| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 | 
							- /* dlasd1.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__0 = 0;
 
- static doublereal c_b7 = 1.;
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- /* Subroutine */ int dlasd1_(integer *nl, integer *nr, integer *sqre, 
 
- 	doublereal *d__, doublereal *alpha, doublereal *beta, doublereal *u, 
 
- 	integer *ldu, doublereal *vt, integer *ldvt, integer *idxq, integer *
 
- 	iwork, doublereal *work, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer u_dim1, u_offset, vt_dim1, vt_offset, i__1;
 
-     doublereal d__1, d__2;
 
-     /* Local variables */
 
-     integer i__, k, m, n, n1, n2, iq, iz, iu2, ldq, idx, ldu2, ivt2, idxc, 
 
- 	    idxp, ldvt2;
 
-     extern /* Subroutine */ int dlasd2_(integer *, integer *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	     doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, integer *, 
 
- 	    integer *, integer *, integer *, integer *, integer *), dlasd3_(
 
- 	    integer *, integer *, integer *, integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, integer *, integer *, doublereal *, integer *), 
 
- 	    dlascl_(char *, integer *, integer *, doublereal *, doublereal *, 
 
- 	    integer *, integer *, doublereal *, integer *, integer *),
 
- 	     dlamrg_(integer *, integer *, doublereal *, integer *, integer *, 
 
- 	     integer *);
 
-     integer isigma;
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     doublereal orgnrm;
 
-     integer coltyp;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B, */
 
- /*  where N = NL + NR + 1 and M = N + SQRE. DLASD1 is called from DLASD0. */
 
- /*  A related subroutine DLASD7 handles the case in which the singular */
 
- /*  values (and the singular vectors in factored form) are desired. */
 
- /*  DLASD1 computes the SVD as follows: */
 
- /*                ( D1(in)  0    0     0 ) */
 
- /*    B = U(in) * (   Z1'   a   Z2'    b ) * VT(in) */
 
- /*                (   0     0   D2(in) 0 ) */
 
- /*      = U(out) * ( D(out) 0) * VT(out) */
 
- /*  where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M */
 
- /*  with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros */
 
- /*  elsewhere; and the entry b is empty if SQRE = 0. */
 
- /*  The left singular vectors of the original matrix are stored in U, and */
 
- /*  the transpose of the right singular vectors are stored in VT, and the */
 
- /*  singular values are in D.  The algorithm consists of three stages: */
 
- /*     The first stage consists of deflating the size of the problem */
 
- /*     when there are multiple singular values or when there are zeros in */
 
- /*     the Z vector.  For each such occurence the dimension of the */
 
- /*     secular equation problem is reduced by one.  This stage is */
 
- /*     performed by the routine DLASD2. */
 
- /*     The second stage consists of calculating the updated */
 
- /*     singular values. This is done by finding the square roots of the */
 
- /*     roots of the secular equation via the routine DLASD4 (as called */
 
- /*     by DLASD3). This routine also calculates the singular vectors of */
 
- /*     the current problem. */
 
- /*     The final stage consists of computing the updated singular vectors */
 
- /*     directly using the updated singular values.  The singular vectors */
 
- /*     for the current problem are multiplied with the singular vectors */
 
- /*     from the overall problem. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  NL     (input) INTEGER */
 
- /*         The row dimension of the upper block.  NL >= 1. */
 
- /*  NR     (input) INTEGER */
 
- /*         The row dimension of the lower block.  NR >= 1. */
 
- /*  SQRE   (input) INTEGER */
 
- /*         = 0: the lower block is an NR-by-NR square matrix. */
 
- /*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
 
- /*         The bidiagonal matrix has row dimension N = NL + NR + 1, */
 
- /*         and column dimension M = N + SQRE. */
 
- /*  D      (input/output) DOUBLE PRECISION array, */
 
- /*                        dimension (N = NL+NR+1). */
 
- /*         On entry D(1:NL,1:NL) contains the singular values of the */
 
- /*         upper block; and D(NL+2:N) contains the singular values of */
 
- /*         the lower block. On exit D(1:N) contains the singular values */
 
- /*         of the modified matrix. */
 
- /*  ALPHA  (input/output) DOUBLE PRECISION */
 
- /*         Contains the diagonal element associated with the added row. */
 
- /*  BETA   (input/output) DOUBLE PRECISION */
 
- /*         Contains the off-diagonal element associated with the added */
 
- /*         row. */
 
- /*  U      (input/output) DOUBLE PRECISION array, dimension(LDU,N) */
 
- /*         On entry U(1:NL, 1:NL) contains the left singular vectors of */
 
- /*         the upper block; U(NL+2:N, NL+2:N) contains the left singular */
 
- /*         vectors of the lower block. On exit U contains the left */
 
- /*         singular vectors of the bidiagonal matrix. */
 
- /*  LDU    (input) INTEGER */
 
- /*         The leading dimension of the array U.  LDU >= max( 1, N ). */
 
- /*  VT     (input/output) DOUBLE PRECISION array, dimension(LDVT,M) */
 
- /*         where M = N + SQRE. */
 
- /*         On entry VT(1:NL+1, 1:NL+1)' contains the right singular */
 
- /*         vectors of the upper block; VT(NL+2:M, NL+2:M)' contains */
 
- /*         the right singular vectors of the lower block. On exit */
 
- /*         VT' contains the right singular vectors of the */
 
- /*         bidiagonal matrix. */
 
- /*  LDVT   (input) INTEGER */
 
- /*         The leading dimension of the array VT.  LDVT >= max( 1, M ). */
 
- /*  IDXQ  (output) INTEGER array, dimension(N) */
 
- /*         This contains the permutation which will reintegrate the */
 
- /*         subproblem just solved back into sorted order, i.e. */
 
- /*         D( IDXQ( I = 1, N ) ) will be in ascending order. */
 
- /*  IWORK  (workspace) INTEGER array, dimension( 4 * N ) */
 
- /*  WORK   (workspace) DOUBLE PRECISION array, dimension( 3*M**2 + 2*M ) */
 
- /*  INFO   (output) INTEGER */
 
- /*          = 0:  successful exit. */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          > 0:  if INFO = 1, an singular value did not converge */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Ming Gu and Huan Ren, Computer Science Division, University of */
 
- /*     California at Berkeley, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     u_dim1 = *ldu;
 
-     u_offset = 1 + u_dim1;
 
-     u -= u_offset;
 
-     vt_dim1 = *ldvt;
 
-     vt_offset = 1 + vt_dim1;
 
-     vt -= vt_offset;
 
-     --idxq;
 
-     --iwork;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*nl < 1) {
 
- 	*info = -1;
 
-     } else if (*nr < 1) {
 
- 	*info = -2;
 
-     } else if (*sqre < 0 || *sqre > 1) {
 
- 	*info = -3;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DLASD1", &i__1);
 
- 	return 0;
 
-     }
 
-     n = *nl + *nr + 1;
 
-     m = n + *sqre;
 
- /*     The following values are for bookkeeping purposes only.  They are */
 
- /*     integer pointers which indicate the portion of the workspace */
 
- /*     used by a particular array in DLASD2 and DLASD3. */
 
-     ldu2 = n;
 
-     ldvt2 = m;
 
-     iz = 1;
 
-     isigma = iz + m;
 
-     iu2 = isigma + n;
 
-     ivt2 = iu2 + ldu2 * n;
 
-     iq = ivt2 + ldvt2 * m;
 
-     idx = 1;
 
-     idxc = idx + n;
 
-     coltyp = idxc + n;
 
-     idxp = coltyp + n;
 
- /*     Scale. */
 
- /* Computing MAX */
 
-     d__1 = abs(*alpha), d__2 = abs(*beta);
 
-     orgnrm = max(d__1,d__2);
 
-     d__[*nl + 1] = 0.;
 
-     i__1 = n;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	if ((d__1 = d__[i__], abs(d__1)) > orgnrm) {
 
- 	    orgnrm = (d__1 = d__[i__], abs(d__1));
 
- 	}
 
- /* L10: */
 
-     }
 
-     dlascl_("G", &c__0, &c__0, &orgnrm, &c_b7, &n, &c__1, &d__[1], &n, info);
 
-     *alpha /= orgnrm;
 
-     *beta /= orgnrm;
 
- /*     Deflate singular values. */
 
-     dlasd2_(nl, nr, sqre, &k, &d__[1], &work[iz], alpha, beta, &u[u_offset], 
 
- 	    ldu, &vt[vt_offset], ldvt, &work[isigma], &work[iu2], &ldu2, &
 
- 	    work[ivt2], &ldvt2, &iwork[idxp], &iwork[idx], &iwork[idxc], &
 
- 	    idxq[1], &iwork[coltyp], info);
 
- /*     Solve Secular Equation and update singular vectors. */
 
-     ldq = k;
 
-     dlasd3_(nl, nr, sqre, &k, &d__[1], &work[iq], &ldq, &work[isigma], &u[
 
- 	    u_offset], ldu, &work[iu2], &ldu2, &vt[vt_offset], ldvt, &work[
 
- 	    ivt2], &ldvt2, &iwork[idxc], &iwork[coltyp], &work[iz], info);
 
-     if (*info != 0) {
 
- 	return 0;
 
-     }
 
- /*     Unscale. */
 
-     dlascl_("G", &c__0, &c__0, &c_b7, &orgnrm, &n, &c__1, &d__[1], &n, info);
 
- /*     Prepare the IDXQ sorting permutation. */
 
-     n1 = k;
 
-     n2 = n - k;
 
-     dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &idxq[1]);
 
-     return 0;
 
- /*     End of DLASD1 */
 
- } /* dlasd1_ */
 
 
  |