performance_feedback.doxy 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606
  1. /*
  2. * This file is part of the StarPU Handbook.
  3. * Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. * Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. * Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. * See the file version.doxy for copying conditions.
  7. */
  8. /*! \page PerformanceFeedback Performance Feedback
  9. \section UsingTheTemanejoTaskDebugger Using The Temanejo Task Debugger
  10. StarPU can connect to Temanejo >= 1.0rc2 (see
  11. http://www.hlrs.de/temanejo), to permit
  12. nice visual task debugging. To do so, build Temanejo's <c>libayudame.so</c>,
  13. install <c>Ayudame.h</c> to e.g. <c>/usr/local/include</c>, apply the
  14. <c>tools/patch-ayudame</c> to it to fix C build, re-<c>./configure</c>, make
  15. sure that it found it, rebuild StarPU. Run the Temanejo GUI, give it the path
  16. to your application, any options you want to pass it, the path to <c>libayudame.so</c>.
  17. Make sure to specify at least the same number of CPUs in the dialog box as your
  18. machine has, otherwise an error will happen during execution. Future versions
  19. of Temanejo should be able to tell StarPU the number of CPUs to use.
  20. Tag numbers have to be below <c>4000000000000000000ULL</c> to be usable for
  21. Temanejo (so as to distinguish them from tasks).
  22. \section On-linePerformanceFeedback On-line Performance Feedback
  23. \subsection EnablingOn-linePerformanceMonitoring Enabling On-line Performance Monitoring
  24. In order to enable online performance monitoring, the application can
  25. call starpu_profiling_status_set() with the parameter
  26. ::STARPU_PROFILING_ENABLE. It is possible to detect whether monitoring
  27. is already enabled or not by calling starpu_profiling_status_get().
  28. Enabling monitoring also reinitialize all previously collected
  29. feedback. The environment variable \ref STARPU_PROFILING can also be
  30. set to <c>1</c> to achieve the same effect. The function
  31. starpu_profiling_init() can also be called during the execution to
  32. reinitialize performance counters and to start the profiling if the
  33. environment variable \ref STARPU_PROFILING is set to <c>1</c>.
  34. Likewise, performance monitoring is stopped by calling
  35. starpu_profiling_status_set() with the parameter
  36. ::STARPU_PROFILING_DISABLE. Note that this does not reset the
  37. performance counters so that the application may consult them later
  38. on.
  39. More details about the performance monitoring API are available in \ref API_Profiling.
  40. \subsection Per-taskFeedback Per-task Feedback
  41. If profiling is enabled, a pointer to a structure
  42. starpu_profiling_task_info is put in the field
  43. starpu_task::profiling_info when a task terminates. This structure is
  44. automatically destroyed when the task structure is destroyed, either
  45. automatically or by calling starpu_task_destroy().
  46. The structure starpu_profiling_task_info indicates the date when the
  47. task was submitted (starpu_profiling_task_info::submit_time), started
  48. (starpu_profiling_task_info::start_time), and terminated
  49. (starpu_profiling_task_info::end_time), relative to the initialization
  50. of StarPU with starpu_init(). It also specifies the identifier of the worker
  51. that has executed the task (starpu_profiling_task_info::workerid).
  52. These date are stored as <c>timespec</c> structures which the user may convert
  53. into micro-seconds using the helper function
  54. starpu_timing_timespec_to_us().
  55. It it worth noting that the application may directly access this structure from
  56. the callback executed at the end of the task. The structure starpu_task
  57. associated to the callback currently being executed is indeed accessible with
  58. the function starpu_task_get_current().
  59. \subsection Per-codeletFeedback Per-codelet Feedback
  60. The field starpu_codelet::per_worker_stats is
  61. an array of counters. The i-th entry of the array is incremented every time a
  62. task implementing the codelet is executed on the i-th worker.
  63. This array is not reinitialized when profiling is enabled or disabled.
  64. \subsection Per-workerFeedback Per-worker Feedback
  65. The second argument returned by the function
  66. starpu_profiling_worker_get_info() is a structure
  67. starpu_profiling_worker_info that gives statistics about the specified
  68. worker. This structure specifies when StarPU started collecting
  69. profiling information for that worker
  70. (starpu_profiling_worker_info::start_time), the
  71. duration of the profiling measurement interval
  72. (starpu_profiling_worker_info::total_time), the time spent executing
  73. kernels (starpu_profiling_worker_info::executing_time), the time
  74. spent sleeping because there is no task to execute at all
  75. (starpu_profiling_worker_info::sleeping_time), and the number of tasks that were executed
  76. while profiling was enabled. These values give an estimation of the
  77. proportion of time spent do real work, and the time spent either
  78. sleeping because there are not enough executable tasks or simply
  79. wasted in pure StarPU overhead.
  80. Calling starpu_profiling_worker_get_info() resets the profiling
  81. information associated to a worker.
  82. When an FxT trace is generated (see \ref GeneratingTracesWithFxT), it is also
  83. possible to use the tool <c>starpu_workers_activity</c> (see \ref
  84. MonitoringActivity) to generate a graphic showing the evolution of
  85. these values during the time, for the different workers.
  86. \subsection Bus-relatedFeedback Bus-related Feedback
  87. TODO: ajouter \ref STARPU_BUS_STATS
  88. \internal
  89. how to enable/disable performance monitoring
  90. what kind of information do we get ?
  91. \endinternal
  92. The bus speed measured by StarPU can be displayed by using the tool
  93. <c>starpu_machine_display</c>, for instance:
  94. \verbatim
  95. StarPU has found:
  96. 3 CUDA devices
  97. CUDA 0 (Tesla C2050 02:00.0)
  98. CUDA 1 (Tesla C2050 03:00.0)
  99. CUDA 2 (Tesla C2050 84:00.0)
  100. from to RAM to CUDA 0 to CUDA 1 to CUDA 2
  101. RAM 0.000000 5176.530428 5176.492994 5191.710722
  102. CUDA 0 4523.732446 0.000000 2414.074751 2417.379201
  103. CUDA 1 4523.718152 2414.078822 0.000000 2417.375119
  104. CUDA 2 4534.229519 2417.069025 2417.060863 0.000000
  105. \endverbatim
  106. \subsection StarPU-TopInterface StarPU-Top Interface
  107. StarPU-Top is an interface which remotely displays the on-line state of a StarPU
  108. application and permits the user to change parameters on the fly.
  109. Variables to be monitored can be registered by calling the functions
  110. starpu_top_add_data_boolean(), starpu_top_add_data_integer(),
  111. starpu_top_add_data_float(), e.g.:
  112. \code{.c}
  113. starpu_top_data *data = starpu_top_add_data_integer("mynum", 0, 100, 1);
  114. \endcode
  115. The application should then call starpu_top_init_and_wait() to give its name
  116. and wait for StarPU-Top to get a start request from the user. The name is used
  117. by StarPU-Top to quickly reload a previously-saved layout of parameter display.
  118. \code{.c}
  119. starpu_top_init_and_wait("the application");
  120. \endcode
  121. The new values can then be provided thanks to
  122. starpu_top_update_data_boolean(), starpu_top_update_data_integer(),
  123. starpu_top_update_data_float(), e.g.:
  124. \code{.c}
  125. starpu_top_update_data_integer(data, mynum);
  126. \endcode
  127. Updateable parameters can be registered thanks to starpu_top_register_parameter_boolean(), starpu_top_register_parameter_integer(), starpu_top_register_parameter_float(), e.g.:
  128. \code{.c}
  129. float alpha;
  130. starpu_top_register_parameter_float("alpha", &alpha, 0, 10, modif_hook);
  131. \endcode
  132. <c>modif_hook</c> is a function which will be called when the parameter is being modified, it can for instance print the new value:
  133. \code{.c}
  134. void modif_hook(struct starpu_top_param *d) {
  135. fprintf(stderr,"%s has been modified: %f\n", d->name, alpha);
  136. }
  137. \endcode
  138. Task schedulers should notify StarPU-Top when it has decided when a task will be
  139. scheduled, so that it can show it in its Gantt chart, for instance:
  140. \code{.c}
  141. starpu_top_task_prevision(task, workerid, begin, end);
  142. \endcode
  143. Starting StarPU-Top (StarPU-Top is started via the binary
  144. <c>starpu_top</c>.) and the application can be done two ways:
  145. <ul>
  146. <li> The application is started by hand on some machine (and thus already
  147. waiting for the start event). In the Preference dialog of StarPU-Top, the SSH
  148. checkbox should be unchecked, and the hostname and port (default is 2011) on
  149. which the application is already running should be specified. Clicking on the
  150. connection button will thus connect to the already-running application.
  151. </li>
  152. <li> StarPU-Top is started first, and clicking on the connection button will
  153. start the application itself (possibly on a remote machine). The SSH checkbox
  154. should be checked, and a command line provided, e.g.:
  155. \verbatim
  156. $ ssh myserver STARPU_SCHED=dmda ./application
  157. \endverbatim
  158. If port 2011 of the remote machine can not be accessed directly, an ssh port bridge should be added:
  159. \verbatim
  160. $ ssh -L 2011:localhost:2011 myserver STARPU_SCHED=dmda ./application
  161. \endverbatim
  162. and "localhost" should be used as IP Address to connect to.
  163. </li>
  164. </ul>
  165. \section Off-linePerformanceFeedback Off-line Performance Feedback
  166. \subsection GeneratingTracesWithFxT Generating Traces With FxT
  167. StarPU can use the FxT library (see
  168. https://savannah.nongnu.org/projects/fkt/) to generate traces
  169. with a limited runtime overhead.
  170. You can either get a tarball:
  171. \verbatim
  172. $ wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.11.tar.gz
  173. \endverbatim
  174. or use the FxT library from CVS (autotools are required):
  175. \verbatim
  176. $ cvs -d :pserver:anonymous\@cvs.sv.gnu.org:/sources/fkt co FxT
  177. $ ./bootstrap
  178. \endverbatim
  179. Compiling and installing the FxT library in the <c>$FXTDIR</c> path is
  180. done following the standard procedure:
  181. \verbatim
  182. $ ./configure --prefix=$FXTDIR
  183. $ make
  184. $ make install
  185. \endverbatim
  186. In order to have StarPU to generate traces, StarPU should be configured with
  187. the option \ref with-fxt "--with-fxt" :
  188. \verbatim
  189. $ ./configure --with-fxt=$FXTDIR
  190. \endverbatim
  191. Or you can simply point the <c>PKG_CONFIG_PATH</c> to
  192. <c>$FXTDIR/lib/pkgconfig</c> and pass
  193. \ref with-fxt "--with-fxt" to <c>./configure</c>
  194. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  195. starpu_shutdown(). The trace is a binary file whose name has the form
  196. <c>prof_file_XXX_YYY</c> where <c>XXX</c> is the user name, and
  197. <c>YYY</c> is the pid of the process that used StarPU. This file is saved in the
  198. <c>/tmp/</c> directory by default, or by the directory specified by
  199. the environment variable \ref STARPU_FXT_PREFIX.
  200. The additional configure option \ref enable-fxt-lock "--enable-fxt-lock" can
  201. be used to generate trace events which describes the locks behaviour during
  202. the execution.
  203. \subsection CreatingAGanttDiagram Creating a Gantt Diagram
  204. When the FxT trace file <c>filename</c> has been generated, it is possible to
  205. generate a trace in the Paje format by calling:
  206. \verbatim
  207. $ starpu_fxt_tool -i filename
  208. \endverbatim
  209. Or alternatively, setting the environment variable \ref STARPU_GENERATE_TRACE
  210. to <c>1</c> before application execution will make StarPU do it automatically at
  211. application shutdown.
  212. This will create a file <c>paje.trace</c> in the current directory that
  213. can be inspected with the <a href="http://vite.gforge.inria.fr/">ViTE trace
  214. visualizing open-source tool</a>. It is possible to open the
  215. file <c>paje.trace</c> with ViTE by using the following command:
  216. \verbatim
  217. $ vite paje.trace
  218. \endverbatim
  219. To get names of tasks instead of "unknown", fill the optional
  220. starpu_codelet::name, or use a performance model for them.
  221. In the MPI execution case, collect the trace files from the MPI nodes, and
  222. specify them all on the command <c>starpu_fxt_tool</c>, for instance:
  223. \verbatim
  224. $ starpu_fxt_tool -i filename1 -i filename2
  225. \endverbatim
  226. By default, all tasks are displayed using a green color. To display tasks with
  227. varying colors, pass option <c>-c</c> to <c>starpu_fxt_tool</c>.
  228. Traces can also be inspected by hand by using the tool <c>fxt_print</c>, for instance:
  229. \verbatim
  230. $ fxt_print -o -f filename
  231. \endverbatim
  232. Timings are in nanoseconds (while timings as seen in <c>vite</c> are in milliseconds).
  233. \subsection CreatingADAGWithGraphviz Creating a DAG With Graphviz
  234. When the FxT trace file <c>filename</c> has been generated, it is possible to
  235. generate a task graph in the DOT format by calling:
  236. \verbatim
  237. $ starpu_fxt_tool -i filename
  238. \endverbatim
  239. This will create a <c>dag.dot</c> file in the current directory. This file is a
  240. task graph described using the DOT language. It is possible to get a
  241. graphical output of the graph by using the graphviz library:
  242. \verbatim
  243. $ dot -Tpdf dag.dot -o output.pdf
  244. \endverbatim
  245. \subsection MonitoringActivity Monitoring Activity
  246. When the FxT trace file <c>filename</c> has been generated, it is possible to
  247. generate an activity trace by calling:
  248. \verbatim
  249. $ starpu_fxt_tool -i filename
  250. \endverbatim
  251. This will create a file <c>activity.data</c> in the current
  252. directory. A profile of the application showing the activity of StarPU
  253. during the execution of the program can be generated:
  254. \verbatim
  255. $ starpu_workers_activity activity.data
  256. \endverbatim
  257. This will create a file named <c>activity.eps</c> in the current directory.
  258. This picture is composed of two parts.
  259. The first part shows the activity of the different workers. The green sections
  260. indicate which proportion of the time was spent executed kernels on the
  261. processing unit. The red sections indicate the proportion of time spent in
  262. StartPU: an important overhead may indicate that the granularity may be too
  263. low, and that bigger tasks may be appropriate to use the processing unit more
  264. efficiently. The black sections indicate that the processing unit was blocked
  265. because there was no task to process: this may indicate a lack of parallelism
  266. which may be alleviated by creating more tasks when it is possible.
  267. The second part of the picture <c>activity.eps</c> is a graph showing the
  268. evolution of the number of tasks available in the system during the execution.
  269. Ready tasks are shown in black, and tasks that are submitted but not
  270. schedulable yet are shown in grey.
  271. \section PerformanceOfCodelets Performance Of Codelets
  272. The performance model of codelets (see \ref PerformanceModelExample)
  273. can be examined by using the tool <c>starpu_perfmodel_display</c>:
  274. \verbatim
  275. $ starpu_perfmodel_display -l
  276. file: <malloc_pinned.hannibal>
  277. file: <starpu_slu_lu_model_21.hannibal>
  278. file: <starpu_slu_lu_model_11.hannibal>
  279. file: <starpu_slu_lu_model_22.hannibal>
  280. file: <starpu_slu_lu_model_12.hannibal>
  281. \endverbatim
  282. Here, the codelets of the example <c>lu</c> are available. We can examine the
  283. performance of the kernel <c>22</c> (in micro-seconds), which is history-based:
  284. \verbatim
  285. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  286. performance model for cpu
  287. # hash size mean dev n
  288. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  289. performance model for cuda_0
  290. # hash size mean dev n
  291. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  292. performance model for cuda_1
  293. # hash size mean dev n
  294. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  295. performance model for cuda_2
  296. # hash size mean dev n
  297. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  298. \endverbatim
  299. We can see that for the given size, over a sample of a few hundreds of
  300. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  301. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  302. CPUs.
  303. This tool can also be used for regression-based performance models. It will then
  304. display the regression formula, and in the case of non-linear regression, the
  305. same performance log as for history-based performance models:
  306. \verbatim
  307. $ starpu_perfmodel_display -s non_linear_memset_regression_based
  308. performance model for cpu_impl_0
  309. Regression : #sample = 1400
  310. Linear: y = alpha size ^ beta
  311. alpha = 1.335973e-03
  312. beta = 8.024020e-01
  313. Non-Linear: y = a size ^b + c
  314. a = 5.429195e-04
  315. b = 8.654899e-01
  316. c = 9.009313e-01
  317. # hash size mean stddev n
  318. a3d3725e 4096 4.763200e+00 7.650928e-01 100
  319. 870a30aa 8192 1.827970e+00 2.037181e-01 100
  320. 48e988e9 16384 2.652800e+00 1.876459e-01 100
  321. 961e65d2 32768 4.255530e+00 3.518025e-01 100
  322. ...
  323. \endverbatim
  324. The same can also be achieved by using StarPU's library API, see
  325. \ref API_Performance_Model and notably the function
  326. starpu_perfmodel_load_symbol(). The source code of the tool
  327. <c>starpu_perfmodel_display</c> can be a useful example.
  328. The tool <c>starpu_perfmodel_plot</c> can be used to draw performance
  329. models. It writes a <c>.gp</c> file in the current directory, to be
  330. run with the tool <c>gnuplot</c>, which shows the corresponding curve.
  331. \image html starpu_non_linear_memset_regression_based.png
  332. \image latex starpu_non_linear_memset_regression_based.eps "" width=\textwidth
  333. When the field starpu_task::flops is set, <c>starpu_perfmodel_plot</c> can
  334. directly draw a GFlops curve, by simply adding the <c>-f</c> option:
  335. \verbatim
  336. $ starpu_perfmodel_display -f -s chol_model_11
  337. \endverbatim
  338. This will however disable displaying the regression model, for which we can not
  339. compute GFlops.
  340. When the FxT trace file <c>filename</c> has been generated, it is possible to
  341. get a profiling of each codelet by calling:
  342. \verbatim
  343. $ starpu_fxt_tool -i filename
  344. $ starpu_codelet_profile distrib.data codelet_name
  345. \endverbatim
  346. This will create profiling data files, and a <c>.gp</c> file in the current
  347. directory, which draws the distribution of codelet time over the application
  348. execution, according to data input size.
  349. This is also available in the tool <c>starpu_perfmodel_plot</c>, by passing it
  350. the fxt trace:
  351. \verbatim
  352. $ starpu_perfmodel_plot -s non_linear_memset_regression_based -i /tmp/prof_file_foo_0
  353. \endverbatim
  354. It will produce a <c>.gp</c> file which contains both the performance model
  355. curves, and the profiling measurements.
  356. If you have the statistical tool <c>R</c> installed, you can additionally use
  357. \verbatim
  358. $ starpu_codelet_histo_profile distrib.data
  359. \endverbatim
  360. Which will create one <c>.pdf</c> file per codelet and per input size, showing a
  361. histogram of the codelet execution time distribution.
  362. \section TheoreticalLowerBoundOnExecutionTime Theoretical Lower Bound On Execution Time
  363. StarPU can record a trace of what tasks are needed to complete the
  364. application, and then, by using a linear system, provide a theoretical lower
  365. bound of the execution time (i.e. with an ideal scheduling).
  366. The computed bound is not really correct when not taking into account
  367. dependencies, but for an application which have enough parallelism, it is very
  368. near to the bound computed with dependencies enabled (which takes a huge lot
  369. more time to compute), and thus provides a good-enough estimation of the ideal
  370. execution time.
  371. \ref TheoreticalLowerBoundOnExecutionTimeExample provides an example on how to
  372. use this.
  373. \section MemoryFeedback Memory Feedback
  374. It is possible to enable memory statistics. To do so, you need to pass
  375. the option \ref enable-memory-stats "--enable-memory-stats" when running <c>configure</c>. It is then
  376. possible to call the function starpu_data_display_memory_stats() to
  377. display statistics about the current data handles registered within StarPU.
  378. Moreover, statistics will be displayed at the end of the execution on
  379. data handles which have not been cleared out. This can be disabled by
  380. setting the environment variable \ref STARPU_MEMORY_STATS to <c>0</c>.
  381. For example, if you do not unregister data at the end of the complex
  382. example, you will get something similar to:
  383. \verbatim
  384. $ STARPU_MEMORY_STATS=0 ./examples/interface/complex
  385. Complex[0] = 45.00 + 12.00 i
  386. Complex[0] = 78.00 + 78.00 i
  387. Complex[0] = 45.00 + 12.00 i
  388. Complex[0] = 45.00 + 12.00 i
  389. \endverbatim
  390. \verbatim
  391. $ STARPU_MEMORY_STATS=1 ./examples/interface/complex
  392. Complex[0] = 45.00 + 12.00 i
  393. Complex[0] = 78.00 + 78.00 i
  394. Complex[0] = 45.00 + 12.00 i
  395. Complex[0] = 45.00 + 12.00 i
  396. #---------------------
  397. Memory stats:
  398. #-------
  399. Data on Node #3
  400. #-----
  401. Data : 0x553ff40
  402. Size : 16
  403. #--
  404. Data access stats
  405. /!\ Work Underway
  406. Node #0
  407. Direct access : 4
  408. Loaded (Owner) : 0
  409. Loaded (Shared) : 0
  410. Invalidated (was Owner) : 0
  411. Node #3
  412. Direct access : 0
  413. Loaded (Owner) : 0
  414. Loaded (Shared) : 1
  415. Invalidated (was Owner) : 0
  416. #-----
  417. Data : 0x5544710
  418. Size : 16
  419. #--
  420. Data access stats
  421. /!\ Work Underway
  422. Node #0
  423. Direct access : 2
  424. Loaded (Owner) : 0
  425. Loaded (Shared) : 1
  426. Invalidated (was Owner) : 1
  427. Node #3
  428. Direct access : 0
  429. Loaded (Owner) : 1
  430. Loaded (Shared) : 0
  431. Invalidated (was Owner) : 0
  432. \endverbatim
  433. \section DataStatistics Data Statistics
  434. Different data statistics can be displayed at the end of the execution
  435. of the application. To enable them, you need to pass the option
  436. \ref enable-stats "--enable-stats" when calling <c>configure</c>. When calling
  437. starpu_shutdown() various statistics will be displayed,
  438. execution, MSI cache statistics, allocation cache statistics, and data
  439. transfer statistics. The display can be disabled by setting the
  440. environment variable \ref STARPU_STATS to <c>0</c>.
  441. \verbatim
  442. $ ./examples/cholesky/cholesky_tag
  443. Computation took (in ms)
  444. 518.16
  445. Synthetic GFlops : 44.21
  446. #---------------------
  447. MSI cache stats :
  448. TOTAL MSI stats hit 1622 (66.23 %) miss 827 (33.77 %)
  449. ...
  450. \endverbatim
  451. \verbatim
  452. $ STARPU_STATS=0 ./examples/cholesky/cholesky_tag
  453. Computation took (in ms)
  454. 518.16
  455. Synthetic GFlops : 44.21
  456. \endverbatim
  457. \section DataTrace Data trace and tasks length
  458. It is possible to get statistics about tasks length and data size by using :
  459. \verbatim
  460. $starpu_fxt_data_trace filename [codelet1 codelet2 ... codeletn]
  461. \endverbatim
  462. Where filename is the FxT trace file and codeletX the names of the codelets you
  463. want to profile (if no names are specified, starpu_fxt_data_trace will use them all).
  464. This will create a file, <c>data_trace.gp</c> which
  465. can be plotted to get a .eps image of these results. On the image, each point represents a
  466. task, and each color corresponds to a codelet.
  467. \image html data_trace.png
  468. \image latex data_trace.eps "" width=\textwidth
  469. \internal
  470. TODO: data transfer stats are similar to the ones displayed when
  471. setting STARPU_BUS_STATS
  472. \endinternal
  473. */