh
  200. @end example
  201. If the autotools are not available on your machine or not recent
  202. enough, you can choose to download the latest nightly tarball, which
  203. is provided with a @code{configure} script.
  204. @example
  205. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  206. @end example
  207. @node Optional dependencies
  208. @subsection Optional dependencies
  209. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  210. but strongly recommended. It allows to increase performance, and to
  211. perform some topology aware scheduling.
  212. @code{hwloc} is available in major distributions and for most OSes and can be
  213. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  214. @node Configuration of StarPU
  215. @section Configuration of StarPU
  216. @menu
  217. * Generating Makefiles and configuration scripts::
  218. * Running the configuration::
  219. @end menu
  220. @node Generating Makefiles and configuration scripts
  221. @subsection Generating Makefiles and configuration scripts
  222. This step is not necessary when using the tarball releases of StarPU. If you
  223. are using the source code from the svn repository, you first need to generate
  224. the configure scripts and the Makefiles.
  225. @example
  226. % ./autogen.sh
  227. @end example
  228. @node Running the configuration
  229. @subsection Running the configuration
  230. @example
  231. % ./configure
  232. @end example
  233. Details about options that are useful to give to @code{./configure} are given in
  234. @ref{Compilation configuration}.
  235. @node Building and Installing StarPU
  236. @section Building and Installing StarPU
  237. @menu
  238. * Building::
  239. * Sanity Checks::
  240. * Installing::
  241. @end menu
  242. @node Building
  243. @subsection Building
  244. @example
  245. % make
  246. @end example
  247. @node Sanity Checks
  248. @subsection Sanity Checks
  249. In order to make sure that StarPU is working properly on the system, it is also
  250. possible to run a test suite.
  251. @example
  252. % make check
  253. @end example
  254. @node Installing
  255. @subsection Installing
  256. In order to install StarPU at the location that was specified during
  257. configuration:
  258. @example
  259. % make install
  260. @end example
  261. @c ---------------------------------------------------------------------
  262. @c Using StarPU
  263. @c ---------------------------------------------------------------------
  264. @node Using StarPU
  265. @chapter Using StarPU
  266. @menu
  267. * Setting flags for compiling and linking applications::
  268. * Running a basic StarPU application::
  269. * Kernel threads started by StarPU::
  270. * Using accelerators::
  271. @end menu
  272. @node Setting flags for compiling and linking applications
  273. @section Setting flags for compiling and linking applications
  274. Compiling and linking an application against StarPU may require to use
  275. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  276. To this end, it is possible to use the @code{pkg-config} tool.
  277. If StarPU was not installed at some standard location, the path of StarPU's
  278. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  279. that @code{pkg-config} can find it. For example if StarPU was installed in
  280. @code{$prefix_dir}:
  281. @example
  282. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  283. @end example
  284. The flags required to compile or link against StarPU are then
  285. accessible with the following commands:
  286. @example
  287. % pkg-config --cflags libstarpu # options for the compiler
  288. % pkg-config --libs libstarpu # options for the linker
  289. @end example
  290. @node Running a basic StarPU application
  291. @section Running a basic StarPU application
  292. Basic examples using StarPU have been built in the directory
  293. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  294. example @code{vector_scal}.
  295. @example
  296. % $prefix_dir/lib/starpu/examples/vector_scal
  297. BEFORE : First element was 1.000000
  298. AFTER First element is 3.140000
  299. %
  300. @end example
  301. When StarPU is used for the first time, the directory
  302. @code{$HOME/.starpu/} is created, performance models will be stored in
  303. that directory.
  304. Please note that buses are benchmarked when StarPU is launched for the
  305. first time. This may take a few minutes, or less if @code{hwloc} is
  306. installed. This step is done only once per user and per machine.
  307. @node Kernel threads started by StarPU
  308. @section Kernel threads started by StarPU
  309. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  310. them per GPU. The application is not supposed to do computations in its own
  311. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  312. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  313. worker).
  314. @node Using accelerators
  315. @section Using accelerators
  316. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  317. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  318. This design choice was necessary as OpenCL and CUDA can not run at the
  319. same time on the same NVIDIA GPU, as there is currently no interoperability
  320. between them.
  321. Details on how to specify devices running OpenCL and the ones running
  322. CUDA are given in @ref{Enabling OpenCL}.
  323. @c ---------------------------------------------------------------------
  324. @c Basic Examples
  325. @c ---------------------------------------------------------------------
  326. @node Basic Examples
  327. @chapter Basic Examples
  328. @menu
  329. * Compiling and linking options::
  330. * Hello World:: Submitting Tasks
  331. * Scaling a Vector:: Manipulating Data
  332. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  333. * Task and Worker Profiling::
  334. * Partitioning Data:: Partitioning Data
  335. * Performance model example::
  336. * Theoretical lower bound on execution time::
  337. * More examples:: More examples shipped with StarPU
  338. @end menu
  339. @node Compiling and linking options
  340. @section Compiling and linking options
  341. Let's suppose StarPU has been installed in the directory
  342. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  343. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  344. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  345. libraries at runtime.
  346. @example
  347. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  348. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  349. @end example
  350. The Makefile could for instance contain the following lines to define which
  351. options must be given to the compiler and to the linker:
  352. @cartouche
  353. @example
  354. CFLAGS += $$(pkg-config --cflags libstarpu)
  355. LDFLAGS += $$(pkg-config --libs libstarpu)
  356. @end example
  357. @end cartouche
  358. @node Hello World
  359. @section Hello World
  360. @menu
  361. * Required Headers::
  362. * Defining a Codelet::
  363. * Submitting a Task::
  364. * Execution of Hello World::
  365. @end menu
  366. In this section, we show how to implement a simple program that submits a task to StarPU.
  367. @node Required Headers
  368. @subsection Required Headers
  369. The @code{starpu.h} header should be included in any code using StarPU.
  370. @cartouche
  371. @smallexample
  372. #include <starpu.h>
  373. @end smallexample
  374. @end cartouche
  375. @node Defining a Codelet
  376. @subsection Defining a Codelet
  377. @cartouche
  378. @smallexample
  379. struct params @{
  380. int i;
  381. float f;
  382. @};
  383. void cpu_func(void *buffers[], void *cl_arg)
  384. @{
  385. struct params *params = cl_arg;
  386. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  387. @}
  388. starpu_codelet cl =
  389. @{
  390. .where = STARPU_CPU,
  391. .cpu_func = cpu_func,
  392. .nbuffers = 0
  393. @};
  394. @end smallexample
  395. @end cartouche
  396. A codelet is a structure that represents a computational kernel. Such a codelet
  397. may contain an implementation of the same kernel on different architectures
  398. (e.g. CUDA, Cell's SPU, x86, ...).
  399. The @code{nbuffers} field specifies the number of data buffers that are
  400. manipulated by the codelet: here the codelet does not access or modify any data
  401. that is controlled by our data management library. Note that the argument
  402. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  403. structure) does not count as a buffer since it is not managed by our data
  404. management library, but just contain trivial parameters.
  405. @c TODO need a crossref to the proper description of "where" see bla for more ...
  406. We create a codelet which may only be executed on the CPUs. The @code{where}
  407. field is a bitmask that defines where the codelet may be executed. Here, the
  408. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  409. (@pxref{Codelets and Tasks} for more details on this field).
  410. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  411. which @emph{must} have the following prototype:
  412. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  413. In this example, we can ignore the first argument of this function which gives a
  414. description of the input and output buffers (e.g. the size and the location of
  415. the matrices) since there is none.
  416. The second argument is a pointer to a buffer passed as an
  417. argument to the codelet by the means of the @code{cl_arg} field of the
  418. @code{starpu_task} structure.
  419. @c TODO rewrite so that it is a little clearer ?
  420. Be aware that this may be a pointer to a
  421. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  422. if the codelet modifies this buffer, there is no guarantee that the initial
  423. buffer will be modified as well: this for instance implies that the buffer
  424. cannot be used as a synchronization medium. If synchronization is needed, data
  425. has to be registered to StarPU, see @ref{Scaling a Vector}.
  426. @node Submitting a Task
  427. @subsection Submitting a Task
  428. @cartouche
  429. @smallexample
  430. void callback_func(void *callback_arg)
  431. @{
  432. printf("Callback function (arg %x)\n", callback_arg);
  433. @}
  434. int main(int argc, char **argv)
  435. @{
  436. /* @b{initialize StarPU} */
  437. starpu_init(NULL);
  438. struct starpu_task *task = starpu_task_create();
  439. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  440. struct params params = @{ 1, 2.0f @};
  441. task->cl_arg = &params;
  442. task->cl_arg_size = sizeof(params);
  443. task->callback_func = callback_func;
  444. task->callback_arg = 0x42;
  445. /* @b{starpu_task_submit will be a blocking call} */
  446. task->synchronous = 1;
  447. /* @b{submit the task to StarPU} */
  448. starpu_task_submit(task);
  449. /* @b{terminate StarPU} */
  450. starpu_shutdown();
  451. return 0;
  452. @}
  453. @end smallexample
  454. @end cartouche
  455. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  456. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  457. be submitted after the termination of StarPU by a call to
  458. @code{starpu_shutdown}.
  459. In the example above, a task structure is allocated by a call to
  460. @code{starpu_task_create}. This function only allocates and fills the
  461. corresponding structure with the default settings (@pxref{starpu_task_create}),
  462. but it does not submit the task to StarPU.
  463. @c not really clear ;)
  464. The @code{cl} field is a pointer to the codelet which the task will
  465. execute: in other words, the codelet structure describes which computational
  466. kernel should be offloaded on the different architectures, and the task
  467. structure is a wrapper containing a codelet and the piece of data on which the
  468. codelet should operate.
  469. The optional @code{cl_arg} field is a pointer to a buffer (of size
  470. @code{cl_arg_size}) with some parameters for the kernel
  471. described by the codelet. For instance, if a codelet implements a computational
  472. kernel that multiplies its input vector by a constant, the constant could be
  473. specified by the means of this buffer, instead of registering it as a StarPU
  474. data.
  475. Once a task has been executed, an optional callback function is be called.
  476. While the computational kernel could be offloaded on various architectures, the
  477. callback function is always executed on a CPU. The @code{callback_arg}
  478. pointer is passed as an argument of the callback. The prototype of a callback
  479. function must be:
  480. @code{void (*callback_function)(void *);}
  481. If the @code{synchronous} field is non-zero, task submission will be
  482. synchronous: the @code{starpu_task_submit} function will not return until the
  483. task was executed. Note that the @code{starpu_shutdown} method does not
  484. guarantee that asynchronous tasks have been executed before it returns,
  485. @code{starpu_task_wait_for_all} can be used to that effect..
  486. @node Execution of Hello World
  487. @subsection Execution of Hello World
  488. @smallexample
  489. % make hello_world
  490. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  491. % ./hello_world
  492. Hello world (params = @{1, 2.000000@} )
  493. Callback function (arg 42)
  494. @end smallexample
  495. @node Scaling a Vector
  496. @section Manipulating Data: Scaling a Vector
  497. The previous example has shown how to submit tasks. In this section,
  498. we show how StarPU tasks can manipulate data. The full source code for
  499. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  500. @menu
  501. * Source code of Vector Scaling::
  502. * Execution of Vector Scaling::
  503. @end menu
  504. @node Source code of Vector Scaling
  505. @subsection Source code of Vector Scaling
  506. Programmers can describe the data layout of their application so that StarPU is
  507. responsible for enforcing data coherency and availability across the machine.
  508. Instead of handling complex (and non-portable) mechanisms to perform data
  509. movements, programmers only declare which piece of data is accessed and/or
  510. modified by a task, and StarPU makes sure that when a computational kernel
  511. starts somewhere (e.g. on a GPU), its data are available locally.
  512. Before submitting those tasks, the programmer first needs to declare the
  513. different pieces of data to StarPU using the @code{starpu_*_data_register}
  514. functions. To ease the development of applications for StarPU, it is possible
  515. to describe multiple types of data layout. A type of data layout is called an
  516. @b{interface}. There are different predefined interfaces available in StarPU:
  517. here we will consider the @b{vector interface}.
  518. The following lines show how to declare an array of @code{NX} elements of type
  519. @code{float} using the vector interface:
  520. @cartouche
  521. @smallexample
  522. float vector[NX];
  523. starpu_data_handle vector_handle;
  524. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  525. sizeof(vector[0]));
  526. @end smallexample
  527. @end cartouche
  528. The first argument, called the @b{data handle}, is an opaque pointer which
  529. designates the array in StarPU. This is also the structure which is used to
  530. describe which data is used by a task. The second argument is the node number
  531. where the data originally resides. Here it is 0 since the @code{vector} array is in
  532. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  533. the number of elements in the vector and the size of each element.
  534. The following shows how to construct a StarPU task that will manipulate the
  535. vector and a constant factor.
  536. @cartouche
  537. @smallexample
  538. float factor = 3.14;
  539. struct starpu_task *task = starpu_task_create();
  540. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  541. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  542. task->buffers[0].mode = STARPU_RW;
  543. task->cl_arg = &factor;
  544. task->cl_arg_size = sizeof(factor);
  545. task->synchronous = 1;
  546. starpu_task_submit(task);
  547. @end smallexample
  548. @end cartouche
  549. Since the factor is a mere constant float value parameter,
  550. it does not need a preliminary registration, and
  551. can just be passed through the @code{cl_arg} pointer like in the previous
  552. example. The vector parameter is described by its handle.
  553. There are two fields in each element of the @code{buffers} array.
  554. @code{handle} is the handle of the data, and @code{mode} specifies how the
  555. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  556. write-only and @code{STARPU_RW} for read and write access).
  557. The definition of the codelet can be written as follows:
  558. @cartouche
  559. @smallexample
  560. void scal_cpu_func(void *buffers[], void *cl_arg)
  561. @{
  562. unsigned i;
  563. float *factor = cl_arg;
  564. /* length of the vector */
  565. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  566. /* local copy of the vector pointer */
  567. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  568. for (i = 0; i < n; i++)
  569. val[i] *= *factor;
  570. @}
  571. starpu_codelet cl = @{
  572. .where = STARPU_CPU,
  573. .cpu_func = scal_cpu_func,
  574. .nbuffers = 1
  575. @};
  576. @end smallexample
  577. @end cartouche
  578. The first argument is an array that gives
  579. a description of all the buffers passed in the @code{task->buffers}@ array. The
  580. size of this array is given by the @code{nbuffers} field of the codelet
  581. structure. For the sake of genericity, this array contains pointers to the
  582. different interfaces describing each buffer. In the case of the @b{vector
  583. interface}, the location of the vector (resp. its length) is accessible in the
  584. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  585. read-write fashion, any modification will automatically affect future accesses
  586. to this vector made by other tasks.
  587. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  588. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  589. constant factor from this pointer.
  590. @node Execution of Vector Scaling
  591. @subsection Execution of Vector Scaling
  592. @smallexample
  593. % make vector_scal
  594. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  595. % ./vector_scal
  596. 0.000000 3.000000 6.000000 9.000000 12.000000
  597. @end smallexample
  598. @node Vector Scaling on an Hybrid CPU/GPU Machine
  599. @section Vector Scaling on an Hybrid CPU/GPU Machine
  600. Contrary to the previous examples, the task submitted in this example may not
  601. only be executed by the CPUs, but also by a CUDA device.
  602. @menu
  603. * Definition of the CUDA Kernel::
  604. * Definition of the OpenCL Kernel::
  605. * Definition of the Main Code::
  606. * Execution of Hybrid Vector Scaling::
  607. @end menu
  608. @node Definition of the CUDA Kernel
  609. @subsection Definition of the CUDA Kernel
  610. The CUDA implementation can be written as follows. It needs to be
  611. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  612. driver.
  613. @cartouche
  614. @smallexample
  615. #include <starpu.h>
  616. static __global__ void vector_mult_cuda(float *val, unsigned n,
  617. float factor)
  618. @{
  619. unsigned i;
  620. if (i < n)
  621. val[i] *= factor;
  622. @}
  623. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  624. @{
  625. float *factor = (float *)_args;
  626. /* length of the vector */
  627. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  628. /* local copy of the vector pointer */
  629. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  630. unsigned threads_per_block = 64;
  631. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  632. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  633. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  634. @}
  635. @end smallexample
  636. @end cartouche
  637. @node Definition of the OpenCL Kernel
  638. @subsection Definition of the OpenCL Kernel
  639. The OpenCL implementation can be written as follows. StarPU provides
  640. tools to compile a OpenCL kernel stored in a file.
  641. @cartouche
  642. @smallexample
  643. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  644. @{
  645. const int i = get_global_id(0);
  646. if (i < nx) @{
  647. val[i] *= factor;
  648. @}
  649. @}
  650. @end smallexample
  651. @end cartouche
  652. @cartouche
  653. @smallexample
  654. #include <starpu.h>
  655. @i{#include <starpu_opencl.h>}
  656. @i{extern struct starpu_opencl_program programs;}
  657. void scal_opencl_func(void *buffers[], void *_args)
  658. @{
  659. float *factor = _args;
  660. @i{ int id, devid, err;}
  661. @i{ cl_kernel kernel;}
  662. @i{ cl_command_queue queue;}
  663. @i{ cl_event event;}
  664. /* length of the vector */
  665. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  666. /* local copy of the vector pointer */
  667. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  668. @i{ id = starpu_worker_get_id();}
  669. @i{ devid = starpu_worker_get_devid(id);}
  670. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  671. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  672. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  673. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  674. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  675. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  676. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  677. @i{ @{}
  678. @i{ size_t global=1;}
  679. @i{ size_t local=1;}
  680. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  681. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  682. @i{ @}}
  683. @i{ clFinish(queue);}
  684. @i{ starpu_opencl_collect_stats(event);}
  685. @i{ clReleaseEvent(event);}
  686. @i{ starpu_opencl_release_kernel(kernel);}
  687. @}
  688. @end smallexample
  689. @end cartouche
  690. @node Definition of the Main Code
  691. @subsection Definition of the Main Code
  692. The CPU implementation is the same as in the previous section.
  693. Here is the source of the main application. You can notice the value of the
  694. field @code{where} for the codelet. We specify
  695. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  696. can be executed either on a CPU or on a CUDA or an OpenCL device.
  697. @cartouche
  698. @smallexample
  699. #include <starpu.h>
  700. #define NX 2048
  701. extern void scal_cuda_func(void *buffers[], void *_args);
  702. extern void scal_cpu_func(void *buffers[], void *_args);
  703. extern void scal_opencl_func(void *buffers[], void *_args);
  704. /* @b{Definition of the codelet} */
  705. static starpu_codelet cl = @{
  706. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  707. /* @b{on a CUDA device, or on an OpenCL device} */
  708. .cuda_func = scal_cuda_func;
  709. .cpu_func = scal_cpu_func;
  710. .opencl_func = scal_opencl_func;
  711. .nbuffers = 1;
  712. @}
  713. #ifdef STARPU_USE_OPENCL
  714. /* @b{The compiled version of the OpenCL program} */
  715. struct starpu_opencl_program programs;
  716. #endif
  717. int main(int argc, char **argv)
  718. @{
  719. float *vector;
  720. int i, ret;
  721. float factor=3.0;
  722. struct starpu_task *task;
  723. starpu_data_handle vector_handle;
  724. starpu_init(NULL); /* @b{Initialising StarPU} */
  725. #ifdef STARPU_USE_OPENCL
  726. starpu_opencl_load_opencl_from_file(
  727. "examples/basic_examples/vector_scal_opencl_codelet.cl", &programs);
  728. #endif
  729. vector = malloc(NX*sizeof(vector[0]));
  730. assert(vector);
  731. for(i=0 ; i<NX ; i++) vector[i] = i;
  732. @end smallexample
  733. @end cartouche
  734. @cartouche
  735. @smallexample
  736. /* @b{Registering data within StarPU} */
  737. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  738. NX, sizeof(vector[0]));
  739. /* @b{Definition of the task} */
  740. task = starpu_task_create();
  741. task->cl = &cl;
  742. task->buffers[0].handle = vector_handle;
  743. task->buffers[0].mode = STARPU_RW;
  744. task->cl_arg = &factor;
  745. task->cl_arg_size = sizeof(factor);
  746. @end smallexample
  747. @end cartouche
  748. @cartouche
  749. @smallexample
  750. /* @b{Submitting the task} */
  751. ret = starpu_task_submit(task);
  752. if (ret == -ENODEV) @{
  753. fprintf(stderr, "No worker may execute this task\n");
  754. return 1;
  755. @}
  756. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  757. /* @b{Waiting for its termination} */
  758. starpu_task_wait_for_all();
  759. /* @b{Update the vector in RAM} */
  760. starpu_data_acquire(vector_handle, STARPU_R);
  761. @end smallexample
  762. @end cartouche
  763. @cartouche
  764. @smallexample
  765. /* @b{Access the data} */
  766. for(i=0 ; i<NX; i++) @{
  767. fprintf(stderr, "%f ", vector[i]);
  768. @}
  769. fprintf(stderr, "\n");
  770. /* @b{Release the data and shutdown StarPU} */
  771. starpu_data_release(vector_handle);
  772. starpu_shutdown();
  773. return 0;
  774. @}
  775. @end smallexample
  776. @end cartouche
  777. @node Execution of Hybrid Vector Scaling
  778. @subsection Execution of Hybrid Vector Scaling
  779. The Makefile given at the beginning of the section must be extended to
  780. give the rules to compile the CUDA source code. Note that the source
  781. file of the OpenCL kernel does not need to be compiled now, it will
  782. be compiled at run-time when calling the function
  783. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  784. @cartouche
  785. @smallexample
  786. CFLAGS += $(shell pkg-config --cflags libstarpu)
  787. LDFLAGS += $(shell pkg-config --libs libstarpu)
  788. CC = gcc
  789. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  790. %.o: %.cu
  791. nvcc $(CFLAGS) $< -c $@
  792. clean:
  793. rm -f vector_scal *.o
  794. @end smallexample
  795. @end cartouche
  796. @smallexample
  797. % make
  798. @end smallexample
  799. and to execute it, with the default configuration:
  800. @smallexample
  801. % ./vector_scal
  802. 0.000000 3.000000 6.000000 9.000000 12.000000
  803. @end smallexample
  804. or for example, by disabling CPU devices:
  805. @smallexample
  806. % STARPU_NCPUS=0 ./vector_scal
  807. 0.000000 3.000000 6.000000 9.000000 12.000000
  808. @end smallexample
  809. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  810. see @ref{Using accelerators}):
  811. @smallexample
  812. % STARPU_NCUDA=0 ./vector_scal
  813. 0.000000 3.000000 6.000000 9.000000 12.000000
  814. @end smallexample
  815. @node Task and Worker Profiling
  816. @section Task and Worker Profiling
  817. A full example showing how to use the profiling API is available in
  818. the StarPU sources in the directory @code{examples/profiling/}.
  819. @cartouche
  820. @smallexample
  821. struct starpu_task *task = starpu_task_create();
  822. task->cl = &cl;
  823. task->synchronous = 1;
  824. /* We will destroy the task structure by hand so that we can
  825. * query the profiling info before the task is destroyed. */
  826. task->destroy = 0;
  827. /* Submit and wait for completion (since synchronous was set to 1) */
  828. starpu_task_submit(task);
  829. /* The task is finished, get profiling information */
  830. struct starpu_task_profiling_info *info = task->profiling_info;
  831. /* How much time did it take before the task started ? */
  832. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  833. /* How long was the task execution ? */
  834. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  835. /* We don't need the task structure anymore */
  836. starpu_task_destroy(task);
  837. @end smallexample
  838. @end cartouche
  839. @cartouche
  840. @smallexample
  841. /* Display the occupancy of all workers during the test */
  842. int worker;
  843. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  844. @{
  845. struct starpu_worker_profiling_info worker_info;
  846. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  847. STARPU_ASSERT(!ret);
  848. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  849. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  850. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  851. float executing_ratio = 100.0*executing_time/total_time;
  852. float sleeping_ratio = 100.0*sleeping_time/total_time;
  853. char workername[128];
  854. starpu_worker_get_name(worker, workername, 128);
  855. fprintf(stderr, "Worker %s:\n", workername);
  856. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  857. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  858. executing_ratio);
  859. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  860. sleeping_ratio);
  861. @}
  862. @end smallexample
  863. @end cartouche
  864. @node Partitioning Data
  865. @section Partitioning Data
  866. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  867. @cartouche
  868. @smallexample
  869. int vector[NX];
  870. starpu_data_handle handle;
  871. /* Declare data to StarPU */
  872. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  873. /* Partition the vector in PARTS sub-vectors */
  874. starpu_filter f =
  875. @{
  876. .filter_func = starpu_block_filter_func_vector,
  877. .nchildren = PARTS,
  878. .get_nchildren = NULL,
  879. .get_child_ops = NULL
  880. @};
  881. starpu_data_partition(handle, &f);
  882. @end smallexample
  883. @end cartouche
  884. @cartouche
  885. @smallexample
  886. /* Submit a task on each sub-vector */
  887. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  888. /* Get subdata number i (there is only 1 dimension) */
  889. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  890. struct starpu_task *task = starpu_task_create();
  891. task->buffers[0].handle = sub_handle;
  892. task->buffers[0].mode = STARPU_RW;
  893. task->cl = &cl;
  894. task->synchronous = 1;
  895. task->cl_arg = &factor;
  896. task->cl_arg_size = sizeof(factor);
  897. starpu_task_submit(task);
  898. @}
  899. @end smallexample
  900. @end cartouche
  901. Partitioning can be applied several times, see
  902. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  903. @node Performance model example
  904. @section Performance model example
  905. To achieve good scheduling, StarPU scheduling policies need to be able to
  906. estimate in advance the duration of a task. This is done by giving to codelets a
  907. performance model. There are several kinds of performance models.
  908. @itemize
  909. @item
  910. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  911. see for instance
  912. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  913. @item
  914. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  915. given set of data input/output sizes, the performance will always be about the
  916. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  917. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  918. few different sets of data input/output sizes. StarPU will then keep record of
  919. the average time of previous executions on the various processing units, and use
  920. it as an estimation. It will also save it in @code{~/.starpu/sampling/codelets}
  921. for further executions. The following is a small code example.
  922. @cartouche
  923. @smallexample
  924. static struct starpu_perfmodel_t mult_perf_model = @{
  925. .type = STARPU_HISTORY_BASED,
  926. .symbol = "mult_perf_model"
  927. @};
  928. starpu_codelet cl = @{
  929. .where = STARPU_CPU,
  930. .cpu_func = cpu_mult,
  931. .nbuffers = 3,
  932. /* for the scheduling policy to be able to use performance models */
  933. .model = &mult_perf_model
  934. @};
  935. @end smallexample
  936. @end cartouche
  937. @item
  938. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  939. type). This still assumes performance regularity, but can work with various data
  940. input sizes, by applying a*n^b+c regression over observed execution times.
  941. @end itemize
  942. The same can be done for task power consumption estimation, by setting the
  943. @code{power_model} field the same way as the @code{model} field. Note: for
  944. now, the application has to give to the power consumption performance model
  945. a different name.
  946. @node Theoretical lower bound on execution time
  947. @section Theoretical lower bound on execution time
  948. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  949. bound for the execution time of a whole set of tasks. See for
  950. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  951. call @code{starpu_bound_start}, and after complete execution, call
  952. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  953. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  954. problem corresponding to the schedule of your tasks. Run it through
  955. @code{lp_solve} or any other linear programming solver, and that will give you a
  956. lower bound for the total execution time of your tasks. If StarPU was compiled
  957. with the glpk library installed, @code{starpu_bound_compute} can be used to
  958. solve it immediately and get the optimized minimum. Its @code{integer}
  959. parameter allows to decide whether integer resolution should be computed
  960. and returned.
  961. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  962. dependencies into account. It must be understood that the linear programming
  963. problem size is quadratic with the number of tasks and thus the time to solve it
  964. will be very long, it could be minutes for just a few dozen tasks. You should
  965. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  966. problem to MPS format and then use a better solver, @code{glpsol} might be
  967. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  968. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  969. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  970. of @code{lp_solve}. For instance, we often just use
  971. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  972. the @code{-gr} option can also be quite useful.
  973. Setting @code{deps} to 0 will only take into account the actual computations
  974. on processing units. It however still properly takes into account the varying
  975. performances of kernels and processing units, which is quite more accurate than
  976. just comparing StarPU performances with the fastest of the kernels being used.
  977. The @code{prio} parameter tells StarPU whether to simulate taking into account
  978. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  979. tasks before less prioritized tasks, to check to which extend this results
  980. to a less optimal solution. This increases even more computation time.
  981. Note that for simplicity, all this however doesn't take into account data
  982. transfers, which are assumed to be completely overlapped.
  983. @node More examples
  984. @section More examples
  985. More examples are available in the StarPU sources in the @code{examples/}
  986. directory. Simple examples include:
  987. @table @asis
  988. @item @code{incrementer/}:
  989. Trivial incrementation test.
  990. @item @code{basic_examples/}:
  991. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  992. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  993. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  994. interface, and an example using the variable data interface.
  995. @item @code{matvecmult/}:
  996. OpenCL example from NVidia, adapted to StarPU.
  997. @item @code{axpy/}:
  998. AXPY CUBLAS operation adapted to StarPU.
  999. @item @code{fortran/}:
  1000. Example of Fortran bindings.
  1001. @end table
  1002. More advanced examples include:
  1003. @table @asis
  1004. @item @code{filters/}:
  1005. Examples using filters, as shown in @ref{Partitioning Data}.
  1006. @item @code{lu/}:
  1007. LU matrix factorization, see for instance @code{xlu_implicit.c}
  1008. @item @code{choleskyk/}:
  1009. Cholesky matrix factorization, see for instance @code{cholesky_implicit.c}.
  1010. @end table
  1011. @c ---------------------------------------------------------------------
  1012. @c Performance options
  1013. @c ---------------------------------------------------------------------
  1014. @node Performance optimization
  1015. @chapter How to optimize performance with StarPU
  1016. TODO: improve!
  1017. @menu
  1018. * Data management::
  1019. * Task submission::
  1020. * Task scheduling policy::
  1021. * Task distribution vs Data transfer::
  1022. * Power-based scheduling::
  1023. * Profiling::
  1024. * CUDA-specific optimizations::
  1025. @end menu
  1026. Simply encapsulating application kernels into tasks already permits to
  1027. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1028. few additional changes are needed.
  1029. @node Data management
  1030. @section Data management
  1031. By default, StarPU does not enable data prefetching, because CUDA does
  1032. not announce when too many data transfers were scheduled and can thus block
  1033. unexpectedly... To enable data prefetching, use @code{export STARPU_PREFETCH=1}
  1034. .
  1035. By default, StarPU leaves replicates of data wherever they were used, in case they
  1036. will be re-used by other tasks, thus saving the data transfer time. When some
  1037. task modifies some data, all the other replicates are invalidated, and only the
  1038. processing unit will have a valid replicate of the data. If the application knows
  1039. that this data will not be re-used by further tasks, it should advise StarPU to
  1040. immediately replicate it to a desired list of memory nodes (given through a
  1041. bitmask). This can be understood like the write-through mode of CPU caches.
  1042. @example
  1043. starpu_data_set_wt_mask(img_handle, 1<<0);
  1044. @end example
  1045. will for instance request to always transfer a replicate into the main memory (node
  1046. 0), as bit 0 of the write-through bitmask is being set.
  1047. When the application allocates data, whenever possible it should use the
  1048. @code{starpu_data_malloc_pinned_if_possible} function, which will ask CUDA or
  1049. OpenCL to make the allocation itself and pin the corresponding allocated
  1050. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1051. transfer to overlap with computations.
  1052. @node Task submission
  1053. @section Task submission
  1054. To let StarPU make online optimizations, tasks should be submitted
  1055. asynchronously as much as possible. Ideally, all the tasks should be
  1056. submitted, and a mere @code{starpu_task_wait_for_all} call be done to wait for
  1057. termination. StarPU will then be able to rework the whole schedule, overlap
  1058. computation with communication, manage accelerator local memory usage, etc.
  1059. @node Task scheduling policy
  1060. @section Task scheduling policy
  1061. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1062. because it provides correct load balance even if the application codelets do not
  1063. have performance models. If your application codelets have performance models,
  1064. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1065. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1066. the list of available schedulers.
  1067. Most schedulers are based on an estimation of codelet duration on each kind
  1068. of processing unit. For this to be possible, the application programmer needs
  1069. to configure a performance model for the codelets of the application (see
  1070. @ref{Performance model example} for instance). History-based performance models
  1071. use on-line calibration. StarPU will automatically calibrate codelets
  1072. which have never been calibrated yet. To force continuing calibration, use
  1073. @code{export STARPU_CALIBRATE=1} . To drop existing calibration information
  1074. completely and re-calibrate from start, use @code{export STARPU_CALIBRATE=2}.
  1075. Note: due to CUDA limitations, to be able to measure kernel duration,
  1076. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1077. disables data transfer / computation overlapping, and should thus not be used
  1078. for eventual benchmarks.
  1079. @node Task distribution vs Data transfer
  1080. @section Task distribution vs Data transfer
  1081. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1082. thus needs to find a balance between both. The target function that the
  1083. @code{dmda} scheduler of StarPU
  1084. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1085. @code{T_execution} is the estimated execution time of the codelet (usually
  1086. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1087. latter is however estimated based on bus calibration before execution start,
  1088. i.e. with an idle machine. You can force bus re-calibration by running
  1089. @code{starpu_calibrate_bus}. The beta parameter defaults to 1, but it can be
  1090. worth trying to tweak it by using @code{export STARPU_BETA=2} for instance.
  1091. This is of course imprecise, but in practice, a rough estimation already gives
  1092. the good results that a precise estimation would give.
  1093. @node Power-based scheduling
  1094. @section Power-based scheduling
  1095. If the application can provide some power performance model (through
  1096. the @code{power_model} field of the codelet structure), StarPU will
  1097. take it into account when distributing tasks. The target function that
  1098. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1099. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1100. is the estimated task consumption in Joules. To tune this parameter, use
  1101. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1102. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1103. alpha and beta to zero permits to only take into account power consumption.
  1104. This is however not sufficient to correctly optimize power: the scheduler would
  1105. simply tend to run all computations on the most energy-conservative processing
  1106. unit. To account for the consumption of the whole machine (including idle
  1107. processing units), the idle power of the machine should be given by setting
  1108. @code{export STARPU_IDLE_POWER=200} for 200W, for instance. This value can often
  1109. be obtained from the machine power supplier.
  1110. The power actually consumed by the total execution can be displayed by setting
  1111. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1112. @node Profiling
  1113. @section Profiling
  1114. Profiling can be enabled by using @code{export STARPU_PROFILING=1} or by
  1115. calling @code{starpu_profiling_status_set} from the source code.
  1116. Statistics on the execution can then be obtained by using @code{export
  1117. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} . Workers
  1118. stats will include an approximation of the number of executed tasks even if
  1119. @code{STARPU_PROFILING} is not set. This is a convenient way to check that
  1120. execution did happen on accelerators without penalizing performance with
  1121. the profiling overhead. More details on performance feedback are provided by the
  1122. next chapter.
  1123. @node CUDA-specific optimizations
  1124. @section CUDA-specific optimizations
  1125. Due to CUDA limitations, StarPU will have a hard time overlapping
  1126. communications and computations if the application does not use a dedicated
  1127. CUDA stream for its computations. StarPU provides one by the use of
  1128. @code{starpu_cuda_get_local_stream()}. For instance:
  1129. @example
  1130. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1131. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1132. @end example
  1133. Unfortunately, a lot of cuda libraries do not have stream variants of kernels.
  1134. @c ---------------------------------------------------------------------
  1135. @c Performance feedback
  1136. @c ---------------------------------------------------------------------
  1137. @node Performance feedback
  1138. @chapter Performance feedback
  1139. @menu
  1140. * On-line:: On-line performance feedback
  1141. * Off-line:: Off-line performance feedback
  1142. * Codelet performance:: Performance of codelets
  1143. @end menu
  1144. @node On-line
  1145. @section On-line performance feedback
  1146. @menu
  1147. * Enabling monitoring:: Enabling on-line performance monitoring
  1148. * Task feedback:: Per-task feedback
  1149. * Codelet feedback:: Per-codelet feedback
  1150. * Worker feedback:: Per-worker feedback
  1151. * Bus feedback:: Bus-related feedback
  1152. @end menu
  1153. @node Enabling monitoring
  1154. @subsection Enabling on-line performance monitoring
  1155. In order to enable online performance monitoring, the application can call
  1156. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1157. detect whether monitoring is already enabled or not by calling
  1158. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1159. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1160. can also be set to 1 to achieve the same effect.
  1161. Likewise, performance monitoring is stopped by calling
  1162. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1163. does not reset the performance counters so that the application may consult
  1164. them later on.
  1165. More details about the performance monitoring API are available in section
  1166. @ref{Profiling API}.
  1167. @node Task feedback
  1168. @subsection Per-task feedback
  1169. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1170. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1171. structure when a task terminates.
  1172. This structure is automatically destroyed when the task structure is destroyed,
  1173. either automatically or by calling @code{starpu_task_destroy}.
  1174. The @code{starpu_task_profiling_info} structure indicates the date when the
  1175. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1176. terminated (@code{end_time}), relative to the initialization of
  1177. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1178. that has executed the task (@code{workerid}).
  1179. These date are stored as @code{timespec} structures which the user may convert
  1180. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1181. function.
  1182. It it worth noting that the application may directly access this structure from
  1183. the callback executed at the end of the task. The @code{starpu_task} structure
  1184. associated to the callback currently being executed is indeed accessible with
  1185. the @code{starpu_get_current_task()} function.
  1186. @node Codelet feedback
  1187. @subsection Per-codelet feedback
  1188. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1189. an array of counters. The i-th entry of the array is incremented every time a
  1190. task implementing the codelet is executed on the i-th worker.
  1191. This array is not reinitialized when profiling is enabled or disabled.
  1192. @node Worker feedback
  1193. @subsection Per-worker feedback
  1194. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1195. function is a @code{starpu_worker_profiling_info} structure that gives
  1196. statistics about the specified worker. This structure specifies when StarPU
  1197. started collecting profiling information for that worker (@code{start_time}),
  1198. the duration of the profiling measurement interval (@code{total_time}), the
  1199. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1200. because there is no task to execute at all (@code{sleeping_time}), and the
  1201. number of tasks that were executed while profiling was enabled.
  1202. These values give an estimation of the proportion of time spent do real work,
  1203. and the time spent either sleeping because there are not enough executable
  1204. tasks or simply wasted in pure StarPU overhead.
  1205. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1206. information associated to a worker.
  1207. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1208. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1209. generate a graphic showing the evolution of these values during the time, for
  1210. the different workers.
  1211. @node Bus feedback
  1212. @subsection Bus-related feedback
  1213. TODO
  1214. @c how to enable/disable performance monitoring
  1215. @c what kind of information do we get ?
  1216. @node Off-line
  1217. @section Off-line performance feedback
  1218. @menu
  1219. * Generating traces:: Generating traces with FxT
  1220. * Gantt diagram:: Creating a Gantt Diagram
  1221. * DAG:: Creating a DAG with graphviz
  1222. * starpu-top:: Monitoring activity
  1223. @end menu
  1224. @node Generating traces
  1225. @subsection Generating traces with FxT
  1226. StarPU can use the FxT library (see
  1227. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1228. with a limited runtime overhead.
  1229. You can either get the FxT library from CVS (autotools are required):
  1230. @example
  1231. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1232. % ./bootstrap
  1233. @end example
  1234. If autotools are not available on your machine, or if you prefer to do so,
  1235. FxT's code is also available as a tarball:
  1236. @example
  1237. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.tar.gz
  1238. @end example
  1239. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1240. done following the standard procedure:
  1241. @example
  1242. % ./configure --prefix=$FXTDIR
  1243. % make
  1244. % make install
  1245. @end example
  1246. In order to have StarPU to generate traces, StarPU should be configured with
  1247. the @code{--with-fxt} option:
  1248. @example
  1249. $ ./configure --with-fxt=$FXTDIR
  1250. @end example
  1251. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1252. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1253. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1254. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1255. @code{/tmp/} directory by default, or by the directory specified by
  1256. the @code{STARPU_FXT_PREFIX} environment variable.
  1257. @node Gantt diagram
  1258. @subsection Creating a Gantt Diagram
  1259. When the FxT trace file @code{filename} has been generated, it is possible to
  1260. generate a trace in the Paje format by calling:
  1261. @example
  1262. % starpu_fxt_tool -i filename
  1263. @end example
  1264. This will create a @code{paje.trace} file in the current directory that can be
  1265. inspected with the ViTE trace visualizing open-source tool. More information
  1266. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1267. possible to open the @code{paje.trace} file with ViTE by using the following
  1268. command:
  1269. @example
  1270. % vite paje.trace
  1271. @end example
  1272. @node DAG
  1273. @subsection Creating a DAG with graphviz
  1274. When the FxT trace file @code{filename} has been generated, it is possible to
  1275. generate a task graph in the DOT format by calling:
  1276. @example
  1277. $ starpu_fxt_tool -i filename
  1278. @end example
  1279. This will create a @code{dag.dot} file in the current directory. This file is a
  1280. task graph described using the DOT language. It is possible to get a
  1281. graphical output of the graph by using the graphviz library:
  1282. @example
  1283. $ dot -Tpdf dag.dot -o output.pdf
  1284. @end example
  1285. @node starpu-top
  1286. @subsection Monitoring activity
  1287. When the FxT trace file @code{filename} has been generated, it is possible to
  1288. generate a activity trace by calling:
  1289. @example
  1290. $ starpu_fxt_tool -i filename
  1291. @end example
  1292. This will create an @code{activity.data} file in the current
  1293. directory. A profile of the application showing the activity of StarPU
  1294. during the execution of the program can be generated:
  1295. @example
  1296. $ starpu_top.sh activity.data
  1297. @end example
  1298. This will create a file named @code{activity.eps} in the current directory.
  1299. This picture is composed of two parts.
  1300. The first part shows the activity of the different workers. The green sections
  1301. indicate which proportion of the time was spent executed kernels on the
  1302. processing unit. The red sections indicate the proportion of time spent in
  1303. StartPU: an important overhead may indicate that the granularity may be too
  1304. low, and that bigger tasks may be appropriate to use the processing unit more
  1305. efficiently. The black sections indicate that the processing unit was blocked
  1306. because there was no task to process: this may indicate a lack of parallelism
  1307. which may be alleviated by creating more tasks when it is possible.
  1308. The second part of the @code{activity.eps} picture is a graph showing the
  1309. evolution of the number of tasks available in the system during the execution.
  1310. Ready tasks are shown in black, and tasks that are submitted but not
  1311. schedulable yet are shown in grey.
  1312. @node Codelet performance
  1313. @section Performance of codelets
  1314. The performance model of codelets can be examined by using the
  1315. @code{starpu_perfmodel_display} tool:
  1316. @example
  1317. $ starpu_perfmodel_display -l
  1318. file: <malloc_pinned.hannibal>
  1319. file: <starpu_slu_lu_model_21.hannibal>
  1320. file: <starpu_slu_lu_model_11.hannibal>
  1321. file: <starpu_slu_lu_model_22.hannibal>
  1322. file: <starpu_slu_lu_model_12.hannibal>
  1323. @end example
  1324. Here, the codelets of the lu example are available. We can examine the
  1325. performance of the 22 kernel:
  1326. @example
  1327. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1328. performance model for cpu
  1329. # hash size mean dev n
  1330. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1331. performance model for cuda_0
  1332. # hash size mean dev n
  1333. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1334. performance model for cuda_1
  1335. # hash size mean dev n
  1336. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1337. performance model for cuda_2
  1338. # hash size mean dev n
  1339. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1340. @end example
  1341. We can see that for the given size, over a sample of a few hundreds of
  1342. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1343. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1344. CPUs.
  1345. @c ---------------------------------------------------------------------
  1346. @c MPI support
  1347. @c ---------------------------------------------------------------------
  1348. @node StarPU MPI support
  1349. @chapter StarPU MPI support
  1350. TODO: document include/starpu_mpi.h and explain a simple example (pingpong?)
  1351. @c ---------------------------------------------------------------------
  1352. @c Configuration options
  1353. @c ---------------------------------------------------------------------
  1354. @node Configuring StarPU
  1355. @chapter Configuring StarPU
  1356. @menu
  1357. * Compilation configuration::
  1358. * Execution configuration through environment variables::
  1359. @end menu
  1360. @node Compilation configuration
  1361. @section Compilation configuration
  1362. The following arguments can be given to the @code{configure} script.
  1363. @menu
  1364. * Common configuration::
  1365. * Configuring workers::
  1366. * Advanced configuration::
  1367. @end menu
  1368. @node Common configuration
  1369. @subsection Common configuration
  1370. @menu
  1371. * --enable-debug::
  1372. * --enable-fast::
  1373. * --enable-verbose::
  1374. * --enable-coverage::
  1375. @end menu
  1376. @node --enable-debug
  1377. @subsubsection @code{--enable-debug}
  1378. @table @asis
  1379. @item @emph{Description}:
  1380. Enable debugging messages.
  1381. @end table
  1382. @node --enable-fast
  1383. @subsubsection @code{--enable-fast}
  1384. @table @asis
  1385. @item @emph{Description}:
  1386. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1387. @end table
  1388. @node --enable-verbose
  1389. @subsubsection @code{--enable-verbose}
  1390. @table @asis
  1391. @item @emph{Description}:
  1392. Augment the verbosity of the debugging messages.
  1393. @end table
  1394. @node --enable-coverage
  1395. @subsubsection @code{--enable-coverage}
  1396. @table @asis
  1397. @item @emph{Description}:
  1398. Enable flags for the @code{gcov} coverage tool.
  1399. @end table
  1400. @node Configuring workers
  1401. @subsection Configuring workers
  1402. @menu
  1403. * --enable-nmaxcpus::
  1404. * --disable-cpu::
  1405. * --enable-maxcudadev::
  1406. * --disable-cuda::
  1407. * --with-cuda-dir::
  1408. * --with-cuda-include-dir::
  1409. * --with-cuda-lib-dir::
  1410. * --enable-maxopencldev::
  1411. * --disable-opencl::
  1412. * --with-opencl-dir::
  1413. * --with-opencl-include-dir::
  1414. * --with-opencl-lib-dir::
  1415. * --enable-gordon::
  1416. * --with-gordon-dir::
  1417. @end menu
  1418. @node --enable-nmaxcpus
  1419. @subsubsection @code{--enable-nmaxcpus=<number>}
  1420. @table @asis
  1421. @item @emph{Description}:
  1422. Defines the maximum number of CPU cores that StarPU will support, then
  1423. available as the @code{STARPU_NMAXCPUS} macro.
  1424. @end table
  1425. @node --disable-cpu
  1426. @subsubsection @code{--disable-cpu}
  1427. @table @asis
  1428. @item @emph{Description}:
  1429. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1430. @end table
  1431. @node --enable-maxcudadev
  1432. @subsubsection @code{--enable-maxcudadev=<number>}
  1433. @table @asis
  1434. @item @emph{Description}:
  1435. Defines the maximum number of CUDA devices that StarPU will support, then
  1436. available as the @code{STARPU_MAXCUDADEVS} macro.
  1437. @end table
  1438. @node --disable-cuda
  1439. @subsubsection @code{--disable-cuda}
  1440. @table @asis
  1441. @item @emph{Description}:
  1442. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1443. @end table
  1444. @node --with-cuda-dir
  1445. @subsubsection @code{--with-cuda-dir=<path>}
  1446. @table @asis
  1447. @item @emph{Description}:
  1448. Specify the directory where CUDA is installed. This directory should notably contain
  1449. @code{include/cuda.h}.
  1450. @end table
  1451. @node --with-cuda-include-dir
  1452. @subsubsection @code{--with-cuda-include-dir=<path>}
  1453. @table @asis
  1454. @item @emph{Description}:
  1455. Specify the directory where CUDA headers are installed. This directory should
  1456. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1457. value given to @code{--with-cuda-dir}.
  1458. @end table
  1459. @node --with-cuda-lib-dir
  1460. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1461. @table @asis
  1462. @item @emph{Description}:
  1463. Specify the directory where the CUDA library is installed. This directory should
  1464. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1465. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1466. @end table
  1467. @node --enable-maxopencldev
  1468. @subsubsection @code{--enable-maxopencldev=<number>}
  1469. @table @asis
  1470. @item @emph{Description}:
  1471. Defines the maximum number of OpenCL devices that StarPU will support, then
  1472. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1473. @end table
  1474. @node --disable-opencl
  1475. @subsubsection @code{--disable-opencl}
  1476. @table @asis
  1477. @item @emph{Description}:
  1478. Disable the use of OpenCL, even if the SDK is detected.
  1479. @end table
  1480. @node --with-opencl-dir
  1481. @subsubsection @code{--with-opencl-dir=<path>}
  1482. @table @asis
  1483. @item @emph{Description}:
  1484. Specify the location of the OpenCL SDK. This directory should notably contain
  1485. @code{include/CL/cl.h}.
  1486. @end table
  1487. @node --with-opencl-include-dir
  1488. @subsubsection @code{--with-opencl-include-dir=<path>}
  1489. @table @asis
  1490. @item @emph{Description}:
  1491. Specify the location of OpenCL headers. This directory should notably contain
  1492. @code{CL/cl.h}. This defaults to
  1493. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1494. @end table
  1495. @node --with-opencl-lib-dir
  1496. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1497. @table @asis
  1498. @item @emph{Description}:
  1499. Specify the location of the OpenCL library. This directory should notably
  1500. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1501. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1502. @end table
  1503. @node --enable-gordon
  1504. @subsubsection @code{--enable-gordon}
  1505. @table @asis
  1506. @item @emph{Description}:
  1507. Enable the use of the Gordon runtime for Cell SPUs.
  1508. @c TODO: rather default to enabled when detected
  1509. @end table
  1510. @node --with-gordon-dir
  1511. @subsubsection @code{--with-gordon-dir=<path>}
  1512. @table @asis
  1513. @item @emph{Description}:
  1514. Specify the location of the Gordon SDK.
  1515. @end table
  1516. @node Advanced configuration
  1517. @subsection Advanced configuration
  1518. @menu
  1519. * --enable-perf-debug::
  1520. * --enable-model-debug::
  1521. * --enable-stats::
  1522. * --enable-maxbuffers::
  1523. * --enable-allocation-cache::
  1524. * --enable-opengl-render::
  1525. * --enable-blas-lib::
  1526. * --with-magma::
  1527. * --with-fxt::
  1528. * --with-perf-model-dir::
  1529. * --with-mpicc::
  1530. * --with-goto-dir::
  1531. * --with-atlas-dir::
  1532. * --with-mkl-cflags::
  1533. * --with-mkl-ldflags::
  1534. @end menu
  1535. @node --enable-perf-debug
  1536. @subsubsection @code{--enable-perf-debug}
  1537. @table @asis
  1538. @item @emph{Description}:
  1539. Enable performance debugging.
  1540. @end table
  1541. @node --enable-model-debug
  1542. @subsubsection @code{--enable-model-debug}
  1543. @table @asis
  1544. @item @emph{Description}:
  1545. Enable performance model debugging.
  1546. @end table
  1547. @node --enable-stats
  1548. @subsubsection @code{--enable-stats}
  1549. @table @asis
  1550. @item @emph{Description}:
  1551. Enable statistics.
  1552. @end table
  1553. @node --enable-maxbuffers
  1554. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1555. @table @asis
  1556. @item @emph{Description}:
  1557. Define the maximum number of buffers that tasks will be able to take
  1558. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1559. @end table
  1560. @node --enable-allocation-cache
  1561. @subsubsection @code{--enable-allocation-cache}
  1562. @table @asis
  1563. @item @emph{Description}:
  1564. Enable the use of a data allocation cache to avoid the cost of it with
  1565. CUDA. Still experimental.
  1566. @end table
  1567. @node --enable-opengl-render
  1568. @subsubsection @code{--enable-opengl-render}
  1569. @table @asis
  1570. @item @emph{Description}:
  1571. Enable the use of OpenGL for the rendering of some examples.
  1572. @c TODO: rather default to enabled when detected
  1573. @end table
  1574. @node --enable-blas-lib
  1575. @subsubsection @code{--enable-blas-lib=<name>}
  1576. @table @asis
  1577. @item @emph{Description}:
  1578. Specify the blas library to be used by some of the examples. The
  1579. library has to be 'atlas' or 'goto'.
  1580. @end table
  1581. @node --with-magma
  1582. @subsubsection @code{--with-magma=<path>}
  1583. @table @asis
  1584. @item @emph{Description}:
  1585. Specify where magma is installed. This directory should notably contain
  1586. @code{include/magmablas.h}.
  1587. @end table
  1588. @node --with-fxt
  1589. @subsubsection @code{--with-fxt=<path>}
  1590. @table @asis
  1591. @item @emph{Description}:
  1592. Specify the location of FxT (for generating traces and rendering them
  1593. using ViTE). This directory should notably contain
  1594. @code{include/fxt/fxt.h}.
  1595. @c TODO add ref to other section
  1596. @end table
  1597. @node --with-perf-model-dir
  1598. @subsubsection @code{--with-perf-model-dir=<dir>}
  1599. @table @asis
  1600. @item @emph{Description}:
  1601. Specify where performance models should be stored (instead of defaulting to the
  1602. current user's home).
  1603. @end table
  1604. @node --with-mpicc
  1605. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1606. @table @asis
  1607. @item @emph{Description}:
  1608. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1609. @end table
  1610. @node --with-goto-dir
  1611. @subsubsection @code{--with-goto-dir=<dir>}
  1612. @table @asis
  1613. @item @emph{Description}:
  1614. Specify the location of GotoBLAS.
  1615. @end table
  1616. @node --with-atlas-dir
  1617. @subsubsection @code{--with-atlas-dir=<dir>}
  1618. @table @asis
  1619. @item @emph{Description}:
  1620. Specify the location of ATLAS. This directory should notably contain
  1621. @code{include/cblas.h}.
  1622. @end table
  1623. @node --with-mkl-cflags
  1624. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1625. @table @asis
  1626. @item @emph{Description}:
  1627. Specify the compilation flags for the MKL Library.
  1628. @end table
  1629. @node --with-mkl-ldflags
  1630. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1631. @table @asis
  1632. @item @emph{Description}:
  1633. Specify the linking flags for the MKL Library. Note that the
  1634. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1635. website provides a script to determine the linking flags.
  1636. @end table
  1637. @c ---------------------------------------------------------------------
  1638. @c Environment variables
  1639. @c ---------------------------------------------------------------------
  1640. @node Execution configuration through environment variables
  1641. @section Execution configuration through environment variables
  1642. @menu
  1643. * Workers:: Configuring workers
  1644. * Scheduling:: Configuring the Scheduling engine
  1645. * Misc:: Miscellaneous and debug
  1646. @end menu
  1647. Note: the values given in @code{starpu_conf} structure passed when
  1648. calling @code{starpu_init} will override the values of the environment
  1649. variables.
  1650. @node Workers
  1651. @subsection Configuring workers
  1652. @menu
  1653. * STARPU_NCPUS:: Number of CPU workers
  1654. * STARPU_NCUDA:: Number of CUDA workers
  1655. * STARPU_NOPENCL:: Number of OpenCL workers
  1656. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1657. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1658. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1659. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1660. @end menu
  1661. @node STARPU_NCPUS
  1662. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1663. @table @asis
  1664. @item @emph{Description}:
  1665. Specify the number of CPU workers. Note that by default, StarPU will not allocate
  1666. more CPUs than there are physical CPUs, and that some CPUs are used to control
  1667. the accelerators.
  1668. @end table
  1669. @node STARPU_NCUDA
  1670. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1671. @table @asis
  1672. @item @emph{Description}:
  1673. Specify the number of CUDA devices that StarPU can use. If
  1674. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1675. possible to select which CUDA devices should be used by the means of the
  1676. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1677. create as many CUDA workers as there are CUDA devices.
  1678. @end table
  1679. @node STARPU_NOPENCL
  1680. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1681. @table @asis
  1682. @item @emph{Description}:
  1683. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1684. @end table
  1685. @node STARPU_NGORDON
  1686. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1687. @table @asis
  1688. @item @emph{Description}:
  1689. Specify the number of SPUs that StarPU can use.
  1690. @end table
  1691. @node STARPU_WORKERS_CPUID
  1692. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1693. @table @asis
  1694. @item @emph{Description}:
  1695. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1696. specifies on which logical CPU the different workers should be
  1697. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  1698. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  1699. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  1700. determined by the OS, or provided by the @code{hwloc} library in case it is
  1701. available.
  1702. Note that the first workers correspond to the CUDA workers, then come the
  1703. OpenCL and the SPU, and finally the CPU workers. For example if
  1704. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1705. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1706. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1707. the logical CPUs #1 and #3 will be used by the CPU workers.
  1708. If the number of workers is larger than the array given in
  1709. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1710. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1711. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1712. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1713. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1714. @end table
  1715. @node STARPU_WORKERS_CUDAID
  1716. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1717. @table @asis
  1718. @item @emph{Description}:
  1719. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1720. possible to select which CUDA devices should be used by StarPU. On a machine
  1721. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1722. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1723. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1724. the one reported by CUDA).
  1725. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1726. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1727. @end table
  1728. @node STARPU_WORKERS_OPENCLID
  1729. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1730. @table @asis
  1731. @item @emph{Description}:
  1732. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1733. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1734. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1735. @end table
  1736. @node Scheduling
  1737. @subsection Configuring the Scheduling engine
  1738. @menu
  1739. * STARPU_SCHED:: Scheduling policy
  1740. * STARPU_CALIBRATE:: Calibrate performance models
  1741. * STARPU_PREFETCH:: Use data prefetch
  1742. * STARPU_SCHED_ALPHA:: Computation factor
  1743. * STARPU_SCHED_BETA:: Communication factor
  1744. @end menu
  1745. @node STARPU_SCHED
  1746. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1747. @table @asis
  1748. @item @emph{Description}:
  1749. This chooses between the different scheduling policies proposed by StarPU: work
  1750. random, stealing, greedy, with performance models, etc.
  1751. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1752. @end table
  1753. @node STARPU_CALIBRATE
  1754. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1755. @table @asis
  1756. @item @emph{Description}:
  1757. If this variable is set to 1, the performance models are calibrated during
  1758. the execution. If it is set to 2, the previous values are dropped to restart
  1759. calibration from scratch. Setting this variable to 0 disable calibration, this
  1760. is the default behaviour.
  1761. Note: this currently only applies to dm and dmda scheduling policies.
  1762. @end table
  1763. @node STARPU_PREFETCH
  1764. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1765. @table @asis
  1766. @item @emph{Description}:
  1767. This variable indicates whether data prefetching should be enabled (0 means
  1768. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1769. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1770. advance, so that data is already present on the GPU when the task starts. As a
  1771. result, computation and data transfers are overlapped.
  1772. @end table
  1773. @node STARPU_SCHED_ALPHA
  1774. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1775. @table @asis
  1776. @item @emph{Description}:
  1777. To estimate the cost of a task StarPU takes into account the estimated
  1778. computation time (obtained thanks to performance models). The alpha factor is
  1779. the coefficient to be applied to it before adding it to the communication part.
  1780. @end table
  1781. @node STARPU_SCHED_BETA
  1782. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1783. @table @asis
  1784. @item @emph{Description}:
  1785. To estimate the cost of a task StarPU takes into account the estimated
  1786. data transfer time (obtained thanks to performance models). The beta factor is
  1787. the coefficient to be applied to it before adding it to the computation part.
  1788. @end table
  1789. @node Misc
  1790. @subsection Miscellaneous and debug
  1791. @menu
  1792. * STARPU_LOGFILENAME:: Select debug file name
  1793. * STARPU_FXT_PREFIX:: FxT trace location
  1794. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1795. @end menu
  1796. @node STARPU_LOGFILENAME
  1797. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1798. @table @asis
  1799. @item @emph{Description}:
  1800. This variable specifies in which file the debugging output should be saved to.
  1801. @end table
  1802. @node STARPU_FXT_PREFIX
  1803. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1804. @table @asis
  1805. @item @emph{Description}
  1806. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1807. @end table
  1808. @node STARPU_LIMIT_GPU_MEM
  1809. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1810. @table @asis
  1811. @item @emph{Description}
  1812. This variable specifies the maximum number of megabytes that should be
  1813. available to the application on each GPUs. In case this value is smaller than
  1814. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1815. on the device. This variable is intended to be used for experimental purposes
  1816. as it emulates devices that have a limited amount of memory.
  1817. @end table
  1818. @c ---------------------------------------------------------------------
  1819. @c StarPU API
  1820. @c ---------------------------------------------------------------------
  1821. @node StarPU API
  1822. @chapter StarPU API
  1823. @menu
  1824. * Initialization and Termination:: Initialization and Termination methods
  1825. * Workers' Properties:: Methods to enumerate workers' properties
  1826. * Data Library:: Methods to manipulate data
  1827. * Data Interfaces::
  1828. * Data Partition::
  1829. * Codelets and Tasks:: Methods to construct tasks
  1830. * Explicit Dependencies:: Explicit Dependencies
  1831. * Implicit Data Dependencies:: Implicit Data Dependencies
  1832. * Performance Model API::
  1833. * Profiling API:: Profiling API
  1834. * CUDA extensions:: CUDA extensions
  1835. * OpenCL extensions:: OpenCL extensions
  1836. * Cell extensions:: Cell extensions
  1837. * Miscellaneous helpers::
  1838. @end menu
  1839. @node Initialization and Termination
  1840. @section Initialization and Termination
  1841. @menu
  1842. * starpu_init:: Initialize StarPU
  1843. * struct starpu_conf:: StarPU runtime configuration
  1844. * starpu_conf_init:: Initialize starpu_conf structure
  1845. * starpu_shutdown:: Terminate StarPU
  1846. @end menu
  1847. @node starpu_init
  1848. @subsection @code{starpu_init} -- Initialize StarPU
  1849. @table @asis
  1850. @item @emph{Description}:
  1851. This is StarPU initialization method, which must be called prior to any other
  1852. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1853. policy, number of cores, ...) by passing a non-null argument. Default
  1854. configuration is used if the passed argument is @code{NULL}.
  1855. @item @emph{Return value}:
  1856. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1857. indicates that no worker was available (so that StarPU was not initialized).
  1858. @item @emph{Prototype}:
  1859. @code{int starpu_init(struct starpu_conf *conf);}
  1860. @end table
  1861. @node struct starpu_conf
  1862. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1863. @table @asis
  1864. @item @emph{Description}:
  1865. This structure is passed to the @code{starpu_init} function in order
  1866. to configure StarPU.
  1867. When the default value is used, StarPU automatically selects the number
  1868. of processing units and takes the default scheduling policy. This parameter
  1869. overwrites the equivalent environment variables.
  1870. @item @emph{Fields}:
  1871. @table @asis
  1872. @item @code{sched_policy_name} (default = NULL):
  1873. This is the name of the scheduling policy. This can also be specified with the
  1874. @code{STARPU_SCHED} environment variable.
  1875. @item @code{sched_policy} (default = NULL):
  1876. This is the definition of the scheduling policy. This field is ignored
  1877. if @code{sched_policy_name} is set.
  1878. @item @code{ncpus} (default = -1):
  1879. This is the number of CPU cores that StarPU can use. This can also be
  1880. specified with the @code{STARPU_NCPUS} environment variable.
  1881. @item @code{ncuda} (default = -1):
  1882. This is the number of CUDA devices that StarPU can use. This can also be
  1883. specified with the @code{STARPU_NCUDA} environment variable.
  1884. @item @code{nopencl} (default = -1):
  1885. This is the number of OpenCL devices that StarPU can use. This can also be
  1886. specified with the @code{STARPU_NOPENCL} environment variable.
  1887. @item @code{nspus} (default = -1):
  1888. This is the number of Cell SPUs that StarPU can use. This can also be
  1889. specified with the @code{STARPU_NGORDON} environment variable.
  1890. @item @code{use_explicit_workers_bindid} (default = 0)
  1891. If this flag is set, the @code{workers_bindid} array indicates where the
  1892. different workers are bound, otherwise StarPU automatically selects where to
  1893. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  1894. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  1895. ignored if the @code{use_explicit_workers_bindid} flag is set.
  1896. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  1897. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  1898. where to bind the different workers. The i-th entry of the
  1899. @code{workers_bindid} indicates the logical identifier of the processor which
  1900. should execute the i-th worker. Note that the logical ordering of the CPUs is
  1901. either determined by the OS, or provided by the @code{hwloc} library in case it
  1902. is available.
  1903. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  1904. ignored.
  1905. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  1906. If this flag is set, the CUDA workers will be attached to the CUDA devices
  1907. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  1908. CUDA devices in a round-robin fashion.
  1909. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  1910. ignored.
  1911. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  1912. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  1913. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  1914. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  1915. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  1916. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  1917. OpenCL devices in a round-robin fashion.
  1918. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  1919. @item @code{calibrate} (default = 0):
  1920. If this flag is set, StarPU will calibrate the performance models when
  1921. executing tasks. If this value is equal to -1, the default value is used. The
  1922. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  1923. variable when it is set.
  1924. @end table
  1925. @end table
  1926. @node starpu_conf_init
  1927. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  1928. @table @asis
  1929. This function initializes the @code{starpu_conf} structure passed as argument
  1930. with the default values. In case some configuration parameters are already
  1931. specified through environment variables, @code{starpu_conf_init} initializes
  1932. the fields of the structure according to the environment variables. For
  1933. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  1934. @code{.ncuda} field of the structure passed as argument.
  1935. @item @emph{Return value}:
  1936. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1937. indicates that the argument was NULL.
  1938. @item @emph{Prototype}:
  1939. @code{int starpu_conf_init(struct starpu_conf *conf);}
  1940. @end table
  1941. @node starpu_shutdown
  1942. @subsection @code{starpu_shutdown} -- Terminate StarPU
  1943. @table @asis
  1944. @item @emph{Description}:
  1945. This is StarPU termination method. It must be called at the end of the
  1946. application: statistics and other post-mortem debugging information are not
  1947. guaranteed to be available until this method has been called.
  1948. @item @emph{Prototype}:
  1949. @code{void starpu_shutdown(void);}
  1950. @end table
  1951. @node Workers' Properties
  1952. @section Workers' Properties
  1953. @menu
  1954. * starpu_worker_get_count:: Get the number of processing units
  1955. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  1956. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  1957. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  1958. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  1959. * starpu_worker_get_id:: Get the identifier of the current worker
  1960. * starpu_worker_get_devid:: Get the device identifier of a worker
  1961. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  1962. * starpu_worker_get_name:: Get the name of a worker
  1963. * starpu_worker_get_memory_node:: Get the memory node of a worker
  1964. @end menu
  1965. @node starpu_worker_get_count
  1966. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  1967. @table @asis
  1968. @item @emph{Description}:
  1969. This function returns the number of workers (i.e. processing units executing
  1970. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  1971. @item @emph{Prototype}:
  1972. @code{unsigned starpu_worker_get_count(void);}
  1973. @end table
  1974. @node starpu_cpu_worker_get_count
  1975. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  1976. @table @asis
  1977. @item @emph{Description}:
  1978. This function returns the number of CPUs controlled by StarPU. The returned
  1979. value should be at most @code{STARPU_NMAXCPUS}.
  1980. @item @emph{Prototype}:
  1981. @code{unsigned starpu_cpu_worker_get_count(void);}
  1982. @end table
  1983. @node starpu_cuda_worker_get_count
  1984. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  1985. @table @asis
  1986. @item @emph{Description}:
  1987. This function returns the number of CUDA devices controlled by StarPU. The returned
  1988. value should be at most @code{STARPU_MAXCUDADEVS}.
  1989. @item @emph{Prototype}:
  1990. @code{unsigned starpu_cuda_worker_get_count(void);}
  1991. @end table
  1992. @node starpu_opencl_worker_get_count
  1993. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  1994. @table @asis
  1995. @item @emph{Description}:
  1996. This function returns the number of OpenCL devices controlled by StarPU. The returned
  1997. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  1998. @item @emph{Prototype}:
  1999. @code{unsigned starpu_opencl_worker_get_count(void);}
  2000. @end table
  2001. @node starpu_spu_worker_get_count
  2002. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  2003. @table @asis
  2004. @item @emph{Description}:
  2005. This function returns the number of Cell SPUs controlled by StarPU.
  2006. @item @emph{Prototype}:
  2007. @code{unsigned starpu_opencl_worker_get_count(void);}
  2008. @end table
  2009. @node starpu_worker_get_id
  2010. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2011. @table @asis
  2012. @item @emph{Description}:
  2013. This function returns the identifier of the worker associated to the calling
  2014. thread. The returned value is either -1 if the current context is not a StarPU
  2015. worker (i.e. when called from the application outside a task or a callback), or
  2016. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2017. @item @emph{Prototype}:
  2018. @code{int starpu_worker_get_id(void);}
  2019. @end table
  2020. @node starpu_worker_get_devid
  2021. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2022. @table @asis
  2023. @item @emph{Description}:
  2024. This functions returns the device id of the worker associated to an identifier
  2025. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2026. CUDA worker, this device identifier is the logical device identifier exposed by
  2027. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2028. identifier of a CPU worker is the logical identifier of the core on which the
  2029. worker was bound; this identifier is either provided by the OS or by the
  2030. @code{hwloc} library in case it is available.
  2031. @item @emph{Prototype}:
  2032. @code{int starpu_worker_get_devid(int id);}
  2033. @end table
  2034. @node starpu_worker_get_type
  2035. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2036. @table @asis
  2037. @item @emph{Description}:
  2038. This function returns the type of worker associated to an identifier (as
  2039. returned by the @code{starpu_worker_get_id} function). The returned value
  2040. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2041. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2042. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2043. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2044. identifier is unspecified.
  2045. @item @emph{Prototype}:
  2046. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  2047. @end table
  2048. @node starpu_worker_get_name
  2049. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2050. @table @asis
  2051. @item @emph{Description}:
  2052. StarPU associates a unique human readable string to each processing unit. This
  2053. function copies at most the @code{maxlen} first bytes of the unique string
  2054. associated to a worker identified by its identifier @code{id} into the
  2055. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  2056. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  2057. function on an invalid identifier results in an unspecified behaviour.
  2058. @item @emph{Prototype}:
  2059. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  2060. @end table
  2061. @node starpu_worker_get_memory_node
  2062. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2063. @table @asis
  2064. @item @emph{Description}:
  2065. This function returns the identifier of the memory node associated to the
  2066. worker identified by @code{workerid}.
  2067. @item @emph{Prototype}:
  2068. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  2069. @end table
  2070. @node Data Library
  2071. @section Data Library
  2072. This section describes the data management facilities provided by StarPU.
  2073. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2074. design their own data interfaces if required.
  2075. @menu
  2076. * starpu_data_malloc_pinned_if_possible:: Allocate data and pin it
  2077. * starpu_access_mode:: Data access mode
  2078. * unsigned memory_node:: Memory node
  2079. * starpu_data_handle:: StarPU opaque data handle
  2080. * void *interface:: StarPU data interface
  2081. * starpu_data_register:: Register a piece of data to StarPU
  2082. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2083. * starpu_data_invalidate:: Invalidate all data replicates
  2084. * starpu_data_acquire:: Access registered data from the application
  2085. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2086. * starpu_data_release:: Release registered data from the application
  2087. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2088. @end menu
  2089. @node starpu_data_malloc_pinned_if_possible
  2090. @subsection @code{starpu_data_malloc_pinned_if_possible} -- Allocate data and pin it
  2091. @table @asis
  2092. @item @emph{Description}:
  2093. This function allocates data of the given size. It will also try to pin it in
  2094. CUDA or OpenGL, so that data transfers from this buffer can be asynchronous, and
  2095. thus permit data transfer and computation overlapping.
  2096. @item @emph{Prototype}:
  2097. @code{int starpu_data_malloc_pinned_if_possible(void **A, size_t dim);}
  2098. @end table
  2099. @node starpu_access_mode
  2100. @subsection @code{starpu_access_mode} -- Data access mode
  2101. This datatype describes a data access mode. The different available modes are:
  2102. @table @asis
  2103. @table @asis
  2104. @item @code{STARPU_R} read-only mode.
  2105. @item @code{STARPU_W} write-only mode.
  2106. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2107. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2108. @end table
  2109. @end table
  2110. @node unsigned memory_node
  2111. @subsection @code{unsigned memory_node} -- Memory node
  2112. @table @asis
  2113. @item @emph{Description}:
  2114. Every worker is associated to a memory node which is a logical abstraction of
  2115. the address space from which the processing unit gets its data. For instance,
  2116. the memory node associated to the different CPU workers represents main memory
  2117. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2118. Every memory node is identified by a logical index which is accessible from the
  2119. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2120. to StarPU, the specified memory node indicates where the piece of data
  2121. initially resides (we also call this memory node the home node of a piece of
  2122. data).
  2123. @end table
  2124. @node starpu_data_handle
  2125. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2126. @table @asis
  2127. @item @emph{Description}:
  2128. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2129. data. Once a piece of data has been registered to StarPU, it is associated to a
  2130. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2131. over the entire machine, so that we can maintain data consistency and locate
  2132. data replicates for instance.
  2133. @end table
  2134. @node void *interface
  2135. @subsection @code{void *interface} -- StarPU data interface
  2136. @table @asis
  2137. @item @emph{Description}:
  2138. Data management is done at a high-level in StarPU: rather than accessing a mere
  2139. list of contiguous buffers, the tasks may manipulate data that are described by
  2140. a high-level construct which we call data interface.
  2141. An example of data interface is the "vector" interface which describes a
  2142. contiguous data array on a spefic memory node. This interface is a simple
  2143. structure containing the number of elements in the array, the size of the
  2144. elements, and the address of the array in the appropriate address space (this
  2145. address may be invalid if there is no valid copy of the array in the memory
  2146. node). More informations on the data interfaces provided by StarPU are
  2147. given in @ref{Data Interfaces}.
  2148. When a piece of data managed by StarPU is used by a task, the task
  2149. implementation is given a pointer to an interface describing a valid copy of
  2150. the data that is accessible from the current processing unit.
  2151. @end table
  2152. @node starpu_data_register
  2153. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2154. @table @asis
  2155. @item @emph{Description}:
  2156. Register a piece of data into the handle located at the @code{handleptr}
  2157. address. The @code{interface} buffer contains the initial description of the
  2158. data in the home node. The @code{ops} argument is a pointer to a structure
  2159. describing the different methods used to manipulate this type of interface. See
  2160. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2161. If @code{home_node} is -1, StarPU will automatically
  2162. allocate the memory when it is used for the
  2163. first time in write-only mode. Once such data handle has been automatically
  2164. allocated, it is possible to access it using any access mode.
  2165. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2166. matrix) which can be registered by the means of helper functions (e.g.
  2167. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2168. @item @emph{Prototype}:
  2169. @code{void starpu_data_register(starpu_data_handle *handleptr,
  2170. uint32_t home_node,
  2171. void *interface,
  2172. struct starpu_data_interface_ops_t *ops);}
  2173. @end table
  2174. @node starpu_data_unregister
  2175. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2176. @table @asis
  2177. @item @emph{Description}:
  2178. This function unregisters a data handle from StarPU. If the data was
  2179. automatically allocated by StarPU because the home node was -1, all
  2180. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2181. is put back into the home node in the buffer that was initially registered.
  2182. Using a data handle that has been unregistered from StarPU results in an
  2183. undefined behaviour.
  2184. @item @emph{Prototype}:
  2185. @code{void starpu_data_unregister(starpu_data_handle handle);}
  2186. @end table
  2187. @node starpu_data_invalidate
  2188. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2189. @table @asis
  2190. @item @emph{Description}:
  2191. Destroy all replicates of the data handle. After data invalidation, the first
  2192. access to the handle must be performed in write-only mode. Accessing an
  2193. invalidated data in read-mode results in undefined behaviour.
  2194. @item @emph{Prototype}:
  2195. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  2196. @end table
  2197. @c TODO create a specific sections about user interaction with the DSM ?
  2198. @node starpu_data_acquire
  2199. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2200. @table @asis
  2201. @item @emph{Description}:
  2202. The application must call this function prior to accessing registered data from
  2203. main memory outside tasks. StarPU ensures that the application will get an
  2204. up-to-date copy of the data in main memory located where the data was
  2205. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2206. be consistent with the access mode specified in the @code{mode} argument.
  2207. @code{starpu_data_release} must be called once the application does not need to
  2208. access the piece of data anymore.
  2209. Note that implicit data dependencies are also enforced by
  2210. @code{starpu_data_acquire} in case they are enabled.
  2211. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2212. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2213. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2214. @item @emph{Prototype}:
  2215. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  2216. @end table
  2217. @node starpu_data_acquire_cb
  2218. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2219. @table @asis
  2220. @item @emph{Description}:
  2221. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2222. @code{starpu_data_release}. When the data specified in the first argument is
  2223. available in the appropriate access mode, the callback function is executed.
  2224. The application may access the requested data during the execution of this
  2225. callback. The callback function must call @code{starpu_data_release} once the
  2226. application does not need to access the piece of data anymore.
  2227. Note that implicit data dependencies are also enforced by
  2228. @code{starpu_data_acquire_cb} in case they are enabled.
  2229. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2230. be called from task callbacks. Upon successful completion, this function
  2231. returns 0.
  2232. @item @emph{Prototype}:
  2233. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2234. @end table
  2235. @node starpu_data_release
  2236. @subsection @code{starpu_data_release} -- Release registered data from the application
  2237. @table @asis
  2238. @item @emph{Description}:
  2239. This function releases the piece of data acquired by the application either by
  2240. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2241. @item @emph{Prototype}:
  2242. @code{void starpu_data_release(starpu_data_handle handle);}
  2243. @end table
  2244. @node starpu_data_set_wt_mask
  2245. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2246. @table @asis
  2247. @item @emph{Description}:
  2248. This function sets the write-through mask of a given data, i.e. a bitmask of
  2249. nodes where the data should be always replicated after modification.
  2250. @item @emph{Prototype}:
  2251. @code{void starpu_data_set_wt_mask(starpu_data_handle handle, uint32_t wt_mask);}
  2252. @end table
  2253. @node Data Interfaces
  2254. @section Data Interfaces
  2255. @menu
  2256. * Variable Interface::
  2257. * Vector Interface::
  2258. * Matrix Interface::
  2259. * 3D Matrix Interface::
  2260. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2261. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2262. @end menu
  2263. @node Variable Interface
  2264. @subsection Variable Interface
  2265. @table @asis
  2266. @item @emph{Description}:
  2267. This variant of @code{starpu_data_register} uses the variable interface,
  2268. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2269. and @code{elemsize} is the size of the variable.
  2270. @item @emph{Prototype}:
  2271. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2272. uint32_t home_node,
  2273. uintptr_t ptr, size_t elemsize);}
  2274. @item @emph{Example}:
  2275. @cartouche
  2276. @smallexample
  2277. float var;
  2278. starpu_data_handle var_handle;
  2279. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2280. @end smallexample
  2281. @end cartouche
  2282. @end table
  2283. @node Vector Interface
  2284. @subsection Vector Interface
  2285. @table @asis
  2286. @item @emph{Description}:
  2287. This variant of @code{starpu_data_register} uses the vector interface,
  2288. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2289. element in the home node. @code{nx} is the number of elements in the vector.
  2290. @code{elemsize} is the size of each element.
  2291. @item @emph{Prototype}:
  2292. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2293. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2294. @item @emph{Example}:
  2295. @cartouche
  2296. @smallexample
  2297. float vector[NX];
  2298. starpu_data_handle vector_handle;
  2299. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2300. sizeof(vector[0]));
  2301. @end smallexample
  2302. @end cartouche
  2303. @end table
  2304. @node Matrix Interface
  2305. @subsection Matrix Interface
  2306. @table @asis
  2307. @item @emph{Description}:
  2308. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2309. matrices of elements. @code{ptr} is the address of the first element in the home
  2310. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2311. of elements in a row (this can be different from @code{ld} if there are extra
  2312. elements for alignment for instance). @code{ny} is the number of rows.
  2313. @code{elemsize} is the size of each element.
  2314. @item @emph{Prototype}:
  2315. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2316. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2317. uint32_t ny, size_t elemsize);}
  2318. @item @emph{Example}:
  2319. @cartouche
  2320. @smallexample
  2321. float *matrix;
  2322. starpu_data_handle matrix_handle;
  2323. matrix = (float*)malloc(width * height * sizeof(float));
  2324. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2325. width, width, height, sizeof(float));
  2326. @end smallexample
  2327. @end cartouche
  2328. @end table
  2329. @node 3D Matrix Interface
  2330. @subsection 3D Matrix Interface
  2331. @table @asis
  2332. @item @emph{Description}:
  2333. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2334. @code{ptr} is the address of the array of first element in the home node.
  2335. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2336. of rows between z planes. @code{nx} is the number of elements in a row (this
  2337. can be different from @code{ldy} if there are extra elements for alignment
  2338. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2339. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2340. each element.
  2341. @item @emph{Prototype}:
  2342. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2343. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2344. uint32_t ny, uint32_t nz, size_t elemsize);}
  2345. @item @emph{Example}:
  2346. @cartouche
  2347. @smallexample
  2348. float *block;
  2349. starpu_data_handle block_handle;
  2350. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2351. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2352. nx, nx*ny, nx, ny, nz, sizeof(float));
  2353. @end smallexample
  2354. @end cartouche
  2355. @end table
  2356. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2357. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2358. @table @asis
  2359. @item @emph{Description}:
  2360. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2361. TODO
  2362. @item @emph{Prototype}:
  2363. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2364. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2365. @item @emph{Example}:
  2366. @cartouche
  2367. @smallexample
  2368. @end smallexample
  2369. @end cartouche
  2370. @end table
  2371. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2372. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2373. @table @asis
  2374. @item @emph{Description}:
  2375. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2376. TODO
  2377. @item @emph{Prototype}:
  2378. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2379. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2380. @item @emph{Example}:
  2381. @cartouche
  2382. @smallexample
  2383. @end smallexample
  2384. @end cartouche
  2385. @end table
  2386. @node Data Partition
  2387. @section Data Partition
  2388. @menu
  2389. * struct starpu_data_filter:: StarPU filter structure
  2390. * starpu_data_partition:: Partition Data
  2391. * starpu_data_unpartition:: Unpartition Data
  2392. * starpu_data_get_nb_children::
  2393. * starpu_data_get_sub_data::
  2394. * Predefined filter functions::
  2395. @end menu
  2396. @node struct starpu_data_filter
  2397. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2398. @table @asis
  2399. @item @emph{Description}:
  2400. The filter structure describes a data partitioning operation, to be given to the
  2401. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2402. @item @emph{Fields}:
  2403. @table @asis
  2404. @item @code{filter_func}:
  2405. This function fills the @code{child_interface} structure with interface
  2406. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2407. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2408. @item @code{nchildren}:
  2409. This is the number of parts to partition the data into.
  2410. @item @code{get_nchildren}:
  2411. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2412. children depends on the actual data (e.g. the number of blocks in a sparse
  2413. matrix).
  2414. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2415. @item @code{get_child_ops}:
  2416. In case the resulting children use a different data interface, this function
  2417. returns which interface is used by child number @code{id}.
  2418. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2419. @item @code{filter_arg}:
  2420. Some filters take an addition parameter, but this is usually unused.
  2421. @item @code{filter_arg_ptr}:
  2422. Some filters take an additional array parameter like the sizes of the parts, but
  2423. this is usually unused.
  2424. @end table
  2425. @end table
  2426. @node starpu_data_partition
  2427. @subsection starpu_data_partition -- Partition Data
  2428. @table @asis
  2429. @item @emph{Description}:
  2430. This requests partitioning one StarPU data @code{initial_handle} into several
  2431. subdata according to the filter @code{f}
  2432. @item @emph{Prototype}:
  2433. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2434. @item @emph{Example}:
  2435. @cartouche
  2436. @smallexample
  2437. struct starpu_data_filter f = @{
  2438. .filter_func = starpu_vertical_block_filter_func,
  2439. .nchildren = nslicesx,
  2440. .get_nchildren = NULL,
  2441. .get_child_ops = NULL
  2442. @};
  2443. starpu_data_partition(A_handle, &f);
  2444. @end smallexample
  2445. @end cartouche
  2446. @end table
  2447. @node starpu_data_unpartition
  2448. @subsection starpu_data_unpartition -- Unpartition data
  2449. @table @asis
  2450. @item @emph{Description}:
  2451. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2452. collected back into one big piece in the @code{gathering_node} (usually 0).
  2453. @item @emph{Prototype}:
  2454. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2455. @item @emph{Example}:
  2456. @cartouche
  2457. @smallexample
  2458. starpu_data_unpartition(A_handle, 0);
  2459. @end smallexample
  2460. @end cartouche
  2461. @end table
  2462. @node starpu_data_get_nb_children
  2463. @subsection starpu_data_get_nb_children
  2464. @table @asis
  2465. @item @emph{Description}:
  2466. This function returns the number of children.
  2467. @item @emph{Return value}:
  2468. The number of children.
  2469. @item @emph{Prototype}:
  2470. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2471. @end table
  2472. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2473. @node starpu_data_get_sub_data
  2474. @subsection starpu_data_get_sub_data
  2475. @table @asis
  2476. @item @emph{Description}:
  2477. After partitioning a StarPU data by applying a filter,
  2478. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2479. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2480. is the number of filters to traverse (in case several filters have been applied,
  2481. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2482. parameters are the indexes.
  2483. @item @emph{Return value}:
  2484. A handle to the subdata.
  2485. @item @emph{Prototype}:
  2486. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2487. @item @emph{Example}:
  2488. @cartouche
  2489. @smallexample
  2490. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2491. @end smallexample
  2492. @end cartouche
  2493. @end table
  2494. @node Predefined filter functions
  2495. @subsection Predefined filter functions
  2496. @menu
  2497. * Partitioning BCSR Data::
  2498. * Partitioning BLAS interface::
  2499. * Partitioning Vector Data::
  2500. * Partitioning Block Data::
  2501. @end menu
  2502. This section gives a partial list of the predefined partitioning functions.
  2503. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2504. list can be found in @code{starpu_data_filters.h} .
  2505. @node Partitioning BCSR Data
  2506. @subsubsection Partitioning BCSR Data
  2507. @table @asis
  2508. @item @emph{Description}:
  2509. TODO
  2510. @item @emph{Prototype}:
  2511. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2512. @end table
  2513. @table @asis
  2514. @item @emph{Description}:
  2515. TODO
  2516. @item @emph{Prototype}:
  2517. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2518. @end table
  2519. @node Partitioning BLAS interface
  2520. @subsubsection Partitioning BLAS interface
  2521. @table @asis
  2522. @item @emph{Description}:
  2523. This partitions a dense Matrix into horizontal blocks.
  2524. @item @emph{Prototype}:
  2525. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2526. @end table
  2527. @table @asis
  2528. @item @emph{Description}:
  2529. This partitions a dense Matrix into vertical blocks.
  2530. @item @emph{Prototype}:
  2531. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2532. @end table
  2533. @node Partitioning Vector Data
  2534. @subsubsection Partitioning Vector Data
  2535. @table @asis
  2536. @item @emph{Description}:
  2537. This partitions a vector into blocks of the same size.
  2538. @item @emph{Prototype}:
  2539. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2540. @end table
  2541. @table @asis
  2542. @item @emph{Description}:
  2543. This partitions a vector into blocks of sizes given in @code{filter_arg_ptr}.
  2544. @item @emph{Prototype}:
  2545. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2546. @end table
  2547. @table @asis
  2548. @item @emph{Description}:
  2549. This partitions a vector into two blocks, the first block size being given in @code{filter_arg}.
  2550. @item @emph{Prototype}:
  2551. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2552. @end table
  2553. @node Partitioning Block Data
  2554. @subsubsection Partitioning Block Data
  2555. @table @asis
  2556. @item @emph{Description}:
  2557. This partitions a 3D matrix along the X axis.
  2558. @item @emph{Prototype}:
  2559. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2560. @end table
  2561. @node Codelets and Tasks
  2562. @section Codelets and Tasks
  2563. @menu
  2564. * struct starpu_codelet:: StarPU codelet structure
  2565. * struct starpu_task:: StarPU task structure
  2566. * starpu_task_init:: Initialize a Task
  2567. * starpu_task_create:: Allocate and Initialize a Task
  2568. * starpu_task_deinit:: Release all the resources used by a Task
  2569. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2570. * starpu_task_wait:: Wait for the termination of a Task
  2571. * starpu_task_submit:: Submit a Task
  2572. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2573. * starpu_get_current_task:: Return the task currently executed by the worker
  2574. * starpu_display_codelet_stats:: Display statistics
  2575. @end menu
  2576. @node struct starpu_codelet
  2577. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2578. @table @asis
  2579. @item @emph{Description}:
  2580. The codelet structure describes a kernel that is possibly implemented on various
  2581. targets. For compatibility, make sure to initialize the whole structure to zero.
  2582. @item @emph{Fields}:
  2583. @table @asis
  2584. @item @code{where}:
  2585. Indicates which types of processing units are able to execute the codelet.
  2586. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2587. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2588. indicates that it is only available on Cell SPUs.
  2589. @item @code{cpu_func} (optional):
  2590. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2591. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2592. argument being the array of data managed by the data management library, and
  2593. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2594. field of the @code{starpu_task} structure.
  2595. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2596. the @code{where} field, it must be non-null otherwise.
  2597. @item @code{cuda_func} (optional):
  2598. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2599. must be a host-function written in the CUDA runtime API}. Its prototype must
  2600. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2601. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2602. field, it must be non-null otherwise.
  2603. @item @code{opencl_func} (optional):
  2604. Is a function pointer to the OpenCL implementation of the codelet. Its
  2605. prototype must be:
  2606. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2607. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2608. @code{where} field, it must be non-null otherwise.
  2609. @item @code{gordon_func} (optional):
  2610. This is the index of the Cell SPU implementation within the Gordon library.
  2611. See Gordon documentation for more details on how to register a kernel and
  2612. retrieve its index.
  2613. @item @code{nbuffers}:
  2614. Specifies the number of arguments taken by the codelet. These arguments are
  2615. managed by the DSM and are accessed from the @code{void *buffers[]}
  2616. array. The constant argument passed with the @code{cl_arg} field of the
  2617. @code{starpu_task} structure is not counted in this number. This value should
  2618. not be above @code{STARPU_NMAXBUFS}.
  2619. @item @code{model} (optional):
  2620. This is a pointer to the task duration performance model associated to this
  2621. codelet. This optional field is ignored when set to @code{NULL}.
  2622. TODO
  2623. @item @code{power_model} (optional):
  2624. This is a pointer to the task power consumption performance model associated
  2625. to this codelet. This optional field is ignored when set to @code{NULL}.
  2626. In the case of parallel codelets, this has to account for all processing units
  2627. involved in the parallel execution.
  2628. TODO
  2629. @end table
  2630. @end table
  2631. @node struct starpu_task
  2632. @subsection @code{struct starpu_task} -- StarPU task structure
  2633. @table @asis
  2634. @item @emph{Description}:
  2635. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2636. processing units managed by StarPU. It instantiates a codelet. It can either be
  2637. allocated dynamically with the @code{starpu_task_create} method, or declared
  2638. statically. In the latter case, the programmer has to zero the
  2639. @code{starpu_task} structure and to fill the different fields properly. The
  2640. indicated default values correspond to the configuration of a task allocated
  2641. with @code{starpu_task_create}.
  2642. @item @emph{Fields}:
  2643. @table @asis
  2644. @item @code{cl}:
  2645. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2646. describes where the kernel should be executed, and supplies the appropriate
  2647. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2648. such empty tasks can be useful for synchronization purposes.
  2649. @item @code{buffers}:
  2650. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2651. different pieces of data accessed by the task, and how they should be accessed.
  2652. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2653. @code{handle} field specifies the handle of the piece of data, and the
  2654. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2655. of entries in this array must be specified in the @code{nbuffers} field of the
  2656. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2657. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2658. option when configuring StarPU.
  2659. @item @code{cl_arg} (optional) (default = NULL):
  2660. This pointer is passed to the codelet through the second argument
  2661. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2662. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2663. argument.
  2664. @item @code{cl_arg_size} (optional, Cell specific):
  2665. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2666. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2667. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2668. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2669. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2670. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2671. codelets.
  2672. @item @code{callback_func} (optional) (default = @code{NULL}):
  2673. This is a function pointer of prototype @code{void (*f)(void *)} which
  2674. specifies a possible callback. If this pointer is non-null, the callback
  2675. function is executed @emph{on the host} after the execution of the task. The
  2676. callback is passed the value contained in the @code{callback_arg} field. No
  2677. callback is executed if the field is set to @code{NULL}.
  2678. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2679. This is the pointer passed to the callback function. This field is ignored if
  2680. the @code{callback_func} is set to @code{NULL}.
  2681. @item @code{use_tag} (optional) (default = 0):
  2682. If set, this flag indicates that the task should be associated with the tag
  2683. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2684. with the task and to express task dependencies easily.
  2685. @item @code{tag_id}:
  2686. This fields contains the tag associated to the task if the @code{use_tag} field
  2687. was set, it is ignored otherwise.
  2688. @item @code{synchronous}:
  2689. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2690. returns only when the task has been executed (or if no worker is able to
  2691. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2692. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2693. This field indicates a level of priority for the task. This is an integer value
  2694. that must be set between the return values of the
  2695. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2696. and that of the @code{starpu_sched_get_max_priority} for the most important
  2697. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2698. are provided for convenience and respectively returns value of
  2699. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2700. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2701. order to allow static task initialization. Scheduling strategies that take
  2702. priorities into account can use this parameter to take better scheduling
  2703. decisions, but the scheduling policy may also ignore it.
  2704. @item @code{execute_on_a_specific_worker} (default = 0):
  2705. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2706. task to the worker specified by the @code{workerid} field.
  2707. @item @code{workerid} (optional):
  2708. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2709. which is the identifier of the worker that should process this task (as
  2710. returned by @code{starpu_worker_get_id}). This field is ignored if
  2711. @code{execute_on_a_specific_worker} field is set to 0.
  2712. @item @code{detach} (optional) (default = 1):
  2713. If this flag is set, it is not possible to synchronize with the task
  2714. by the means of @code{starpu_task_wait} later on. Internal data structures
  2715. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2716. flag is not set.
  2717. @item @code{destroy} (optional) (default = 1):
  2718. If this flag is set, the task structure will automatically be freed, either
  2719. after the execution of the callback if the task is detached, or during
  2720. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2721. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2722. called explicitly. Setting this flag for a statically allocated task structure
  2723. will result in undefined behaviour.
  2724. @item @code{predicted} (output field):
  2725. Predicted duration of the task. This field is only set if the scheduling
  2726. strategy used performance models.
  2727. @end table
  2728. @end table
  2729. @node starpu_task_init
  2730. @subsection @code{starpu_task_init} -- Initialize a Task
  2731. @table @asis
  2732. @item @emph{Description}:
  2733. Initialize a task structure with default values. This function is implicitly
  2734. called by @code{starpu_task_create}. By default, tasks initialized with
  2735. @code{starpu_task_init} must be deinitialized explicitly with
  2736. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2737. constant @code{STARPU_TASK_INITIALIZER}.
  2738. @item @emph{Prototype}:
  2739. @code{void starpu_task_init(struct starpu_task *task);}
  2740. @end table
  2741. @node starpu_task_create
  2742. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2743. @table @asis
  2744. @item @emph{Description}:
  2745. Allocate a task structure and initialize it with default values. Tasks
  2746. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2747. task is terminated. If the destroy flag is explicitly unset, the resources used
  2748. by the task are freed by calling
  2749. @code{starpu_task_destroy}.
  2750. @item @emph{Prototype}:
  2751. @code{struct starpu_task *starpu_task_create(void);}
  2752. @end table
  2753. @node starpu_task_deinit
  2754. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2755. @table @asis
  2756. @item @emph{Description}:
  2757. Release all the structures automatically allocated to execute the task. This is
  2758. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2759. freed. This should be used for statically allocated tasks for instance.
  2760. @item @emph{Prototype}:
  2761. @code{void starpu_task_deinit(struct starpu_task *task);}
  2762. @end table
  2763. @node starpu_task_destroy
  2764. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2765. @table @asis
  2766. @item @emph{Description}:
  2767. Free the resource allocated during @code{starpu_task_create}. This function can be
  2768. called automatically after the execution of a task by setting the
  2769. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2770. Calling this function on a statically allocated task results in an undefined
  2771. behaviour.
  2772. @item @emph{Prototype}:
  2773. @code{void starpu_task_destroy(struct starpu_task *task);}
  2774. @end table
  2775. @node starpu_task_wait
  2776. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2777. @table @asis
  2778. @item @emph{Description}:
  2779. This function blocks until the task has been executed. It is not possible to
  2780. synchronize with a task more than once. It is not possible to wait for
  2781. synchronous or detached tasks.
  2782. @item @emph{Return value}:
  2783. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2784. indicates that the specified task was either synchronous or detached.
  2785. @item @emph{Prototype}:
  2786. @code{int starpu_task_wait(struct starpu_task *task);}
  2787. @end table
  2788. @node starpu_task_submit
  2789. @subsection @code{starpu_task_submit} -- Submit a Task
  2790. @table @asis
  2791. @item @emph{Description}:
  2792. This function submits a task to StarPU. Calling this function does
  2793. not mean that the task will be executed immediately as there can be data or task
  2794. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2795. scheduling this task with respect to such dependencies.
  2796. This function returns immediately if the @code{synchronous} field of the
  2797. @code{starpu_task} structure was set to 0, and block until the termination of
  2798. the task otherwise. It is also possible to synchronize the application with
  2799. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2800. function for instance.
  2801. @item @emph{Return value}:
  2802. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2803. means that there is no worker able to process this task (e.g. there is no GPU
  2804. available and this task is only implemented for CUDA devices).
  2805. @item @emph{Prototype}:
  2806. @code{int starpu_task_submit(struct starpu_task *task);}
  2807. @end table
  2808. @node starpu_task_wait_for_all
  2809. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2810. @table @asis
  2811. @item @emph{Description}:
  2812. This function blocks until all the tasks that were submitted are terminated.
  2813. @item @emph{Prototype}:
  2814. @code{void starpu_task_wait_for_all(void);}
  2815. @end table
  2816. @node starpu_get_current_task
  2817. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2818. @table @asis
  2819. @item @emph{Description}:
  2820. This function returns the task currently executed by the worker, or
  2821. NULL if it is called either from a thread that is not a task or simply
  2822. because there is no task being executed at the moment.
  2823. @item @emph{Prototype}:
  2824. @code{struct starpu_task *starpu_get_current_task(void);}
  2825. @end table
  2826. @node starpu_display_codelet_stats
  2827. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2828. @table @asis
  2829. @item @emph{Description}:
  2830. Output on @code{stderr} some statistics on the codelet @code{cl}.
  2831. @item @emph{Prototype}:
  2832. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2833. @end table
  2834. @c Callbacks : what can we put in callbacks ?
  2835. @node Explicit Dependencies
  2836. @section Explicit Dependencies
  2837. @menu
  2838. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2839. * starpu_tag_t:: Task logical identifier
  2840. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2841. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2842. * starpu_tag_wait:: Block until a Tag is terminated
  2843. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2844. * starpu_tag_remove:: Destroy a Tag
  2845. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2846. @end menu
  2847. @node starpu_task_declare_deps_array
  2848. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2849. @table @asis
  2850. @item @emph{Description}:
  2851. Declare task dependencies between a @code{task} and an array of tasks of length
  2852. @code{ndeps}. This function must be called prior to the submission of the task,
  2853. but it may called after the submission or the execution of the tasks in the
  2854. array provided the tasks are still valid (ie. they were not automatically
  2855. destroyed). Calling this function on a task that was already submitted or with
  2856. an entry of @code{task_array} that is not a valid task anymore results in an
  2857. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  2858. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2859. same task, in this case, the dependencies are added. It is possible to have
  2860. redundancy in the task dependencies.
  2861. @item @emph{Prototype}:
  2862. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  2863. @end table
  2864. @node starpu_tag_t
  2865. @subsection @code{starpu_tag_t} -- Task logical identifier
  2866. @table @asis
  2867. @item @emph{Description}:
  2868. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  2869. dependencies between tasks by the means of those tags. To do so, fill the
  2870. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2871. be arbitrary) and set the @code{use_tag} field to 1.
  2872. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2873. not be started until the tasks which holds the declared dependency tags are
  2874. completed.
  2875. @end table
  2876. @node starpu_tag_declare_deps
  2877. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  2878. @table @asis
  2879. @item @emph{Description}:
  2880. Specify the dependencies of the task identified by tag @code{id}. The first
  2881. argument specifies the tag which is configured, the second argument gives the
  2882. number of tag(s) on which @code{id} depends. The following arguments are the
  2883. tags which have to be terminated to unlock the task.
  2884. This function must be called before the associated task is submitted to StarPU
  2885. with @code{starpu_task_submit}.
  2886. @item @emph{Remark}
  2887. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2888. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2889. typically need to be explicitly casted. Using the
  2890. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2891. @item @emph{Prototype}:
  2892. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  2893. @item @emph{Example}:
  2894. @cartouche
  2895. @example
  2896. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2897. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2898. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2899. @end example
  2900. @end cartouche
  2901. @end table
  2902. @node starpu_tag_declare_deps_array
  2903. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  2904. @table @asis
  2905. @item @emph{Description}:
  2906. This function is similar to @code{starpu_tag_declare_deps}, except that its
  2907. does not take a variable number of arguments but an array of tags of size
  2908. @code{ndeps}.
  2909. @item @emph{Prototype}:
  2910. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  2911. @item @emph{Example}:
  2912. @cartouche
  2913. @example
  2914. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2915. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  2916. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  2917. @end example
  2918. @end cartouche
  2919. @end table
  2920. @node starpu_tag_wait
  2921. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  2922. @table @asis
  2923. @item @emph{Description}:
  2924. This function blocks until the task associated to tag @code{id} has been
  2925. executed. This is a blocking call which must therefore not be called within
  2926. tasks or callbacks, but only from the application directly. It is possible to
  2927. synchronize with the same tag multiple times, as long as the
  2928. @code{starpu_tag_remove} function is not called. Note that it is still
  2929. possible to synchronize with a tag associated to a task which @code{starpu_task}
  2930. data structure was freed (e.g. if the @code{destroy} flag of the
  2931. @code{starpu_task} was enabled).
  2932. @item @emph{Prototype}:
  2933. @code{void starpu_tag_wait(starpu_tag_t id);}
  2934. @end table
  2935. @node starpu_tag_wait_array
  2936. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  2937. @table @asis
  2938. @item @emph{Description}:
  2939. This function is similar to @code{starpu_tag_wait} except that it blocks until
  2940. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  2941. terminated.
  2942. @item @emph{Prototype}:
  2943. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  2944. @end table
  2945. @node starpu_tag_remove
  2946. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  2947. @table @asis
  2948. @item @emph{Description}:
  2949. This function releases the resources associated to tag @code{id}. It can be
  2950. called once the corresponding task has been executed and when there is
  2951. no other tag that depend on this tag anymore.
  2952. @item @emph{Prototype}:
  2953. @code{void starpu_tag_remove(starpu_tag_t id);}
  2954. @end table
  2955. @node starpu_tag_notify_from_apps
  2956. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  2957. @table @asis
  2958. @item @emph{Description}:
  2959. This function explicitly unlocks tag @code{id}. It may be useful in the
  2960. case of applications which execute part of their computation outside StarPU
  2961. tasks (e.g. third-party libraries). It is also provided as a
  2962. convenient tool for the programmer, for instance to entirely construct the task
  2963. DAG before actually giving StarPU the opportunity to execute the tasks.
  2964. @item @emph{Prototype}:
  2965. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  2966. @end table
  2967. @node Implicit Data Dependencies
  2968. @section Implicit Data Dependencies
  2969. @menu
  2970. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  2971. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  2972. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  2973. @end menu
  2974. In this section, we describe how StarPU makes it possible to insert implicit
  2975. task dependencies in order to enforce sequential data consistency. When this
  2976. data consistency is enabled on a specific data handle, any data access will
  2977. appear as sequentially consistent from the application. For instance, if the
  2978. application submits two tasks that access the same piece of data in read-only
  2979. mode, and then a third task that access it in write mode, dependencies will be
  2980. added between the two first tasks and the third one. Implicit data dependencies
  2981. are also inserted in the case of data accesses from the application.
  2982. @node starpu_data_set_default_sequential_consistency_flag
  2983. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  2984. @table @asis
  2985. @item @emph{Description}:
  2986. Set the default sequential consistency flag. If a non-zero value is passed, a
  2987. sequential data consistency will be enforced for all handles registered after
  2988. this function call, otherwise it is disabled. By default, StarPU enables
  2989. sequential data consistency. It is also possible to select the data consistency
  2990. mode of a specific data handle with the
  2991. @code{starpu_data_set_sequential_consistency_flag} function.
  2992. @item @emph{Prototype}:
  2993. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  2994. @end table
  2995. @node starpu_data_get_default_sequential_consistency_flag
  2996. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  2997. @table @asis
  2998. @item @emph{Description}:
  2999. This function returns the current default sequential consistency flag.
  3000. @item @emph{Prototype}:
  3001. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  3002. @end table
  3003. @node starpu_data_set_sequential_consistency_flag
  3004. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  3005. @table @asis
  3006. @item @emph{Description}:
  3007. Select the data consistency mode associated to a data handle. The consistency
  3008. mode set using this function has the priority over the default mode which can
  3009. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3010. @item @emph{Prototype}:
  3011. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  3012. @end table
  3013. @node Performance Model API
  3014. @section Performance Model API
  3015. @menu
  3016. * starpu_load_history_debug::
  3017. * starpu_perfmodel_debugfilepath::
  3018. * starpu_perfmodel_get_arch_name::
  3019. * starpu_force_bus_sampling::
  3020. @end menu
  3021. @node starpu_load_history_debug
  3022. @subsection @code{starpu_load_history_debug}
  3023. @table @asis
  3024. @item @emph{Description}:
  3025. TODO
  3026. @item @emph{Prototype}:
  3027. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  3028. @end table
  3029. @node starpu_perfmodel_debugfilepath
  3030. @subsection @code{starpu_perfmodel_debugfilepath}
  3031. @table @asis
  3032. @item @emph{Description}:
  3033. TODO
  3034. @item @emph{Prototype}:
  3035. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  3036. @end table
  3037. @node starpu_perfmodel_get_arch_name
  3038. @subsection @code{starpu_perfmodel_get_arch_name}
  3039. @table @asis
  3040. @item @emph{Description}:
  3041. TODO
  3042. @item @emph{Prototype}:
  3043. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  3044. @end table
  3045. @node starpu_force_bus_sampling
  3046. @subsection @code{starpu_force_bus_sampling}
  3047. @table @asis
  3048. @item @emph{Description}:
  3049. This forces sampling the bus performance model again.
  3050. @item @emph{Prototype}:
  3051. @code{void starpu_force_bus_sampling(void);}
  3052. @end table
  3053. @node Profiling API
  3054. @section Profiling API
  3055. @menu
  3056. * starpu_profiling_status_set:: starpu_profiling_status_set
  3057. * starpu_profiling_status_get:: starpu_profiling_status_get
  3058. * struct starpu_task_profiling_info:: task profiling information
  3059. * struct starpu_worker_profiling_info:: worker profiling information
  3060. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3061. * struct starpu_bus_profiling_info:: bus profiling information
  3062. * starpu_bus_get_count::
  3063. * starpu_bus_get_id::
  3064. * starpu_bus_get_src::
  3065. * starpu_bus_get_dst::
  3066. * starpu_timing_timespec_delay_us::
  3067. * starpu_timing_timespec_to_us::
  3068. * starpu_bus_profiling_helper_display_summary::
  3069. * starpu_worker_profiling_helper_display_summary::
  3070. @end menu
  3071. @node starpu_profiling_status_set
  3072. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3073. @table @asis
  3074. @item @emph{Description}:
  3075. Thie function sets the profiling status. Profiling is activated by passing
  3076. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3077. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3078. resets all profiling measurements. When profiling is enabled, the
  3079. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3080. to a valid @code{struct starpu_task_profiling_info} structure containing
  3081. information about the execution of the task.
  3082. @item @emph{Return value}:
  3083. Negative return values indicate an error, otherwise the previous status is
  3084. returned.
  3085. @item @emph{Prototype}:
  3086. @code{int starpu_profiling_status_set(int status);}
  3087. @end table
  3088. @node starpu_profiling_status_get
  3089. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3090. @table @asis
  3091. @item @emph{Description}:
  3092. Return the current profiling status or a negative value in case there was an error.
  3093. @item @emph{Prototype}:
  3094. @code{int starpu_profiling_status_get(void);}
  3095. @end table
  3096. @node struct starpu_task_profiling_info
  3097. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3098. @table @asis
  3099. @item @emph{Description}:
  3100. This structure contains information about the execution of a task. It is
  3101. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3102. structure if profiling was enabled.
  3103. @item @emph{Fields}:
  3104. @table @asis
  3105. @item @code{submit_time}:
  3106. Date of task submission (relative to the initialization of StarPU).
  3107. @item @code{start_time}:
  3108. Date of task execution beginning (relative to the initialization of StarPU).
  3109. @item @code{end_time}:
  3110. Date of task execution termination (relative to the initialization of StarPU).
  3111. @item @code{workerid}:
  3112. Identifier of the worker which has executed the task.
  3113. @end table
  3114. @end table
  3115. @node struct starpu_worker_profiling_info
  3116. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3117. @table @asis
  3118. @item @emph{Description}:
  3119. This structure contains the profiling information associated to a worker.
  3120. @item @emph{Fields}:
  3121. @table @asis
  3122. @item @code{start_time}:
  3123. Starting date for the reported profiling measurements.
  3124. @item @code{total_time}:
  3125. Duration of the profiling measurement interval.
  3126. @item @code{executing_time}:
  3127. Time spent by the worker to execute tasks during the profiling measurement interval.
  3128. @item @code{sleeping_time}:
  3129. Time spent idling by the worker during the profiling measurement interval.
  3130. @item @code{executed_tasks}:
  3131. Number of tasks executed by the worker during the profiling measurement interval.
  3132. @end table
  3133. @end table
  3134. @node starpu_worker_get_profiling_info
  3135. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3136. @table @asis
  3137. @item @emph{Description}:
  3138. Get the profiling info associated to the worker identified by @code{workerid},
  3139. and reset the profiling measurements. If the @code{worker_info} argument is
  3140. NULL, only reset the counters associated to worker @code{workerid}.
  3141. @item @emph{Return value}:
  3142. Upon successful completion, this function returns 0. Otherwise, a negative
  3143. value is returned.
  3144. @item @emph{Prototype}:
  3145. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3146. @end table
  3147. @node struct starpu_bus_profiling_info
  3148. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3149. @table @asis
  3150. @item @emph{Description}:
  3151. TODO
  3152. @item @emph{Fields}:
  3153. @table @asis
  3154. @item @code{start_time}:
  3155. TODO
  3156. @item @code{total_time}:
  3157. TODO
  3158. @item @code{transferred_bytes}:
  3159. TODO
  3160. @item @code{transfer_count}:
  3161. TODO
  3162. @end table
  3163. @end table
  3164. @node starpu_bus_get_count
  3165. @subsection @code{starpu_bus_get_count}
  3166. @table @asis
  3167. @item @emph{Description}:
  3168. TODO
  3169. @item @emph{Prototype}:
  3170. @code{int starpu_bus_get_count(void);}
  3171. @end table
  3172. @node starpu_bus_get_id
  3173. @subsection @code{starpu_bus_get_id}
  3174. @table @asis
  3175. @item @emph{Description}:
  3176. TODO
  3177. @item @emph{Prototype}:
  3178. @code{int starpu_bus_get_id(int src, int dst);}
  3179. @end table
  3180. @node starpu_bus_get_src
  3181. @subsection @code{starpu_bus_get_src}
  3182. @table @asis
  3183. @item @emph{Description}:
  3184. TODO
  3185. @item @emph{Prototype}:
  3186. @code{int starpu_bus_get_src(int busid);}
  3187. @end table
  3188. @node starpu_bus_get_dst
  3189. @subsection @code{starpu_bus_get_dst}
  3190. @table @asis
  3191. @item @emph{Description}:
  3192. TODO
  3193. @item @emph{Prototype}:
  3194. @code{int starpu_bus_get_dst(int busid);}
  3195. @end table
  3196. @node starpu_timing_timespec_delay_us
  3197. @subsection @code{starpu_timing_timespec_delay_us}
  3198. @table @asis
  3199. @item @emph{Description}:
  3200. TODO
  3201. @item @emph{Prototype}:
  3202. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  3203. @end table
  3204. @node starpu_timing_timespec_to_us
  3205. @subsection @code{starpu_timing_timespec_to_us}
  3206. @table @asis
  3207. @item @emph{Description}:
  3208. TODO
  3209. @item @emph{Prototype}:
  3210. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  3211. @end table
  3212. @node starpu_bus_profiling_helper_display_summary
  3213. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3214. @table @asis
  3215. @item @emph{Description}:
  3216. TODO
  3217. @item @emph{Prototype}:
  3218. @code{void starpu_bus_profiling_helper_display_summary(void);}
  3219. @end table
  3220. @node starpu_worker_profiling_helper_display_summary
  3221. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3222. @table @asis
  3223. @item @emph{Description}:
  3224. TODO
  3225. @item @emph{Prototype}:
  3226. @code{void starpu_worker_profiling_helper_display_summary(void);}
  3227. @end table
  3228. @node CUDA extensions
  3229. @section CUDA extensions
  3230. @c void starpu_data_malloc_pinned_if_possible(float **A, size_t dim);
  3231. @menu
  3232. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3233. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3234. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3235. @end menu
  3236. @node starpu_cuda_get_local_stream
  3237. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3238. @table @asis
  3239. @item @emph{Description}:
  3240. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3241. function is only provided for convenience so that programmers can easily use
  3242. asynchronous operations within codelets without having to create a stream by
  3243. hand. Note that the application is not forced to use the stream provided by
  3244. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3245. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3246. the likelihood of having all transfers overlapped.
  3247. @item @emph{Prototype}:
  3248. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  3249. @end table
  3250. @node starpu_helper_cublas_init
  3251. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3252. @table @asis
  3253. @item @emph{Description}:
  3254. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3255. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3256. controlled by StarPU. This call blocks until CUBLAS has been properly
  3257. initialized on every device.
  3258. @item @emph{Prototype}:
  3259. @code{void starpu_helper_cublas_init(void);}
  3260. @end table
  3261. @node starpu_helper_cublas_shutdown
  3262. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3263. @table @asis
  3264. @item @emph{Description}:
  3265. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3266. @item @emph{Prototype}:
  3267. @code{void starpu_helper_cublas_shutdown(void);}
  3268. @end table
  3269. @node OpenCL extensions
  3270. @section OpenCL extensions
  3271. @menu
  3272. * Enabling OpenCL:: Enabling OpenCL
  3273. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3274. * Loading OpenCL kernels:: Loading OpenCL kernels
  3275. * OpenCL statistics:: Collecting statistics from OpenCL
  3276. @end menu
  3277. @node Enabling OpenCL
  3278. @subsection Enabling OpenCL
  3279. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3280. enabled by default. To enable OpenCL, you need either to disable CUDA
  3281. when configuring StarPU:
  3282. @example
  3283. % ./configure --disable-cuda
  3284. @end example
  3285. or when running applications:
  3286. @example
  3287. % STARPU_NCUDA=0 ./application
  3288. @end example
  3289. OpenCL will automatically be started on any device not yet used by
  3290. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3291. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3292. so:
  3293. @example
  3294. % STARPU_NCUDA=2 ./application
  3295. @end example
  3296. @node Compiling OpenCL kernels
  3297. @subsection Compiling OpenCL kernels
  3298. Source codes for OpenCL kernels can be stored in a file or in a
  3299. string. StarPU provides functions to build the program executable for
  3300. each available OpenCL device as a @code{cl_program} object. This
  3301. program executable can then be loaded within a specific queue as
  3302. explained in the next section. These are only helpers, Applications
  3303. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3304. use (e.g. different programs on the different OpenCL devices, for
  3305. relocation purpose for instance).
  3306. @menu
  3307. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3308. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3309. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3310. @end menu
  3311. @node starpu_opencl_load_opencl_from_file
  3312. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3313. @table @asis
  3314. @item @emph{Description}:
  3315. TODO
  3316. @item @emph{Prototype}:
  3317. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs);}
  3318. @end table
  3319. @node starpu_opencl_load_opencl_from_string
  3320. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3321. @table @asis
  3322. @item @emph{Description}:
  3323. TODO
  3324. @item @emph{Prototype}:
  3325. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs);}
  3326. @end table
  3327. @node starpu_opencl_unload_opencl
  3328. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3329. @table @asis
  3330. @item @emph{Description}:
  3331. TODO
  3332. @item @emph{Prototype}:
  3333. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3334. @end table
  3335. @node Loading OpenCL kernels
  3336. @subsection Loading OpenCL kernels
  3337. @menu
  3338. * starpu_opencl_load_kernel:: Loading a kernel
  3339. * starpu_opencl_relase_kernel:: Releasing a kernel
  3340. @end menu
  3341. @node starpu_opencl_load_kernel
  3342. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3343. @table @asis
  3344. @item @emph{Description}:
  3345. TODO
  3346. @item @emph{Prototype}:
  3347. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3348. }
  3349. @end table
  3350. @node starpu_opencl_relase_kernel
  3351. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3352. @table @asis
  3353. @item @emph{Description}:
  3354. TODO
  3355. @item @emph{Prototype}:
  3356. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3357. @end table
  3358. @node OpenCL statistics
  3359. @subsection OpenCL statistics
  3360. @menu
  3361. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3362. @end menu
  3363. @node starpu_opencl_collect_stats
  3364. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3365. @table @asis
  3366. @item @emph{Description}:
  3367. After termination of the kernels, the OpenCL codelet should call this function
  3368. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3369. collect statistics about the kernel execution (used cycles, consumed power).
  3370. @item @emph{Prototype}:
  3371. @code{int starpu_opencl_collect_stats(cl_event event);}
  3372. @end table
  3373. @node Cell extensions
  3374. @section Cell extensions
  3375. nothing yet.
  3376. @node Miscellaneous helpers
  3377. @section Miscellaneous helpers
  3378. @menu
  3379. * starpu_data_cpy:: Copy a data handle into another data handle
  3380. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3381. @end menu
  3382. @node starpu_data_cpy
  3383. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3384. @table @asis
  3385. @item @emph{Description}:
  3386. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3387. The @code{asynchronous} parameter indicates whether the function should
  3388. block or not. In the case of an asynchronous call, it is possible to
  3389. synchronize with the termination of this operation either by the means of
  3390. implicit dependencies (if enabled) or by calling
  3391. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3392. this callback function is executed after the handle has been copied, and it is
  3393. given the @code{callback_arg} pointer as argument.
  3394. @item @emph{Prototype}:
  3395. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3396. @end table
  3397. @node starpu_execute_on_each_worker
  3398. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3399. @table @asis
  3400. @item @emph{Description}:
  3401. When calling this method, the offloaded function specified by the first argument is
  3402. executed by every StarPU worker that may execute the function.
  3403. The second argument is passed to the offloaded function.
  3404. The last argument specifies on which types of processing units the function
  3405. should be executed. Similarly to the @code{where} field of the
  3406. @code{starpu_codelet} structure, it is possible to specify that the function
  3407. should be executed on every CUDA device and every CPU by passing
  3408. @code{STARPU_CPU|STARPU_CUDA}.
  3409. This function blocks until the function has been executed on every appropriate
  3410. processing units, so that it may not be called from a callback function for
  3411. instance.
  3412. @item @emph{Prototype}:
  3413. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3414. @end table
  3415. @c ---------------------------------------------------------------------
  3416. @c Advanced Topics
  3417. @c ---------------------------------------------------------------------
  3418. @node Advanced Topics
  3419. @chapter Advanced Topics
  3420. @menu
  3421. * Defining a new data interface::
  3422. * Defining a new scheduling policy::
  3423. @end menu
  3424. @node Defining a new data interface
  3425. @section Defining a new data interface
  3426. @menu
  3427. * struct starpu_data_interface_ops_t:: Per-interface methods
  3428. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3429. * An example of data interface:: An example of data interface
  3430. @end menu
  3431. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3432. @node struct starpu_data_interface_ops_t
  3433. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3434. @table @asis
  3435. @item @emph{Description}:
  3436. TODO describe all the different fields
  3437. @end table
  3438. @node struct starpu_data_copy_methods
  3439. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3440. @table @asis
  3441. @item @emph{Description}:
  3442. TODO describe all the different fields
  3443. @end table
  3444. @node An example of data interface
  3445. @subsection An example of data interface
  3446. @table @asis
  3447. TODO
  3448. @end table
  3449. @node Defining a new scheduling policy
  3450. @section Defining a new scheduling policy
  3451. TODO
  3452. A full example showing how to define a new scheduling policy is available in
  3453. the StarPU sources in the directory @code{examples/scheduler/}.
  3454. @menu
  3455. * struct starpu_sched_policy_s::
  3456. * starpu_worker_set_sched_condition::
  3457. * starpu_sched_set_min_priority:: Set the minimum priority level
  3458. * starpu_sched_set_max_priority:: Set the maximum priority level
  3459. * Source code::
  3460. @end menu
  3461. @node struct starpu_sched_policy_s
  3462. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3463. @table @asis
  3464. @item @emph{Description}:
  3465. This structure contains all the methods that implement a scheduling policy. An
  3466. application may specify which scheduling strategy in the @code{sched_policy}
  3467. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3468. function.
  3469. @item @emph{Fields}:
  3470. @table @asis
  3471. @item @code{init_sched}:
  3472. Initialize the scheduling policy.
  3473. @item @code{deinit_sched}:
  3474. Cleanup the scheduling policy.
  3475. @item @code{push_task}:
  3476. Insert a task into the scheduler.
  3477. @item @code{push_prio_task}:
  3478. Insert a priority task into the scheduler.
  3479. @item @code{pop_task}:
  3480. Get a task from the scheduler. The mutex associated to the worker is already
  3481. taken when this method is called.
  3482. @item @code{pop_every_task}:
  3483. Remove all available tasks from the scheduler (tasks are chained by the means
  3484. of the prev and next fields of the starpu_task structure). The mutex associated
  3485. to the worker is already taken when this method is called.
  3486. @item @code{post_exec_hook} (optionnal):
  3487. This method is called every time a task has been executed.
  3488. @item @code{policy_name}:
  3489. Name of the policy (optionnal).
  3490. @item @code{policy_description}:
  3491. Description of the policy (optionnal).
  3492. @end table
  3493. @end table
  3494. @node starpu_worker_set_sched_condition
  3495. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3496. @table @asis
  3497. @item @emph{Description}:
  3498. When there is no available task for a worker, StarPU blocks this worker on a
  3499. condition variable. This function specifies which condition variable (and the
  3500. associated mutex) should be used to block (and to wake up) a worker. Note that
  3501. multiple workers may use the same condition variable. For instance, in the case
  3502. of a scheduling strategy with a single task queue, the same condition variable
  3503. would be used to block and wake up all workers.
  3504. The initialization method of a scheduling strategy (@code{init_sched}) must
  3505. call this function once per worker.
  3506. @item @emph{Prototype}:
  3507. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3508. @end table
  3509. @node starpu_sched_set_min_priority
  3510. @subsection @code{starpu_sched_set_min_priority}
  3511. @table @asis
  3512. @item @emph{Description}:
  3513. Defines the minimum priority level supported by the scheduling policy. The
  3514. default minimum priority level is the same as the default priority level which
  3515. is 0 by convention. The application may access that value by calling the
  3516. @code{starpu_sched_get_min_priority} function. This function should only be
  3517. called from the initialization method of the scheduling policy, and should not
  3518. be used directly from the application.
  3519. @item @emph{Prototype}:
  3520. @code{void starpu_sched_set_min_priority(int min_prio)}
  3521. @end table
  3522. @node starpu_sched_set_max_priority
  3523. @subsection @code{starpu_sched_set_max_priority}
  3524. @table @asis
  3525. @item @emph{Description}:
  3526. Defines the maximum priority level supported by the scheduling policy. The
  3527. default maximum priority level is 1. The application may access that value by
  3528. calling the @code{starpu_sched_get_max_priority} function. This function should
  3529. only be called from the initialization method of the scheduling policy, and
  3530. should not be used directly from the application.
  3531. @item @emph{Prototype}:
  3532. @code{void starpu_sched_set_min_priority(int max_prio)}
  3533. @end table
  3534. @node Source code
  3535. @subsection Source code
  3536. @cartouche
  3537. @smallexample
  3538. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3539. .init_sched = init_dummy_sched,
  3540. .deinit_sched = deinit_dummy_sched,
  3541. .push_task = push_task_dummy,
  3542. .push_prio_task = NULL,
  3543. .pop_task = pop_task_dummy,
  3544. .post_exec_hook = NULL,
  3545. .pop_every_task = NULL,
  3546. .policy_name = "dummy",
  3547. .policy_description = "dummy scheduling strategy"
  3548. @};
  3549. @end smallexample
  3550. @end cartouche
  3551. @c ---------------------------------------------------------------------
  3552. @c Appendices
  3553. @c ---------------------------------------------------------------------
  3554. @c ---------------------------------------------------------------------
  3555. @c Full source code for the 'Scaling a Vector' example
  3556. @c ---------------------------------------------------------------------
  3557. @node Full source code for the 'Scaling a Vector' example
  3558. @appendix Full source code for the 'Scaling a Vector' example
  3559. @menu
  3560. * Main application::
  3561. * CPU Kernel::
  3562. * CUDA Kernel::
  3563. * OpenCL Kernel::
  3564. @end menu
  3565. @node Main application
  3566. @section Main application
  3567. @smallexample
  3568. @include vector_scal_c.texi
  3569. @end smallexample
  3570. @node CPU Kernel
  3571. @section CPU Kernel
  3572. @smallexample
  3573. @include vector_scal_cpu.texi
  3574. @end smallexample
  3575. @node CUDA Kernel
  3576. @section CUDA Kernel
  3577. @smallexample
  3578. @include vector_scal_cuda.texi
  3579. @end smallexample
  3580. @node OpenCL Kernel
  3581. @section OpenCL Kernel
  3582. @menu
  3583. * Invoking the kernel::
  3584. * Source of the kernel::
  3585. @end menu
  3586. @node Invoking the kernel
  3587. @subsection Invoking the kernel
  3588. @smallexample
  3589. @include vector_scal_opencl.texi
  3590. @end smallexample
  3591. @node Source of the kernel
  3592. @subsection Source of the kernel
  3593. @smallexample
  3594. @include vector_scal_opencl_codelet.texi
  3595. @end smallexample
  3596. @bye