| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472 | 
							- /* dpbtrf.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- static doublereal c_b18 = 1.;
 
- static doublereal c_b21 = -1.;
 
- static integer c__33 = 33;
 
- /* Subroutine */ int dpbtrf_(char *uplo, integer *n, integer *kd, doublereal *
 
- 	ab, integer *ldab, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
 
-     /* Local variables */
 
-     integer i__, j, i2, i3, ib, nb, ii, jj;
 
-     doublereal work[1056]	/* was [33][32] */;
 
-     extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *);
 
-     extern logical lsame_(char *, char *);
 
-     extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 
 
- 	    integer *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), dsyrk_(
 
- 	    char *, char *, integer *, integer *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *),
 
- 	     dpbtf2_(char *, integer *, integer *, doublereal *, integer *, 
 
- 	    integer *), dpotf2_(char *, integer *, doublereal *, 
 
- 	    integer *, integer *), xerbla_(char *, integer *);
 
-     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DPBTRF computes the Cholesky factorization of a real symmetric */
 
- /*  positive definite band matrix A. */
 
- /*  The factorization has the form */
 
- /*     A = U**T * U,  if UPLO = 'U', or */
 
- /*     A = L  * L**T,  if UPLO = 'L', */
 
- /*  where U is an upper triangular matrix and L is lower triangular. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangle of A is stored; */
 
- /*          = 'L':  Lower triangle of A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  KD      (input) INTEGER */
 
- /*          The number of superdiagonals of the matrix A if UPLO = 'U', */
 
- /*          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */
 
- /*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
 
- /*          On entry, the upper or lower triangle of the symmetric band */
 
- /*          matrix A, stored in the first KD+1 rows of the array.  The */
 
- /*          j-th column of A is stored in the j-th column of the array AB */
 
- /*          as follows: */
 
- /*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
 
- /*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd). */
 
- /*          On exit, if INFO = 0, the triangular factor U or L from the */
 
- /*          Cholesky factorization A = U**T*U or A = L*L**T of the band */
 
- /*          matrix A, in the same storage format as A. */
 
- /*  LDAB    (input) INTEGER */
 
- /*          The leading dimension of the array AB.  LDAB >= KD+1. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, the leading minor of order i is not */
 
- /*                positive definite, and the factorization could not be */
 
- /*                completed. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The band storage scheme is illustrated by the following example, when */
 
- /*  N = 6, KD = 2, and UPLO = 'U': */
 
- /*  On entry:                       On exit: */
 
- /*      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46 */
 
- /*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56 */
 
- /*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66 */
 
- /*  Similarly, if UPLO = 'L' the format of A is as follows: */
 
- /*  On entry:                       On exit: */
 
- /*     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66 */
 
- /*     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   * */
 
- /*     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    * */
 
- /*  Array elements marked * are not used by the routine. */
 
- /*  Contributed by */
 
- /*  Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989 */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     ab_dim1 = *ldab;
 
-     ab_offset = 1 + ab_dim1;
 
-     ab -= ab_offset;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*kd < 0) {
 
- 	*info = -3;
 
-     } else if (*ldab < *kd + 1) {
 
- 	*info = -5;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DPBTRF", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Determine the block size for this environment */
 
-     nb = ilaenv_(&c__1, "DPBTRF", uplo, n, kd, &c_n1, &c_n1);
 
- /*     The block size must not exceed the semi-bandwidth KD, and must not */
 
- /*     exceed the limit set by the size of the local array WORK. */
 
-     nb = min(nb,32);
 
-     if (nb <= 1 || nb > *kd) {
 
- /*        Use unblocked code */
 
- 	dpbtf2_(uplo, n, kd, &ab[ab_offset], ldab, info);
 
-     } else {
 
- /*        Use blocked code */
 
- 	if (lsame_(uplo, "U")) {
 
- /*           Compute the Cholesky factorization of a symmetric band */
 
- /*           matrix, given the upper triangle of the matrix in band */
 
- /*           storage. */
 
- /*           Zero the upper triangle of the work array. */
 
- 	    i__1 = nb;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		i__2 = j - 1;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    work[i__ + j * 33 - 34] = 0.;
 
- /* L10: */
 
- 		}
 
- /* L20: */
 
- 	    }
 
- /*           Process the band matrix one diagonal block at a time. */
 
- 	    i__1 = *n;
 
- 	    i__2 = nb;
 
- 	    for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
 
- /* Computing MIN */
 
- 		i__3 = nb, i__4 = *n - i__ + 1;
 
- 		ib = min(i__3,i__4);
 
- /*              Factorize the diagonal block */
 
- 		i__3 = *ldab - 1;
 
- 		dpotf2_(uplo, &ib, &ab[*kd + 1 + i__ * ab_dim1], &i__3, &ii);
 
- 		if (ii != 0) {
 
- 		    *info = i__ + ii - 1;
 
- 		    goto L150;
 
- 		}
 
- 		if (i__ + ib <= *n) {
 
- /*                 Update the relevant part of the trailing submatrix. */
 
- /*                 If A11 denotes the diagonal block which has just been */
 
- /*                 factorized, then we need to update the remaining */
 
- /*                 blocks in the diagram: */
 
- /*                    A11   A12   A13 */
 
- /*                          A22   A23 */
 
- /*                                A33 */
 
- /*                 The numbers of rows and columns in the partitioning */
 
- /*                 are IB, I2, I3 respectively. The blocks A12, A22 and */
 
- /*                 A23 are empty if IB = KD. The upper triangle of A13 */
 
- /*                 lies outside the band. */
 
- /* Computing MIN */
 
- 		    i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
 
- 		    i2 = min(i__3,i__4);
 
- /* Computing MIN */
 
- 		    i__3 = ib, i__4 = *n - i__ - *kd + 1;
 
- 		    i3 = min(i__3,i__4);
 
- 		    if (i2 > 0) {
 
- /*                    Update A12 */
 
- 			i__3 = *ldab - 1;
 
- 			i__4 = *ldab - 1;
 
- 			dtrsm_("Left", "Upper", "Transpose", "Non-unit", &ib, 
 
- 				&i2, &c_b18, &ab[*kd + 1 + i__ * ab_dim1], &
 
- 				i__3, &ab[*kd + 1 - ib + (i__ + ib) * ab_dim1]
 
- , &i__4);
 
- /*                    Update A22 */
 
- 			i__3 = *ldab - 1;
 
- 			i__4 = *ldab - 1;
 
- 			dsyrk_("Upper", "Transpose", &i2, &ib, &c_b21, &ab[*
 
- 				kd + 1 - ib + (i__ + ib) * ab_dim1], &i__3, &
 
- 				c_b18, &ab[*kd + 1 + (i__ + ib) * ab_dim1], &
 
- 				i__4);
 
- 		    }
 
- 		    if (i3 > 0) {
 
- /*                    Copy the lower triangle of A13 into the work array. */
 
- 			i__3 = i3;
 
- 			for (jj = 1; jj <= i__3; ++jj) {
 
- 			    i__4 = ib;
 
- 			    for (ii = jj; ii <= i__4; ++ii) {
 
- 				work[ii + jj * 33 - 34] = ab[ii - jj + 1 + (
 
- 					jj + i__ + *kd - 1) * ab_dim1];
 
- /* L30: */
 
- 			    }
 
- /* L40: */
 
- 			}
 
- /*                    Update A13 (in the work array). */
 
- 			i__3 = *ldab - 1;
 
- 			dtrsm_("Left", "Upper", "Transpose", "Non-unit", &ib, 
 
- 				&i3, &c_b18, &ab[*kd + 1 + i__ * ab_dim1], &
 
- 				i__3, work, &c__33);
 
- /*                    Update A23 */
 
- 			if (i2 > 0) {
 
- 			    i__3 = *ldab - 1;
 
- 			    i__4 = *ldab - 1;
 
- 			    dgemm_("Transpose", "No Transpose", &i2, &i3, &ib, 
 
- 				     &c_b21, &ab[*kd + 1 - ib + (i__ + ib) * 
 
- 				    ab_dim1], &i__3, work, &c__33, &c_b18, &
 
- 				    ab[ib + 1 + (i__ + *kd) * ab_dim1], &i__4);
 
- 			}
 
- /*                    Update A33 */
 
- 			i__3 = *ldab - 1;
 
- 			dsyrk_("Upper", "Transpose", &i3, &ib, &c_b21, work, &
 
- 				c__33, &c_b18, &ab[*kd + 1 + (i__ + *kd) * 
 
- 				ab_dim1], &i__3);
 
- /*                    Copy the lower triangle of A13 back into place. */
 
- 			i__3 = i3;
 
- 			for (jj = 1; jj <= i__3; ++jj) {
 
- 			    i__4 = ib;
 
- 			    for (ii = jj; ii <= i__4; ++ii) {
 
- 				ab[ii - jj + 1 + (jj + i__ + *kd - 1) * 
 
- 					ab_dim1] = work[ii + jj * 33 - 34];
 
- /* L50: */
 
- 			    }
 
- /* L60: */
 
- 			}
 
- 		    }
 
- 		}
 
- /* L70: */
 
- 	    }
 
- 	} else {
 
- /*           Compute the Cholesky factorization of a symmetric band */
 
- /*           matrix, given the lower triangle of the matrix in band */
 
- /*           storage. */
 
- /*           Zero the lower triangle of the work array. */
 
- 	    i__2 = nb;
 
- 	    for (j = 1; j <= i__2; ++j) {
 
- 		i__1 = nb;
 
- 		for (i__ = j + 1; i__ <= i__1; ++i__) {
 
- 		    work[i__ + j * 33 - 34] = 0.;
 
- /* L80: */
 
- 		}
 
- /* L90: */
 
- 	    }
 
- /*           Process the band matrix one diagonal block at a time. */
 
- 	    i__2 = *n;
 
- 	    i__1 = nb;
 
- 	    for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
 
- /* Computing MIN */
 
- 		i__3 = nb, i__4 = *n - i__ + 1;
 
- 		ib = min(i__3,i__4);
 
- /*              Factorize the diagonal block */
 
- 		i__3 = *ldab - 1;
 
- 		dpotf2_(uplo, &ib, &ab[i__ * ab_dim1 + 1], &i__3, &ii);
 
- 		if (ii != 0) {
 
- 		    *info = i__ + ii - 1;
 
- 		    goto L150;
 
- 		}
 
- 		if (i__ + ib <= *n) {
 
- /*                 Update the relevant part of the trailing submatrix. */
 
- /*                 If A11 denotes the diagonal block which has just been */
 
- /*                 factorized, then we need to update the remaining */
 
- /*                 blocks in the diagram: */
 
- /*                    A11 */
 
- /*                    A21   A22 */
 
- /*                    A31   A32   A33 */
 
- /*                 The numbers of rows and columns in the partitioning */
 
- /*                 are IB, I2, I3 respectively. The blocks A21, A22 and */
 
- /*                 A32 are empty if IB = KD. The lower triangle of A31 */
 
- /*                 lies outside the band. */
 
- /* Computing MIN */
 
- 		    i__3 = *kd - ib, i__4 = *n - i__ - ib + 1;
 
- 		    i2 = min(i__3,i__4);
 
- /* Computing MIN */
 
- 		    i__3 = ib, i__4 = *n - i__ - *kd + 1;
 
- 		    i3 = min(i__3,i__4);
 
- 		    if (i2 > 0) {
 
- /*                    Update A21 */
 
- 			i__3 = *ldab - 1;
 
- 			i__4 = *ldab - 1;
 
- 			dtrsm_("Right", "Lower", "Transpose", "Non-unit", &i2, 
 
- 				 &ib, &c_b18, &ab[i__ * ab_dim1 + 1], &i__3, &
 
- 				ab[ib + 1 + i__ * ab_dim1], &i__4);
 
- /*                    Update A22 */
 
- 			i__3 = *ldab - 1;
 
- 			i__4 = *ldab - 1;
 
- 			dsyrk_("Lower", "No Transpose", &i2, &ib, &c_b21, &ab[
 
- 				ib + 1 + i__ * ab_dim1], &i__3, &c_b18, &ab[(
 
- 				i__ + ib) * ab_dim1 + 1], &i__4);
 
- 		    }
 
- 		    if (i3 > 0) {
 
- /*                    Copy the upper triangle of A31 into the work array. */
 
- 			i__3 = ib;
 
- 			for (jj = 1; jj <= i__3; ++jj) {
 
- 			    i__4 = min(jj,i3);
 
- 			    for (ii = 1; ii <= i__4; ++ii) {
 
- 				work[ii + jj * 33 - 34] = ab[*kd + 1 - jj + 
 
- 					ii + (jj + i__ - 1) * ab_dim1];
 
- /* L100: */
 
- 			    }
 
- /* L110: */
 
- 			}
 
- /*                    Update A31 (in the work array). */
 
- 			i__3 = *ldab - 1;
 
- 			dtrsm_("Right", "Lower", "Transpose", "Non-unit", &i3, 
 
- 				 &ib, &c_b18, &ab[i__ * ab_dim1 + 1], &i__3, 
 
- 				work, &c__33);
 
- /*                    Update A32 */
 
- 			if (i2 > 0) {
 
- 			    i__3 = *ldab - 1;
 
- 			    i__4 = *ldab - 1;
 
- 			    dgemm_("No transpose", "Transpose", &i3, &i2, &ib, 
 
- 				     &c_b21, work, &c__33, &ab[ib + 1 + i__ * 
 
- 				    ab_dim1], &i__3, &c_b18, &ab[*kd + 1 - ib 
 
- 				    + (i__ + ib) * ab_dim1], &i__4);
 
- 			}
 
- /*                    Update A33 */
 
- 			i__3 = *ldab - 1;
 
- 			dsyrk_("Lower", "No Transpose", &i3, &ib, &c_b21, 
 
- 				work, &c__33, &c_b18, &ab[(i__ + *kd) * 
 
- 				ab_dim1 + 1], &i__3);
 
- /*                    Copy the upper triangle of A31 back into place. */
 
- 			i__3 = ib;
 
- 			for (jj = 1; jj <= i__3; ++jj) {
 
- 			    i__4 = min(jj,i3);
 
- 			    for (ii = 1; ii <= i__4; ++ii) {
 
- 				ab[*kd + 1 - jj + ii + (jj + i__ - 1) * 
 
- 					ab_dim1] = work[ii + jj * 33 - 34];
 
- /* L120: */
 
- 			    }
 
- /* L130: */
 
- 			}
 
- 		    }
 
- 		}
 
- /* L140: */
 
- 	    }
 
- 	}
 
-     }
 
-     return 0;
 
- L150:
 
-     return 0;
 
- /*     End of DPBTRF */
 
- } /* dpbtrf_ */
 
 
  |