basic-api.texi 123 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Versioning::
  9. * Initialization and Termination::
  10. * Workers' Properties::
  11. * Data Management::
  12. * Data Interfaces::
  13. * Data Partition::
  14. * Codelets and Tasks::
  15. * Explicit Dependencies::
  16. * Implicit Data Dependencies::
  17. * Performance Model API::
  18. * Profiling API::
  19. * CUDA extensions::
  20. * OpenCL extensions::
  21. * Miscellaneous helpers::
  22. @end menu
  23. @node Versioning
  24. @section Versioning
  25. @defmac STARPU_MAJOR_VERSION
  26. Define the major version of StarPU
  27. @end defmac
  28. @defmac STARPU_MINOR_VERSION
  29. Define the minor version of StarPU
  30. @end defmac
  31. @node Initialization and Termination
  32. @section Initialization and Termination
  33. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  34. This is StarPU initialization method, which must be called prior to any other
  35. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  36. policy, number of cores, ...) by passing a non-null argument. Default
  37. configuration is used if the passed argument is @code{NULL}.
  38. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  39. indicates that no worker was available (so that StarPU was not initialized).
  40. @end deftypefun
  41. @deftp {Data Type} {struct starpu_driver}
  42. @table @asis
  43. @item @code{enum starpu_archtype type}
  44. The type of the driver. Only STARPU_CPU_DRIVER, STARPU_CUDA_DRIVER and
  45. STARPU_OPENCL_DRIVER are currently supported.
  46. @item @code{union id} Anonymous union
  47. @table @asis
  48. @item @code{unsigned cpu_id}
  49. Should only be used if type is STARPU_CPU_WORKER.
  50. @item @code{unsigned cuda_id}
  51. Should only be used if type is STARPU_CUDA_WORKER.
  52. @item @code{cl_device_id opencl_id}
  53. Should only be used if type is STARPU_OPENCL_WORKER.
  54. @end table
  55. @end table
  56. @end deftp
  57. @deftp {Data Type} {struct starpu_conf}
  58. This structure is passed to the @code{starpu_init} function in order
  59. to configure StarPU. It has to be initialized with @code{starpu_conf_init}.
  60. When the default value is used, StarPU automatically selects the number of
  61. processing units and takes the default scheduling policy. The environment
  62. variables overwrite the equivalent parameters.
  63. @table @asis
  64. @item @code{const char *sched_policy_name} (default = NULL)
  65. This is the name of the scheduling policy. This can also be specified
  66. with the @code{STARPU_SCHED} environment variable.
  67. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  68. This is the definition of the scheduling policy. This field is ignored
  69. if @code{sched_policy_name} is set.
  70. @item @code{int ncpus} (default = -1)
  71. This is the number of CPU cores that StarPU can use. This can also be
  72. specified with the @code{STARPU_NCPU} environment variable.
  73. @item @code{int ncuda} (default = -1)
  74. This is the number of CUDA devices that StarPU can use. This can also
  75. be specified with the @code{STARPU_NCUDA} environment variable.
  76. @item @code{int nopencl} (default = -1)
  77. This is the number of OpenCL devices that StarPU can use. This can
  78. also be specified with the @code{STARPU_NOPENCL} environment variable.
  79. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  80. If this flag is set, the @code{workers_bindid} array indicates where the
  81. different workers are bound, otherwise StarPU automatically selects where to
  82. bind the different workers. This can also be specified with the
  83. @code{STARPU_WORKERS_CPUID} environment variable.
  84. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  85. If the @code{use_explicit_workers_bindid} flag is set, this array
  86. indicates where to bind the different workers. The i-th entry of the
  87. @code{workers_bindid} indicates the logical identifier of the
  88. processor which should execute the i-th worker. Note that the logical
  89. ordering of the CPUs is either determined by the OS, or provided by
  90. the @code{hwloc} library in case it is available.
  91. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  92. If this flag is set, the CUDA workers will be attached to the CUDA devices
  93. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  94. CUDA devices in a round-robin fashion. This can also be specified with the
  95. @code{STARPU_WORKERS_CUDAID} environment variable.
  96. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  97. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  98. contains the logical identifiers of the CUDA devices (as used by
  99. @code{cudaGetDevice}).
  100. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  101. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  102. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects
  103. the OpenCL devices in a round-robin fashion. This can also be specified with
  104. the @code{STARPU_WORKERS_OPENCLID} environment variable.
  105. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  106. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  107. contains the logical identifiers of the OpenCL devices to be used.
  108. @item @code{int calibrate} (default = 0)
  109. If this flag is set, StarPU will calibrate the performance models when
  110. executing tasks. If this value is equal to @code{-1}, the default value is
  111. used. If the value is equal to @code{1}, it will force continuing
  112. calibration. If the value is equal to @code{2}, the existing performance
  113. models will be overwritten. This can also be specified with the
  114. @code{STARPU_CALIBRATE} environment variable.
  115. @item @code{int bus_calibrate} (default = 0)
  116. If this flag is set, StarPU will recalibrate the bus. If this value is equal
  117. to @code{-1}, the default value is used. This can also be specified with the
  118. @code{STARPU_BUS_CALIBRATE} environment variable.
  119. @item @code{int single_combined_worker} (default = 0)
  120. By default, StarPU executes parallel tasks concurrently.
  121. Some parallel libraries (e.g. most OpenMP implementations) however do
  122. not support concurrent calls to parallel code. In such case, setting this flag
  123. makes StarPU only start one parallel task at a time (but other
  124. CPU and GPU tasks are not affected and can be run concurrently). The parallel
  125. task scheduler will however still however still try varying combined worker
  126. sizes to look for the most efficient ones.
  127. This can also be specified with the @code{STARPU_SINGLE_COMBINED_WORKER} environment variable.
  128. @item @code{int disable_asynchronous_copy} (default = 0)
  129. This flag should be set to 1 to disable asynchronous copies between
  130. CPUs and all accelerators. This can also be specified with the
  131. @code{STARPU_DISABLE_ASYNCHRONOUS_COPY} environment variable.
  132. The AMD implementation of OpenCL is known to
  133. fail when copying data asynchronously. When using this implementation,
  134. it is therefore necessary to disable asynchronous data transfers.
  135. This can also be specified at compilation time by giving to the
  136. configure script the option @code{--disable-asynchronous-copy}.
  137. @item @code{int disable_cuda_asynchronous_copy} (default = 0)
  138. This flag should be set to 1 to disable asynchronous copies between
  139. CPUs and CUDA accelerators. This can also be specified with the
  140. @code{STARPU_DISABLE_CUDA_ASYNCHRONOUS_COPY} environment variable.
  141. This can also be specified at compilation time by giving to the
  142. configure script the option @code{--disable-asynchronous-cuda-copy}.
  143. @item @code{int disable_opencl_asynchronous_copy} (default = 0)
  144. This flag should be set to 1 to disable asynchronous copies between
  145. CPUs and OpenCL accelerators. This can also be specified with the
  146. @code{STARPU_DISABLE_OPENCL_ASYNCHRONOUS_COPY} environment variable.
  147. The AMD implementation of OpenCL is known to
  148. fail when copying data asynchronously. When using this implementation,
  149. it is therefore necessary to disable asynchronous data transfers.
  150. This can also be specified at compilation time by giving to the
  151. configure script the option @code{--disable-asynchronous-opencl-copy}.
  152. @item @code{int *cuda_opengl_interoperability} (default = NULL)
  153. This can be set to an array of CUDA device identifiers for which
  154. @code{cudaGLSetGLDevice} should be called instead of @code{cudaSetDevice}. Its
  155. size is specified by the @code{n_cuda_opengl_interoperability} field below
  156. @item @code{int *n_cuda_opengl_interoperability} (default = 0)
  157. This has to be set to the size of the array pointed to by the
  158. @code{cuda_opengl_interoperability} field.
  159. @item @code{struct starpu_driver *not_launched_drivers}
  160. The drivers that should not be launched by StarPU.
  161. @item @code{unsigned nnot_launched_drivers}
  162. The number of StarPU drivers that should not be launched by StarPU.
  163. @end table
  164. @end deftp
  165. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  166. This function initializes the @var{conf} structure passed as argument
  167. with the default values. In case some configuration parameters are already
  168. specified through environment variables, @code{starpu_conf_init} initializes
  169. the fields of the structure according to the environment variables. For
  170. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  171. @code{.calibrate} field of the structure passed as argument.
  172. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  173. indicates that the argument was NULL.
  174. @end deftypefun
  175. @deftypefun void starpu_shutdown (void)
  176. This is StarPU termination method. It must be called at the end of the
  177. application: statistics and other post-mortem debugging information are not
  178. guaranteed to be available until this method has been called.
  179. @end deftypefun
  180. @deftypefun int starpu_asynchronous_copy_disabled (void)
  181. Return 1 if asynchronous data transfers between CPU and accelerators
  182. are disabled.
  183. @end deftypefun
  184. @deftypefun int starpu_asynchronous_cuda_copy_disabled (void)
  185. Return 1 if asynchronous data transfers between CPU and CUDA accelerators
  186. are disabled.
  187. @end deftypefun
  188. @deftypefun int starpu_asynchronous_opencl_copy_disabled (void)
  189. Return 1 if asynchronous data transfers between CPU and OpenCL accelerators
  190. are disabled.
  191. @end deftypefun
  192. @node Workers' Properties
  193. @section Workers' Properties
  194. @deftp {Data Type} {enum starpu_archtype}
  195. The different values are:
  196. @table @asis
  197. @item @code{STARPU_CPU_WORKER}
  198. @item @code{STARPU_CUDA_WORKER}
  199. @item @code{STARPU_OPENCL_WORKER}
  200. @end table
  201. @end deftp
  202. @deftypefun unsigned starpu_worker_get_count (void)
  203. This function returns the number of workers (i.e. processing units executing
  204. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  205. @end deftypefun
  206. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  207. Returns the number of workers of the given @var{type}. A positive
  208. (or @code{NULL}) value is returned in case of success, @code{-EINVAL} indicates that
  209. the type is not valid otherwise.
  210. @end deftypefun
  211. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  212. This function returns the number of CPUs controlled by StarPU. The returned
  213. value should be at most @code{STARPU_MAXCPUS}.
  214. @end deftypefun
  215. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  216. This function returns the number of CUDA devices controlled by StarPU. The returned
  217. value should be at most @code{STARPU_MAXCUDADEVS}.
  218. @end deftypefun
  219. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  220. This function returns the number of OpenCL devices controlled by StarPU. The returned
  221. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  222. @end deftypefun
  223. @deftypefun int starpu_worker_get_id (void)
  224. This function returns the identifier of the current worker, i.e the one associated to the calling
  225. thread. The returned value is either -1 if the current context is not a StarPU
  226. worker (i.e. when called from the application outside a task or a callback), or
  227. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  228. @end deftypefun
  229. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  230. This function gets the list of identifiers of workers with the given
  231. type. It fills the workerids array with the identifiers of the workers that have the type
  232. indicated in the first argument. The maxsize argument indicates the size of the
  233. workids array. The returned value gives the number of identifiers that were put
  234. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  235. workers with the appropriate type: in that case, the array is filled with the
  236. maxsize first elements. To avoid such overflows, the value of maxsize can be
  237. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  238. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  239. @end deftypefun
  240. @deftypefun int starpu_worker_get_devid (int @var{id})
  241. This functions returns the device id of the given worker. The worker
  242. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  243. CUDA worker, this device identifier is the logical device identifier exposed by
  244. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  245. identifier of a CPU worker is the logical identifier of the core on which the
  246. worker was bound; this identifier is either provided by the OS or by the
  247. @code{hwloc} library in case it is available.
  248. @end deftypefun
  249. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  250. This function returns the type of processing unit associated to a
  251. worker. The worker identifier is a value returned by the
  252. @code{starpu_worker_get_id} function). The returned value
  253. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  254. core, @code{STARPU_CUDA_WORKER} for a CUDA device, and
  255. @code{STARPU_OPENCL_WORKER} for a OpenCL device. The value returned for an invalid
  256. identifier is unspecified.
  257. @end deftypefun
  258. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  259. This function allows to get the name of a given worker.
  260. StarPU associates a unique human readable string to each processing unit. This
  261. function copies at most the @var{maxlen} first bytes of the unique string
  262. associated to a worker identified by its identifier @var{id} into the
  263. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  264. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  265. function on an invalid identifier results in an unspecified behaviour.
  266. @end deftypefun
  267. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  268. This function returns the identifier of the memory node associated to the
  269. worker identified by @var{workerid}.
  270. @end deftypefun
  271. @deftp {Data Type} {enum starpu_node_kind}
  272. todo
  273. @table @asis
  274. @item @code{STARPU_UNUSED}
  275. @item @code{STARPU_CPU_RAM}
  276. @item @code{STARPU_CUDA_RAM}
  277. @item @code{STARPU_OPENCL_RAM}
  278. @end table
  279. @end deftp
  280. @deftypefun {enum starpu_node_kind} starpu_node_get_kind (uint32_t @var{node})
  281. Returns the type of the given node as defined by @code{enum
  282. starpu_node_kind}. For example, when defining a new data interface,
  283. this function should be used in the allocation function to determine
  284. on which device the memory needs to be allocated.
  285. @end deftypefun
  286. @node Data Management
  287. @section Data Management
  288. @menu
  289. * Introduction to Data Management::
  290. * Basic Data Management API::
  291. * Access registered data from the application::
  292. @end menu
  293. This section describes the data management facilities provided by StarPU.
  294. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  295. design their own data interfaces if required.
  296. @node Introduction to Data Management
  297. @subsection Introduction
  298. Data management is done at a high-level in StarPU: rather than accessing a mere
  299. list of contiguous buffers, the tasks may manipulate data that are described by
  300. a high-level construct which we call data interface.
  301. An example of data interface is the "vector" interface which describes a
  302. contiguous data array on a spefic memory node. This interface is a simple
  303. structure containing the number of elements in the array, the size of the
  304. elements, and the address of the array in the appropriate address space (this
  305. address may be invalid if there is no valid copy of the array in the memory
  306. node). More informations on the data interfaces provided by StarPU are
  307. given in @ref{Data Interfaces}.
  308. When a piece of data managed by StarPU is used by a task, the task
  309. implementation is given a pointer to an interface describing a valid copy of
  310. the data that is accessible from the current processing unit.
  311. Every worker is associated to a memory node which is a logical abstraction of
  312. the address space from which the processing unit gets its data. For instance,
  313. the memory node associated to the different CPU workers represents main memory
  314. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  315. Every memory node is identified by a logical index which is accessible from the
  316. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  317. to StarPU, the specified memory node indicates where the piece of data
  318. initially resides (we also call this memory node the home node of a piece of
  319. data).
  320. @node Basic Data Management API
  321. @subsection Basic Data Management API
  322. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  323. This function allocates data of the given size in main memory. It will also try to pin it in
  324. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  325. thus permit data transfer and computation overlapping. The allocated buffer must
  326. be freed thanks to the @code{starpu_free} function.
  327. @end deftypefun
  328. @deftypefun int starpu_free (void *@var{A})
  329. This function frees memory which has previously allocated with
  330. @code{starpu_malloc}.
  331. @end deftypefun
  332. @deftp {Data Type} {enum starpu_access_mode}
  333. This datatype describes a data access mode. The different available modes are:
  334. @table @asis
  335. @item @code{STARPU_R}: read-only mode.
  336. @item @code{STARPU_W}: write-only mode.
  337. @item @code{STARPU_RW}: read-write mode.
  338. This is equivalent to @code{STARPU_R|STARPU_W}.
  339. @item @code{STARPU_SCRATCH}: scratch memory.
  340. A temporary buffer is allocated for the task, but StarPU does not
  341. enforce data consistency---i.e. each device has its own buffer,
  342. independently from each other (even for CPUs), and no data transfer is
  343. ever performed. This is useful for temporary variables to avoid
  344. allocating/freeing buffers inside each task.
  345. Currently, no behavior is defined concerning the relation with the
  346. @code{STARPU_R} and @code{STARPU_W} modes and the value provided at
  347. registration---i.e., the value of the scratch buffer is undefined at
  348. entry of the codelet function. It is being considered for future
  349. extensions at least to define the initial value. For now, data to be
  350. used in @code{SCRATCH} mode should be registered with node @code{-1} and
  351. a @code{NULL} pointer, since the value of the provided buffer is simply
  352. ignored for now.
  353. @item @code{STARPU_REDUX}: reduction mode. TODO!
  354. @end table
  355. @end deftp
  356. @deftp {Data Type} {starpu_data_handle_t}
  357. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  358. data. Once a piece of data has been registered to StarPU, it is associated to a
  359. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  360. over the entire machine, so that we can maintain data consistency and locate
  361. data replicates for instance.
  362. @end deftp
  363. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, uint32_t @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  364. Register a piece of data into the handle located at the @var{handleptr}
  365. address. The @var{data_interface} buffer contains the initial description of the
  366. data in the home node. The @var{ops} argument is a pointer to a structure
  367. describing the different methods used to manipulate this type of interface. See
  368. @ref{struct starpu_data_interface_ops} for more details on this structure.
  369. If @code{home_node} is -1, StarPU will automatically
  370. allocate the memory when it is used for the
  371. first time in write-only mode. Once such data handle has been automatically
  372. allocated, it is possible to access it using any access mode.
  373. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  374. matrix) which can be registered by the means of helper functions (e.g.
  375. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  376. @end deftypefun
  377. @deftypefun void starpu_data_register_same ({starpu_data_handle_t *}@var{handledst}, starpu_data_handle_t @var{handlesrc})
  378. Register a new piece of data into the handle @var{handledst} with the
  379. same interface as the handle @var{handlesrc}.
  380. @end deftypefun
  381. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  382. This function unregisters a data handle from StarPU. If the data was
  383. automatically allocated by StarPU because the home node was -1, all
  384. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  385. is put back into the home node in the buffer that was initially registered.
  386. Using a data handle that has been unregistered from StarPU results in an
  387. undefined behaviour.
  388. @end deftypefun
  389. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  390. This is the same as starpu_data_unregister, except that StarPU does not put back
  391. a valid copy into the home node, in the buffer that was initially registered.
  392. @end deftypefun
  393. @deftypefun void starpu_data_unregister_submit (starpu_data_handle_t @var{handle})
  394. Destroy the data handle once it is not needed anymore by any submitted
  395. task. No coherency is assumed.
  396. @end deftypefun
  397. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  398. Destroy all replicates of the data handle. After data invalidation, the first
  399. access to the handle must be performed in write-only mode. Accessing an
  400. invalidated data in read-mode results in undefined behaviour.
  401. @end deftypefun
  402. @deftypefun void starpu_data_invalidate_submit (starpu_data_handle_t @var{handle})
  403. Submits invalidation of the data handle after completion of previously submitted tasks.
  404. @end deftypefun
  405. @c TODO create a specific sections about user interaction with the DSM ?
  406. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  407. This function sets the write-through mask of a given data, i.e. a bitmask of
  408. nodes where the data should be always replicated after modification. It also
  409. prevents the data from being evicted from these nodes when memory gets scarse.
  410. @end deftypefun
  411. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  412. Issue a prefetch request for a given data to a given node, i.e.
  413. requests that the data be replicated to the given node, so that it is available
  414. there for tasks. If the @var{async} parameter is 0, the call will block until
  415. the transfer is achieved, else the call will return as soon as the request is
  416. scheduled (which may however have to wait for a task completion).
  417. @end deftypefun
  418. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  419. Return the handle corresponding to the data pointed to by the @var{ptr}
  420. host pointer.
  421. @end deftypefun
  422. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  423. Explicitly ask StarPU to allocate room for a piece of data on the specified
  424. memory node.
  425. @end deftypefun
  426. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  427. Query the status of the handle on the specified memory node.
  428. @end deftypefun
  429. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  430. This function allows to specify that a piece of data can be discarded
  431. without impacting the application.
  432. @end deftypefun
  433. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  434. This sets the codelets to be used for the @var{handle} when it is accessed in
  435. REDUX mode. Per-worker buffers will be initialized with the @var{init_cl}
  436. codelet, and reduction between per-worker buffers will be done with the
  437. @var{redux_cl} codelet.
  438. @end deftypefun
  439. @node Access registered data from the application
  440. @subsection Access registered data from the application
  441. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode})
  442. The application must call this function prior to accessing registered data from
  443. main memory outside tasks. StarPU ensures that the application will get an
  444. up-to-date copy of the data in main memory located where the data was
  445. originally registered, and that all concurrent accesses (e.g. from tasks) will
  446. be consistent with the access mode specified in the @var{mode} argument.
  447. @code{starpu_data_release} must be called once the application does not need to
  448. access the piece of data anymore. Note that implicit data
  449. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  450. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  451. the data, unless they have been disabled explictly by calling
  452. @code{starpu_data_set_default_sequential_consistency_flag} or
  453. @code{starpu_data_set_sequential_consistency_flag}.
  454. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  455. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  456. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  457. @end deftypefun
  458. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  459. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  460. @code{starpu_data_acquire}. When the data specified in the first argument is
  461. available in the appropriate access mode, the callback function is executed.
  462. The application may access the requested data during the execution of this
  463. callback. The callback function must call @code{starpu_data_release} once the
  464. application does not need to access the piece of data anymore.
  465. Note that implicit data dependencies are also enforced by
  466. @code{starpu_data_acquire_cb} in case they are not disabled.
  467. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  468. be called from task callbacks. Upon successful completion, this function
  469. returns 0.
  470. @end deftypefun
  471. @deftypefun int starpu_data_acquire_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode})
  472. This is the same as @code{starpu_data_acquire}, except that the data will be
  473. available on the given memory node instead of main memory.
  474. @end deftypefun
  475. @deftypefun int starpu_data_acquire_on_node_cb (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  476. This is the same as @code{starpu_data_acquire_cb}, except that the data will be
  477. available on the given memory node instead of main memory.
  478. @end deftypefun
  479. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, code)
  480. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  481. except that the code to be executed in a callback is directly provided as a
  482. macro parameter, and the data handle is automatically released after it. This
  483. permits to easily execute code which depends on the value of some registered
  484. data. This is non-blocking too and may be called from task callbacks.
  485. @end defmac
  486. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  487. This function releases the piece of data acquired by the application either by
  488. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  489. @end deftypefun
  490. @deftypefun void starpu_data_release_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node})
  491. This is the same as @code{starpu_data_release}, except that the data will be
  492. available on the given memory node instead of main memory.
  493. @end deftypefun
  494. @node Data Interfaces
  495. @section Data Interfaces
  496. @menu
  497. * Registering Data::
  498. * Accessing Data Interfaces::
  499. @end menu
  500. @node Registering Data
  501. @subsection Registering Data
  502. There are several ways to register a memory region so that it can be managed by
  503. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  504. matrices as well as BCSR and CSR sparse matrices.
  505. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  506. Register a void interface. There is no data really associated to that
  507. interface, but it may be used as a synchronization mechanism. It also
  508. permits to express an abstract piece of data that is managed by the
  509. application internally: this makes it possible to forbid the
  510. concurrent execution of different tasks accessing the same "void" data
  511. in read-write concurrently.
  512. @end deftypefun
  513. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  514. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  515. typically a scalar, and initialize @var{handle} to represent this data
  516. item.
  517. @cartouche
  518. @smallexample
  519. float var;
  520. starpu_data_handle_t var_handle;
  521. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  522. @end smallexample
  523. @end cartouche
  524. @end deftypefun
  525. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  526. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  527. @var{ptr} and initialize @var{handle} to represent it.
  528. @cartouche
  529. @smallexample
  530. float vector[NX];
  531. starpu_data_handle_t vector_handle;
  532. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  533. sizeof(vector[0]));
  534. @end smallexample
  535. @end cartouche
  536. @end deftypefun
  537. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  538. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  539. pointed by @var{ptr} and initialize @var{handle} to represent it.
  540. @var{ld} specifies the number of elements between rows.
  541. a value greater than @var{nx} adds padding, which can be useful for
  542. alignment purposes.
  543. @cartouche
  544. @smallexample
  545. float *matrix;
  546. starpu_data_handle_t matrix_handle;
  547. matrix = (float*)malloc(width * height * sizeof(float));
  548. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  549. width, width, height, sizeof(float));
  550. @end smallexample
  551. @end cartouche
  552. @end deftypefun
  553. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  554. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  555. elements pointed by @var{ptr} and initialize @var{handle} to represent
  556. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  557. between rows and between z planes.
  558. @cartouche
  559. @smallexample
  560. float *block;
  561. starpu_data_handle_t block_handle;
  562. block = (float*)malloc(nx*ny*nz*sizeof(float));
  563. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  564. nx, nx*ny, nx, ny, nz, sizeof(float));
  565. @end smallexample
  566. @end cartouche
  567. @end deftypefun
  568. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  569. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  570. Compressed Sparse Row Representation) sparse matrix interface.
  571. Register the sparse matrix made of @var{nnz} non-zero blocks of elements of size
  572. @var{elemsize} stored in @var{nzval} and initializes @var{handle} to represent
  573. it. Blocks have size @var{r} * @var{c}. @var{nrow} is the number of rows (in
  574. terms of blocks), @code{colind[i]} is the block-column index for block @code{i}
  575. in @code{nzval}, @code{rowptr[i]} is the block-index (in nzval) of the first block of row @code{i}.
  576. @var{firstentry} is the index of the first entry of the given arrays (usually 0
  577. or 1).
  578. @end deftypefun
  579. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  580. This variant of @code{starpu_data_register} uses the CSR (Compressed
  581. Sparse Row Representation) sparse matrix interface.
  582. TODO
  583. @end deftypefun
  584. @deftypefun void starpu_coo_data_register (starpu_data_handle_t *@var{handleptr}, uint32_t @var{home_node}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{n_values}, uint32_t *@var{columns}, uint32_t *@var{rows}, uintptr_t @var{values}, size_t @var{elemsize});
  585. Register the @var{nx}x@var{ny} 2D matrix given in the COO format, using the
  586. @var{columns}, @var{rows}, @var{values} arrays, which must have @var{n_values}
  587. elements of size @var{elemsize}. Initialize @var{handleptr}.
  588. @end deftypefun
  589. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  590. Return the interface associated with @var{handle} on @var{memory_node}.
  591. @end deftypefun
  592. @node Accessing Data Interfaces
  593. @subsection Accessing Data Interfaces
  594. Each data interface is provided with a set of field access functions.
  595. The ones using a @code{void *} parameter aimed to be used in codelet
  596. implementations (see for example the code in @ref{Vector Scaling Using StarPu's API}).
  597. @deftp {Data Type} {enum starpu_data_interface_id}
  598. The different values are:
  599. @table @asis
  600. @item @code{STARPU_MATRIX_INTERFACE_ID}
  601. @item @code{STARPU_BLOCK_INTERFACE_ID}
  602. @item @code{STARPU_VECTOR_INTERFACE_ID}
  603. @item @code{STARPU_CSR_INTERFACE_ID}
  604. @item @code{STARPU_BCSR_INTERFACE_ID}
  605. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  606. @item @code{STARPU_VOID_INTERFACE_ID}
  607. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  608. @item @code{STARPU_COO_INTERCACE_ID}
  609. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  610. @end table
  611. @end deftp
  612. @menu
  613. * Accessing Handle::
  614. * Accessing Variable Data Interfaces::
  615. * Accessing Vector Data Interfaces::
  616. * Accessing Matrix Data Interfaces::
  617. * Accessing Block Data Interfaces::
  618. * Accessing BCSR Data Interfaces::
  619. * Accessing CSR Data Interfaces::
  620. * Accessing COO Data Interfaces::
  621. @end menu
  622. @node Accessing Handle
  623. @subsubsection Handle
  624. @deftypefun {void *} starpu_handle_to_pointer (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  625. Return the pointer associated with @var{handle} on node @var{node} or
  626. @code{NULL} if @var{handle}'s interface does not support this
  627. operation or data for this handle is not allocated on that node.
  628. @end deftypefun
  629. @deftypefun {void *} starpu_handle_get_local_ptr (starpu_data_handle_t @var{handle})
  630. Return the local pointer associated with @var{handle} or @code{NULL}
  631. if @var{handle}'s interface does not have data allocated locally
  632. @end deftypefun
  633. @deftypefun {enum starpu_data_interface_id} starpu_handle_get_interface_id (starpu_data_handle_t @var{handle})
  634. Return the unique identifier of the interface associated with the given @var{handle}.
  635. @end deftypefun
  636. @deftypefun size_t starpu_handle_get_size (starpu_data_handle_t @var{handle})
  637. Return the size of the data associated with @var{handle}
  638. @end deftypefun
  639. @deftypefun int starpu_handle_pack_data (starpu_data_handle_t @var{handle}, {void **}@var{ptr}, {size_t *}@var{count})
  640. Execute the packing operation of the interface of the data registered
  641. at @var{handle} (@pxref{struct starpu_data_interface_ops}). This
  642. packing operation must allocate a buffer large enough at @var{ptr} and
  643. copy into the newly allocated buffer the data associated to
  644. @var{handle}.
  645. The function also sets @var{count} to the size of the data handle by calling
  646. @code{starpu_handle_get_size()}.
  647. @end deftypefun
  648. @deftypefun int starpu_handle_unpack_data (starpu_data_handle_t @var{handle}, {void *}@var{ptr}, size_t @var{count})
  649. Unpack in @var{handle} the data located at @var{ptr} of size
  650. @var{count} as described by the interface of the data. The interface
  651. registered at @var{handle} must define a unpacking operation
  652. (@pxref{struct starpu_data_interface_ops}).
  653. @end deftypefun
  654. @node Accessing Variable Data Interfaces
  655. @subsubsection Variable Data Interfaces
  656. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  657. Return the size of the variable designated by @var{handle}.
  658. @end deftypefun
  659. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  660. Return a pointer to the variable designated by @var{handle}.
  661. @end deftypefun
  662. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  663. Return a pointer to the variable designated by @var{interface}.
  664. @end defmac
  665. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  666. Return the size of the variable designated by @var{interface}.
  667. @end defmac
  668. @defmac STARPU_VARIABLE_GET_DEV_HANDLE ({void *}@var{interface})
  669. Return a device handle for the variable designated by @var{interface}, to be
  670. used on OpenCL. The offset documented below has to be used in addition to this.
  671. @end defmac
  672. @defmac STARPU_VARIABLE_GET_OFFSET ({void *}@var{interface})
  673. Return the offset in the variable designated by @var{interface}, to be used
  674. with the device handle.
  675. @end defmac
  676. @node Accessing Vector Data Interfaces
  677. @subsubsection Vector Data Interfaces
  678. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  679. Return the number of elements registered into the array designated by @var{handle}.
  680. @end deftypefun
  681. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  682. Return the size of each element of the array designated by @var{handle}.
  683. @end deftypefun
  684. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  685. Return the local pointer associated with @var{handle}.
  686. @end deftypefun
  687. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  688. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  689. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  690. @end defmac
  691. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  692. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  693. documented below has to be used in addition to this.
  694. @end defmac
  695. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  696. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  697. @end defmac
  698. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  699. Return the number of elements registered into the array designated by @var{interface}.
  700. @end defmac
  701. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  702. Return the size of each element of the array designated by @var{interface}.
  703. @end defmac
  704. @node Accessing Matrix Data Interfaces
  705. @subsubsection Matrix Data Interfaces
  706. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  707. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  708. @end deftypefun
  709. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  710. Return the number of elements on the y-axis of the matrix designated by
  711. @var{handle}.
  712. @end deftypefun
  713. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  714. Return the number of elements between each row of the matrix designated by
  715. @var{handle}. Maybe be equal to nx when there is no padding.
  716. @end deftypefun
  717. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  718. Return the local pointer associated with @var{handle}.
  719. @end deftypefun
  720. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  721. Return the size of the elements registered into the matrix designated by
  722. @var{handle}.
  723. @end deftypefun
  724. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  725. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  726. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  727. used instead.
  728. @end defmac
  729. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  730. Return a device handle for the matrix designated by @var{interface}, to be used
  731. on OpenCL. The offset documented below has to be used in addition to this.
  732. @end defmac
  733. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  734. Return the offset in the matrix designated by @var{interface}, to be used with
  735. the device handle.
  736. @end defmac
  737. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  738. Return the number of elements on the x-axis of the matrix designated by
  739. @var{interface}.
  740. @end defmac
  741. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  742. Return the number of elements on the y-axis of the matrix designated by
  743. @var{interface}.
  744. @end defmac
  745. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  746. Return the number of elements between each row of the matrix designated by
  747. @var{interface}. May be equal to nx when there is no padding.
  748. @end defmac
  749. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  750. Return the size of the elements registered into the matrix designated by
  751. @var{interface}.
  752. @end defmac
  753. @node Accessing Block Data Interfaces
  754. @subsubsection Block Data Interfaces
  755. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  756. Return the number of elements on the x-axis of the block designated by @var{handle}.
  757. @end deftypefun
  758. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  759. Return the number of elements on the y-axis of the block designated by @var{handle}.
  760. @end deftypefun
  761. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  762. Return the number of elements on the z-axis of the block designated by @var{handle}.
  763. @end deftypefun
  764. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  765. Return the number of elements between each row of the block designated by
  766. @var{handle}, in the format of the current memory node.
  767. @end deftypefun
  768. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  769. Return the number of elements between each z plane of the block designated by
  770. @var{handle}, in the format of the current memory node.
  771. @end deftypefun
  772. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  773. Return the local pointer associated with @var{handle}.
  774. @end deftypefun
  775. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  776. Return the size of the elements of the block designated by @var{handle}.
  777. @end deftypefun
  778. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  779. Return a pointer to the block designated by @var{interface}.
  780. @end defmac
  781. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  782. Return a device handle for the block designated by @var{interface}, to be used
  783. on OpenCL. The offset document below has to be used in addition to this.
  784. @end defmac
  785. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  786. Return the offset in the block designated by @var{interface}, to be used with
  787. the device handle.
  788. @end defmac
  789. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  790. Return the number of elements on the x-axis of the block designated by @var{handle}.
  791. @end defmac
  792. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  793. Return the number of elements on the y-axis of the block designated by @var{handle}.
  794. @end defmac
  795. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  796. Return the number of elements on the z-axis of the block designated by @var{handle}.
  797. @end defmac
  798. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  799. Return the number of elements between each row of the block designated by
  800. @var{interface}. May be equal to nx when there is no padding.
  801. @end defmac
  802. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  803. Return the number of elements between each z plane of the block designated by
  804. @var{interface}. May be equal to nx*ny when there is no padding.
  805. @end defmac
  806. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  807. Return the size of the elements of the matrix designated by @var{interface}.
  808. @end defmac
  809. @node Accessing BCSR Data Interfaces
  810. @subsubsection BCSR Data Interfaces
  811. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  812. Return the number of non-zero elements in the matrix designated by @var{handle}.
  813. @end deftypefun
  814. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  815. Return the number of rows (in terms of blocks of size r*c) in the matrix
  816. designated by @var{handle}.
  817. @end deftypefun
  818. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  819. Return the index at which all arrays (the column indexes, the row pointers...)
  820. of the matrix desginated by @var{handle} start.
  821. @end deftypefun
  822. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  823. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  824. @end deftypefun
  825. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  826. Return a pointer to the column index, which holds the positions of the non-zero
  827. entries in the matrix designated by @var{handle}.
  828. @end deftypefun
  829. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  830. Return the row pointer array of the matrix designated by @var{handle}.
  831. @end deftypefun
  832. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  833. Return the number of rows in a block.
  834. @end deftypefun
  835. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  836. Return the numberof columns in a block.
  837. @end deftypefun
  838. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  839. Return the size of the elements in the matrix designated by @var{handle}.
  840. @end deftypefun
  841. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  842. Return the number of non-zero values in the matrix designated by @var{interface}.
  843. @end defmac
  844. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  845. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  846. @end defmac
  847. @defmac STARPU_BCSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  848. Return a device handle for the array of non-zero values in the matrix designated
  849. by @var{interface}. The offset documented below has to be used in addition to
  850. this.
  851. @end defmac
  852. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  853. Return a pointer to the column index of the matrix designated by @var{interface}.
  854. @end defmac
  855. @defmac STARPU_BCSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  856. Return a device handle for the column index of the matrix designated by
  857. @var{interface}. The offset documented below has to be used in addition to
  858. this.
  859. @end defmac
  860. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  861. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  862. @end defmac
  863. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  864. Return a device handle for the row pointer array of the matrix designated by
  865. @var{interface}. The offset documented below has to be used in addition to
  866. this.
  867. @end defmac
  868. @defmac STARPU_BCSR_GET_OFFSET ({void *}@var{interface})
  869. Return the offset in the arrays (coling, rowptr, nzval) of the matrix
  870. designated by @var{interface}, to be used with the device handles.
  871. @end defmac
  872. @node Accessing CSR Data Interfaces
  873. @subsubsection CSR Data Interfaces
  874. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  875. Return the number of non-zero values in the matrix designated by @var{handle}.
  876. @end deftypefun
  877. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  878. Return the size of the row pointer array of the matrix designated by @var{handle}.
  879. @end deftypefun
  880. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  881. Return the index at which all arrays (the column indexes, the row pointers...)
  882. of the matrix designated by @var{handle} start.
  883. @end deftypefun
  884. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  885. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  886. @end deftypefun
  887. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  888. Return a local pointer to the column index of the matrix designated by @var{handle}.
  889. @end deftypefun
  890. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  891. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  892. @end deftypefun
  893. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  894. Return the size of the elements registered into the matrix designated by @var{handle}.
  895. @end deftypefun
  896. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  897. Return the number of non-zero values in the matrix designated by @var{interface}.
  898. @end defmac
  899. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  900. Return the size of the row pointer array of the matrix designated by @var{interface}.
  901. @end defmac
  902. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  903. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  904. @end defmac
  905. @defmac STARPU_CSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  906. Return a device handle for the array of non-zero values in the matrix designated
  907. by @var{interface}. The offset documented below has to be used in addition to
  908. this.
  909. @end defmac
  910. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  911. Return a pointer to the column index of the matrix designated by @var{interface}.
  912. @end defmac
  913. @defmac STARPU_CSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  914. Return a device handle for the column index of the matrix designated by
  915. @var{interface}. The offset documented below has to be used in addition to
  916. this.
  917. @end defmac
  918. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  919. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  920. @end defmac
  921. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  922. Return a device handle for the row pointer array of the matrix designated by
  923. @var{interface}. The offset documented below has to be used in addition to
  924. this.
  925. @end defmac
  926. @defmac STARPU_CSR_GET_OFFSET ({void *}@var{interface})
  927. Return the offset in the arrays (colind, rowptr, nzval) of the matrix
  928. designated by @var{interface}, to be used with the device handles.
  929. @end defmac
  930. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  931. Return the index at which all arrays (the column indexes, the row pointers...)
  932. of the @var{interface} start.
  933. @end defmac
  934. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  935. Return the size of the elements registered into the matrix designated by @var{interface}.
  936. @end defmac
  937. @node Accessing COO Data Interfaces
  938. @subsubsection COO Data Interfaces
  939. @defmac STARPU_COO_GET_COLUMNS ({void *}@var{interface})
  940. Return a pointer to the column array of the matrix designated by
  941. @var{interface}.
  942. @end defmac
  943. @defmac STARPU_COO_GET_COLUMNS_DEV_HANDLE ({void *}@var{interface})
  944. Return a device handle for the column array of the matrix designated by
  945. @var{interface}, to be used on OpenCL. The offset documented below has to be
  946. used in addition to this.
  947. @end defmac
  948. @defmac STARPU_COO_GET_ROWS (interface)
  949. Return a pointer to the rows array of the matrix designated by @var{interface}.
  950. @end defmac
  951. @defmac STARPU_COO_GET_ROWS_DEV_HANDLE ({void *}@var{interface})
  952. Return a device handle for the row array of the matrix designated by
  953. @var{interface}, to be used on OpenCL. The offset documented below has to be
  954. used in addition to this.
  955. @end defmac
  956. @defmac STARPU_COO_GET_VALUES (interface)
  957. Return a pointer to the values array of the matrix designated by
  958. @var{interface}.
  959. @end defmac
  960. @defmac STARPU_COO_GET_VALUES_DEV_HANDLE ({void *}@var{interface})
  961. Return a device handle for the value array of the matrix designated by
  962. @var{interface}, to be used on OpenCL. The offset documented below has to be
  963. used in addition to this.
  964. @end defmac
  965. @defmac STARPU_COO_GET_OFFSET ({void *}@var{itnerface})
  966. Return the offset in the arrays of the COO matrix designated by @var{interface}.
  967. @end defmac
  968. @defmac STARPU_COO_GET_NX (interface)
  969. Return the number of elements on the x-axis of the matrix designated by
  970. @var{interface}.
  971. @end defmac
  972. @defmac STARPU_COO_GET_NY (interface)
  973. Return the number of elements on the y-axis of the matrix designated by
  974. @var{interface}.
  975. @end defmac
  976. @defmac STARPU_COO_GET_NVALUES (interface)
  977. Return the number of values registered in the matrix designated by
  978. @var{interface}.
  979. @end defmac
  980. @defmac STARPU_COO_GET_ELEMSIZE (interface)
  981. Return the size of the elements registered into the matrix designated by
  982. @var{interface}.
  983. @end defmac
  984. @node Data Partition
  985. @section Data Partition
  986. @menu
  987. * Basic API::
  988. * Predefined filter functions::
  989. @end menu
  990. @node Basic API
  991. @subsection Basic API
  992. @deftp {Data Type} {struct starpu_data_filter}
  993. The filter structure describes a data partitioning operation, to be given to the
  994. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  995. for an example. The different fields are:
  996. @table @asis
  997. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  998. This function fills the @code{child_interface} structure with interface
  999. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  1000. @item @code{unsigned nchildren}
  1001. This is the number of parts to partition the data into.
  1002. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  1003. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  1004. children depends on the actual data (e.g. the number of blocks in a sparse
  1005. matrix).
  1006. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  1007. In case the resulting children use a different data interface, this function
  1008. returns which interface is used by child number @code{id}.
  1009. @item @code{unsigned filter_arg}
  1010. Allow to define an additional parameter for the filter function.
  1011. @item @code{void *filter_arg_ptr}
  1012. Allow to define an additional pointer parameter for the filter
  1013. function, such as the sizes of the different parts.
  1014. @end table
  1015. @end deftp
  1016. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  1017. @anchor{starpu_data_partition}
  1018. This requests partitioning one StarPU data @var{initial_handle} into several
  1019. subdata according to the filter @var{f}, as shown in the following example:
  1020. @cartouche
  1021. @smallexample
  1022. struct starpu_data_filter f = @{
  1023. .filter_func = starpu_block_filter_func,
  1024. .nchildren = nslicesx,
  1025. .get_nchildren = NULL,
  1026. .get_child_ops = NULL
  1027. @};
  1028. starpu_data_partition(A_handle, &f);
  1029. @end smallexample
  1030. @end cartouche
  1031. @end deftypefun
  1032. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, uint32_t @var{gathering_node})
  1033. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  1034. collected back into one big piece in the @var{gathering_node} (usually 0). Tasks
  1035. working on the partitioned data must be already finished when calling @code{starpu_data_unpartition}.
  1036. @cartouche
  1037. @smallexample
  1038. starpu_data_unpartition(A_handle, 0);
  1039. @end smallexample
  1040. @end cartouche
  1041. @end deftypefun
  1042. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  1043. This function returns the number of children.
  1044. @end deftypefun
  1045. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  1046. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  1047. @end deftypefun
  1048. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  1049. After partitioning a StarPU data by applying a filter,
  1050. @code{starpu_data_get_sub_data} can be used to get handles for each of
  1051. the data portions. @var{root_data} is the parent data that was
  1052. partitioned. @var{depth} is the number of filters to traverse (in
  1053. case several filters have been applied, to e.g. partition in row
  1054. blocks, and then in column blocks), and the subsequent
  1055. parameters are the indexes. The function returns a handle to the
  1056. subdata.
  1057. @cartouche
  1058. @smallexample
  1059. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  1060. @end smallexample
  1061. @end cartouche
  1062. @end deftypefun
  1063. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  1064. This function is similar to @code{starpu_data_get_sub_data} but uses a
  1065. va_list for the parameter list.
  1066. @end deftypefun
  1067. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  1068. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1069. recursively. @var{nfilters} pointers to variables of the type
  1070. starpu_data_filter should be given.
  1071. @end deftypefun
  1072. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  1073. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1074. recursively. It uses a va_list of pointers to variables of the typer
  1075. starpu_data_filter.
  1076. @end deftypefun
  1077. @node Predefined filter functions
  1078. @subsection Predefined filter functions
  1079. @menu
  1080. * Partitioning Vector Data::
  1081. * Partitioning Matrix Data::
  1082. * Partitioning 3D Matrix Data::
  1083. * Partitioning BCSR Data::
  1084. @end menu
  1085. This section gives a partial list of the predefined partitioning functions.
  1086. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  1087. list can be found in @code{starpu_data_filters.h} .
  1088. @node Partitioning Vector Data
  1089. @subsubsection Partitioning Vector Data
  1090. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1091. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1092. vector represented by @var{father_interface} once partitioned in
  1093. @var{nparts} chunks of equal size.
  1094. @end deftypefun
  1095. @deftypefun void starpu_block_shadow_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1096. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1097. vector represented by @var{father_interface} once partitioned in
  1098. @var{nparts} chunks of equal size with a shadow border @code{filter_arg_ptr}, thus getting a vector of size (n-2*shadow)/nparts+2*shadow
  1099. The @code{filter_arg_ptr} field must be the shadow size casted into @code{void*}.
  1100. IMPORTANT: This can only be used for read-only access, as no coherency is
  1101. enforced for the shadowed parts.
  1102. A usage example is available in examples/filters/shadow.c
  1103. @end deftypefun
  1104. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1105. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1106. vector represented by @var{father_interface} once partitioned into
  1107. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  1108. @code{*@var{f}}.
  1109. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  1110. @code{uint32_t} elements, each of which specifies the number of elements
  1111. in each chunk of the partition.
  1112. @end deftypefun
  1113. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1114. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1115. vector represented by @var{father_interface} once partitioned in two
  1116. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  1117. @code{0} or @code{1}.
  1118. @end deftypefun
  1119. @node Partitioning Matrix Data
  1120. @subsubsection Partitioning Matrix Data
  1121. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1122. This partitions a dense Matrix along the x dimension, thus getting (x/nparts,y)
  1123. matrices. If nparts does not divide x, the last submatrix contains the
  1124. remainder.
  1125. @end deftypefun
  1126. @deftypefun void starpu_block_shadow_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1127. This partitions a dense Matrix along the x dimension, with a shadow border
  1128. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y)
  1129. matrices. If nparts does not divide x-2*shadow, the last submatrix contains the
  1130. remainder.
  1131. IMPORTANT: This can only be used for read-only access, as no coherency is
  1132. enforced for the shadowed parts.
  1133. A usage example is available in examples/filters/shadow2d.c
  1134. @end deftypefun
  1135. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1136. This partitions a dense Matrix along the y dimension, thus getting (x,y/nparts)
  1137. matrices. If nparts does not divide y, the last submatrix contains the
  1138. remainder.
  1139. @end deftypefun
  1140. @deftypefun void starpu_vertical_block_shadow_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1141. This partitions a dense Matrix along the y dimension, with a shadow border
  1142. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow)
  1143. matrices. If nparts does not divide y-2*shadow, the last submatrix contains the
  1144. remainder.
  1145. IMPORTANT: This can only be used for read-only access, as no coherency is
  1146. enforced for the shadowed parts.
  1147. A usage example is available in examples/filters/shadow2d.c
  1148. @end deftypefun
  1149. @node Partitioning 3D Matrix Data
  1150. @subsubsection Partitioning 3D Matrix Data
  1151. A usage example is available in examples/filters/shadow3d.c
  1152. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1153. This partitions a 3D matrix along the X dimension, thus getting (x/nparts,y,z)
  1154. 3D matrices. If nparts does not divide x, the last submatrix contains the
  1155. remainder.
  1156. @end deftypefun
  1157. @deftypefun void starpu_block_shadow_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1158. This partitions a 3D matrix along the X dimension, with a shadow border
  1159. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y,z) 3D
  1160. matrices. If nparts does not divide x, the last submatrix contains the
  1161. remainder.
  1162. IMPORTANT: This can only be used for read-only access, as no coherency is
  1163. enforced for the shadowed parts.
  1164. @end deftypefun
  1165. @deftypefun void starpu_vertical_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1166. This partitions a 3D matrix along the Y dimension, thus getting (x,y/nparts,z)
  1167. 3D matrices. If nparts does not divide y, the last submatrix contains the
  1168. remainder.
  1169. @end deftypefun
  1170. @deftypefun void starpu_vertical_block_shadow_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1171. This partitions a 3D matrix along the Y dimension, with a shadow border
  1172. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow,z) 3D
  1173. matrices. If nparts does not divide y, the last submatrix contains the
  1174. remainder.
  1175. IMPORTANT: This can only be used for read-only access, as no coherency is
  1176. enforced for the shadowed parts.
  1177. @end deftypefun
  1178. @deftypefun void starpu_depth_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1179. This partitions a 3D matrix along the Z dimension, thus getting (x,y,z/nparts)
  1180. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1181. remainder.
  1182. @end deftypefun
  1183. @deftypefun void starpu_depth_block_shadow_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1184. This partitions a 3D matrix along the Z dimension, with a shadow border
  1185. @code{filter_arg_ptr}, thus getting (x,y,(z-2*shadow)/nparts+2*shadow)
  1186. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1187. remainder.
  1188. IMPORTANT: This can only be used for read-only access, as no coherency is
  1189. enforced for the shadowed parts.
  1190. @end deftypefun
  1191. @node Partitioning BCSR Data
  1192. @subsubsection Partitioning BCSR Data
  1193. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1194. This partitions a block-sparse matrix into dense matrices.
  1195. @end deftypefun
  1196. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1197. This partitions a block-sparse matrix into vertical block-sparse matrices.
  1198. @end deftypefun
  1199. @node Codelets and Tasks
  1200. @section Codelets and Tasks
  1201. This section describes the interface to manipulate codelets and tasks.
  1202. @deftp {Data Type} {enum starpu_codelet_type}
  1203. Describes the type of parallel task. The different values are:
  1204. @table @asis
  1205. @item @code{STARPU_SEQ} (default) for classical sequential tasks.
  1206. @item @code{STARPU_SPMD} for a parallel task whose threads are handled by
  1207. StarPU, the code has to use @code{starpu_combined_worker_get_size} and
  1208. @code{starpu_combined_worker_get_rank} to distribute the work
  1209. @item @code{STARPU_FORKJOIN} for a parallel task whose threads are started by
  1210. the codelet function, which has to use @code{starpu_combined_worker_get_size} to
  1211. determine how many threads should be started.
  1212. @end table
  1213. See @ref{Parallel Tasks} for details.
  1214. @end deftp
  1215. @defmac STARPU_CPU
  1216. This macro is used when setting the field @code{where} of a @code{struct
  1217. starpu_codelet} to specify the codelet may be executed on a CPU
  1218. processing unit.
  1219. @end defmac
  1220. @defmac STARPU_CUDA
  1221. This macro is used when setting the field @code{where} of a @code{struct
  1222. starpu_codelet} to specify the codelet may be executed on a CUDA
  1223. processing unit.
  1224. @end defmac
  1225. @defmac STARPU_OPENCL
  1226. This macro is used when setting the field @code{where} of a @code{struct
  1227. starpu_codelet} to specify the codelet may be executed on a OpenCL
  1228. processing unit.
  1229. @end defmac
  1230. @defmac STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
  1231. Setting the field @code{cpu_func} of a @code{struct starpu_codelet}
  1232. with this macro indicates the codelet will have several
  1233. implementations. The use of this macro is deprecated. One should
  1234. always only define the field @code{cpu_funcs}.
  1235. @end defmac
  1236. @defmac STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
  1237. Setting the field @code{cuda_func} of a @code{struct starpu_codelet}
  1238. with this macro indicates the codelet will have several
  1239. implementations. The use of this macro is deprecated. One should
  1240. always only define the field @code{cuda_funcs}.
  1241. @end defmac
  1242. @defmac STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
  1243. Setting the field @code{opencl_func} of a @code{struct starpu_codelet}
  1244. with this macro indicates the codelet will have several
  1245. implementations. The use of this macro is deprecated. One should
  1246. always only define the field @code{opencl_funcs}.
  1247. @end defmac
  1248. @deftp {Data Type} {struct starpu_codelet}
  1249. The codelet structure describes a kernel that is possibly implemented on various
  1250. targets. For compatibility, make sure to initialize the whole structure to zero,
  1251. either by using explicit memset, or by letting the compiler implicitly do it in
  1252. e.g. static storage case.
  1253. @table @asis
  1254. @item @code{uint32_t where} (optional)
  1255. Indicates which types of processing units are able to execute the
  1256. codelet. The different values
  1257. @code{STARPU_CPU}, @code{STARPU_CUDA},
  1258. @code{STARPU_OPENCL} can be combined to specify
  1259. on which types of processing units the codelet can be executed.
  1260. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  1261. implemented for both CPU cores and CUDA devices while @code{STARPU_OPENCL}
  1262. indicates that it is only available on OpenCL devices. If the field is
  1263. unset, its value will be automatically set based on the availability
  1264. of the @code{XXX_funcs} fields defined below.
  1265. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  1266. Defines a function which should return 1 if the worker designated by
  1267. @var{workerid} can execute the @var{nimpl}th implementation of the
  1268. given @var{task}, 0 otherwise.
  1269. @item @code{enum starpu_codelet_type type} (optional)
  1270. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  1271. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  1272. implementation is also available. See @ref{Parallel Tasks} for details.
  1273. @item @code{int max_parallelism} (optional)
  1274. If a parallel implementation is available, this denotes the maximum combined
  1275. worker size that StarPU will use to execute parallel tasks for this codelet.
  1276. @item @code{starpu_cpu_func_t cpu_func} (optional)
  1277. This field has been made deprecated. One should use instead the
  1278. @code{cpu_funcs} field.
  1279. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1280. Is an array of function pointers to the CPU implementations of the codelet.
  1281. It must be terminated by a NULL value.
  1282. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  1283. argument being the array of data managed by the data management library, and
  1284. the second argument is a pointer to the argument passed from the @code{cl_arg}
  1285. field of the @code{starpu_task} structure.
  1286. If the @code{where} field is set, then the @code{cpu_funcs} field is
  1287. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  1288. field, it must be non-null otherwise.
  1289. @item @code{starpu_cuda_func_t cuda_func} (optional)
  1290. This field has been made deprecated. One should use instead the
  1291. @code{cuda_funcs} field.
  1292. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1293. Is an array of function pointers to the CUDA implementations of the codelet.
  1294. It must be terminated by a NULL value.
  1295. @emph{The functions must be host-functions written in the CUDA runtime
  1296. API}. Their prototype must
  1297. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  1298. If the @code{where} field is set, then the @code{cuda_funcs}
  1299. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  1300. field, it must be non-null otherwise.
  1301. @item @code{starpu_opencl_func_t opencl_func} (optional)
  1302. This field has been made deprecated. One should use instead the
  1303. @code{opencl_funcs} field.
  1304. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1305. Is an array of function pointers to the OpenCL implementations of the codelet.
  1306. It must be terminated by a NULL value.
  1307. The functions prototype must be:
  1308. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  1309. If the @code{where} field is set, then the @code{opencl_funcs} field
  1310. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  1311. field, it must be non-null otherwise.
  1312. @item @code{unsigned nbuffers}
  1313. Specifies the number of arguments taken by the codelet. These arguments are
  1314. managed by the DSM and are accessed from the @code{void *buffers[]}
  1315. array. The constant argument passed with the @code{cl_arg} field of the
  1316. @code{starpu_task} structure is not counted in this number. This value should
  1317. not be above @code{STARPU_NMAXBUFS}.
  1318. @item @code{enum starpu_access_mode modes[STARPU_NMAXBUFS]}
  1319. Is an array of @code{enum starpu_access_mode}. It describes the
  1320. required access modes to the data neeeded by the codelet (e.g.
  1321. @code{STARPU_RW}). The number of entries in this array must be
  1322. specified in the @code{nbuffers} field (defined above), and should not
  1323. exceed @code{STARPU_NMAXBUFS}.
  1324. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1325. option when configuring StarPU.
  1326. @item @code{struct starpu_perfmodel *model} (optional)
  1327. This is a pointer to the task duration performance model associated to this
  1328. codelet. This optional field is ignored when set to @code{NULL} or
  1329. when its @code{symbol} field is not set.
  1330. @item @code{struct starpu_perfmodel *power_model} (optional)
  1331. This is a pointer to the task power consumption performance model associated
  1332. to this codelet. This optional field is ignored when set to
  1333. @code{NULL} or when its @code{symbol} field is not set.
  1334. In the case of parallel codelets, this has to account for all processing units
  1335. involved in the parallel execution.
  1336. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  1337. Statistics collected at runtime: this is filled by StarPU and should not be
  1338. accessed directly, but for example by calling the
  1339. @code{starpu_display_codelet_stats} function (See
  1340. @ref{starpu_display_codelet_stats} for details).
  1341. @item @code{const char *name} (optional)
  1342. Define the name of the codelet. This can be useful for debugging purposes.
  1343. @end table
  1344. @end deftp
  1345. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  1346. Initialize @var{cl} with default values. Codelets should preferably be
  1347. initialized statically as shown in @ref{Defining a Codelet}. However
  1348. such a initialisation is not always possible, e.g. when using C++.
  1349. @end deftypefun
  1350. @deftp {Data Type} {enum starpu_task_status}
  1351. State of a task, can be either of
  1352. @table @asis
  1353. @item @code{STARPU_TASK_INVALID} The task has just been initialized.
  1354. @item @code{STARPU_TASK_BLOCKED} The task has just been submitted, and its dependencies has not been checked yet.
  1355. @item @code{STARPU_TASK_READY} The task is ready for execution.
  1356. @item @code{STARPU_TASK_RUNNING} The task is running on some worker.
  1357. @item @code{STARPU_TASK_FINISHED} The task is finished executing.
  1358. @item @code{STARPU_TASK_BLOCKED_ON_TAG} The task is waiting for a tag.
  1359. @item @code{STARPU_TASK_BLOCKED_ON_TASK} The task is waiting for a task.
  1360. @item @code{STARPU_TASK_BLOCKED_ON_DATA} The task is waiting for some data.
  1361. @end table
  1362. @end deftp
  1363. @deftp {Data Type} {struct starpu_buffer_descr}
  1364. This type is used to describe a data handle along with an
  1365. access mode.
  1366. @table @asis
  1367. @item @code{starpu_data_handle_t handle} describes a data,
  1368. @item @code{enum starpu_access_mode mode} describes its access mode
  1369. @end table
  1370. @end deftp
  1371. @deftp {Data Type} {struct starpu_task}
  1372. The @code{starpu_task} structure describes a task that can be offloaded on the various
  1373. processing units managed by StarPU. It instantiates a codelet. It can either be
  1374. allocated dynamically with the @code{starpu_task_create} method, or declared
  1375. statically. In the latter case, the programmer has to zero the
  1376. @code{starpu_task} structure and to fill the different fields properly. The
  1377. indicated default values correspond to the configuration of a task allocated
  1378. with @code{starpu_task_create}.
  1379. @table @asis
  1380. @item @code{struct starpu_codelet *cl}
  1381. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1382. describes where the kernel should be executed, and supplies the appropriate
  1383. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1384. such empty tasks can be useful for synchronization purposes.
  1385. @item @code{struct starpu_buffer_descr buffers[STARPU_NMAXBUFS]}
  1386. This field has been made deprecated. One should use instead the
  1387. @code{handles} field to specify the handles to the data accessed by
  1388. the task. The access modes are now defined in the @code{mode} field of
  1389. the @code{struct starpu_codelet cl} field defined above.
  1390. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1391. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1392. to the different pieces of data accessed by the task. The number
  1393. of entries in this array must be specified in the @code{nbuffers} field of the
  1394. @code{struct starpu_codelet} structure, and should not exceed
  1395. @code{STARPU_NMAXBUFS}.
  1396. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1397. option when configuring StarPU.
  1398. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1399. The actual data pointers to the memory node where execution will happen, managed
  1400. by the DSM.
  1401. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1402. This pointer is passed to the codelet through the second argument
  1403. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1404. @item @code{size_t cl_arg_size} (optional)
  1405. For some specific drivers, the @code{cl_arg} pointer cannot not be directly
  1406. given to the driver function. A buffer of size @code{cl_arg_size}
  1407. needs to be allocated on the driver. This buffer is then filled with
  1408. the @code{cl_arg_size} bytes starting at address @code{cl_arg}. In
  1409. this case, the argument given to the codelet is therefore not the
  1410. @code{cl_arg} pointer, but the address of the buffer in local store
  1411. (LS) instead.
  1412. This field is ignored for CPU, CUDA and OpenCL codelets, where the
  1413. @code{cl_arg} pointer is given as such.
  1414. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1415. This is a function pointer of prototype @code{void (*f)(void *)} which
  1416. specifies a possible callback. If this pointer is non-null, the callback
  1417. function is executed @emph{on the host} after the execution of the task. Tasks
  1418. which depend on it might already be executing. The callback is passed the
  1419. value contained in the @code{callback_arg} field. No callback is executed if the
  1420. field is set to @code{NULL}.
  1421. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1422. This is the pointer passed to the callback function. This field is ignored if
  1423. the @code{callback_func} is set to @code{NULL}.
  1424. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1425. If set, this flag indicates that the task should be associated with the tag
  1426. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1427. with the task and to express task dependencies easily.
  1428. @item @code{starpu_tag_t tag_id}
  1429. This fields contains the tag associated to the task if the @code{use_tag} field
  1430. was set, it is ignored otherwise.
  1431. @item @code{unsigned synchronous}
  1432. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1433. returns only when the task has been executed (or if no worker is able to
  1434. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1435. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1436. This field indicates a level of priority for the task. This is an integer value
  1437. that must be set between the return values of the
  1438. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1439. and that of the @code{starpu_sched_get_max_priority} for the most important
  1440. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1441. are provided for convenience and respectively returns value of
  1442. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1443. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1444. order to allow static task initialization. Scheduling strategies that take
  1445. priorities into account can use this parameter to take better scheduling
  1446. decisions, but the scheduling policy may also ignore it.
  1447. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1448. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1449. task to the worker specified by the @code{workerid} field.
  1450. @item @code{unsigned workerid} (optional)
  1451. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1452. which is the identifier of the worker that should process this task (as
  1453. returned by @code{starpu_worker_get_id}). This field is ignored if
  1454. @code{execute_on_a_specific_worker} field is set to 0.
  1455. @item @code{starpu_task_bundle_t bundle} (optional)
  1456. The bundle that includes this task. If no bundle is used, this should be NULL.
  1457. @item @code{int detach} (optional) (default: @code{1})
  1458. If this flag is set, it is not possible to synchronize with the task
  1459. by the means of @code{starpu_task_wait} later on. Internal data structures
  1460. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1461. flag is not set.
  1462. @item @code{int destroy} (optional) (default: @code{0} for starpu_task_init, @code{1} for starpu_task_create)
  1463. If this flag is set, the task structure will automatically be freed, either
  1464. after the execution of the callback if the task is detached, or during
  1465. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1466. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1467. called explicitly. Setting this flag for a statically allocated task structure
  1468. will result in undefined behaviour. The flag is set to 1 when the task is
  1469. created by calling @code{starpu_task_create()}. Note that
  1470. @code{starpu_task_wait_for_all} will not free any task.
  1471. @item @code{int regenerate} (optional)
  1472. If this flag is set, the task will be re-submitted to StarPU once it has been
  1473. executed. This flag must not be set if the destroy flag is set too.
  1474. @item @code{enum starpu_task_status status} (optional)
  1475. Current state of the task.
  1476. @item @code{struct starpu_task_profiling_info *profiling_info} (optional)
  1477. Profiling information for the task.
  1478. @item @code{double predicted} (output field)
  1479. Predicted duration of the task. This field is only set if the scheduling
  1480. strategy used performance models.
  1481. @item @code{double predicted_transfer} (optional)
  1482. Predicted data transfer duration for the task in microseconds. This field is
  1483. only valid if the scheduling strategy uses performance models.
  1484. @item @code{struct starpu_task *prev}
  1485. A pointer to the previous task. This should only be used by StarPU.
  1486. @item @code{struct starpu_task *next}
  1487. A pointer to the next task. This should only be used by StarPU.
  1488. @item @code{unsigned int mf_skip}
  1489. This is only used for tasks that use multiformat handle. This should only be
  1490. used by StarPU.
  1491. @item @code{void *starpu_private}
  1492. This is private to StarPU, do not modify. If the task is allocated by hand
  1493. (without starpu_task_create), this field should be set to NULL.
  1494. @item @code{int magic}
  1495. This field is set when initializing a task. It prevents a task from being
  1496. submitted if it has not been properly initialized.
  1497. @end table
  1498. @end deftp
  1499. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1500. Initialize @var{task} with default values. This function is implicitly
  1501. called by @code{starpu_task_create}. By default, tasks initialized with
  1502. @code{starpu_task_init} must be deinitialized explicitly with
  1503. @code{starpu_task_clean}. Tasks can also be initialized statically,
  1504. using @code{STARPU_TASK_INITIALIZER} defined below.
  1505. @end deftypefun
  1506. @defmac STARPU_TASK_INITIALIZER
  1507. It is possible to initialize statically allocated tasks with this
  1508. value. This is equivalent to initializing a starpu_task structure with
  1509. the @code{starpu_task_init} function defined above.
  1510. @end defmac
  1511. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1512. Allocate a task structure and initialize it with default values. Tasks
  1513. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1514. task is terminated. This means that the task pointer can not be used any more
  1515. once the task is submitted, since it can be executed at any time (unless
  1516. dependencies make it wait) and thus freed at any time.
  1517. If the destroy flag is explicitly unset, the resources used
  1518. by the task have to be freed by calling
  1519. @code{starpu_task_destroy}.
  1520. @end deftypefun
  1521. @deftypefun void starpu_task_clean ({struct starpu_task} *@var{task})
  1522. Release all the structures automatically allocated to execute @var{task}, but
  1523. not the task structure itself and values set by the user remain unchanged.
  1524. It is thus useful for statically allocated tasks for instance.
  1525. It is also useful when the user wants to execute the same operation several
  1526. times with as least overhead as possible.
  1527. It is called automatically by @code{starpu_task_destroy}.
  1528. It has to be called only after explicitly waiting for the task or after
  1529. @code{starpu_shutdown} (waiting for the callback is not enough, since starpu
  1530. still manipulates the task after calling the callback).
  1531. @end deftypefun
  1532. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1533. Free the resource allocated during @code{starpu_task_create} and
  1534. associated with @var{task}. This function is already called automatically
  1535. after the execution of a task when the @code{destroy} flag of the
  1536. @code{starpu_task} structure is set, which is the default for tasks created by
  1537. @code{starpu_task_create}. Calling this function on a statically allocated task
  1538. results in an undefined behaviour.
  1539. @end deftypefun
  1540. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1541. This function blocks until @var{task} has been executed. It is not possible to
  1542. synchronize with a task more than once. It is not possible to wait for
  1543. synchronous or detached tasks.
  1544. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1545. indicates that the specified task was either synchronous or detached.
  1546. @end deftypefun
  1547. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1548. This function submits @var{task} to StarPU. Calling this function does
  1549. not mean that the task will be executed immediately as there can be data or task
  1550. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1551. scheduling this task with respect to such dependencies.
  1552. This function returns immediately if the @code{synchronous} field of the
  1553. @code{starpu_task} structure was set to 0, and block until the termination of
  1554. the task otherwise. It is also possible to synchronize the application with
  1555. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1556. function for instance.
  1557. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1558. means that there is no worker able to process this task (e.g. there is no GPU
  1559. available and this task is only implemented for CUDA devices).
  1560. starpu_task_submit() can be called from anywhere, including codelet
  1561. functions and callbacks, provided that the @code{synchronous} field of the
  1562. @code{starpu_task} structure is left to 0.
  1563. @end deftypefun
  1564. @deftypefun int starpu_task_wait_for_all (void)
  1565. This function blocks until all the tasks that were submitted are terminated. It
  1566. does not destroy these tasks.
  1567. @end deftypefun
  1568. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1569. This function returns the task currently executed by the worker, or
  1570. NULL if it is called either from a thread that is not a task or simply
  1571. because there is no task being executed at the moment.
  1572. @end deftypefun
  1573. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet} *@var{cl})
  1574. @anchor{starpu_display_codelet_stats}
  1575. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1576. @end deftypefun
  1577. @deftypefun int starpu_task_wait_for_no_ready (void)
  1578. This function waits until there is no more ready task.
  1579. @end deftypefun
  1580. @c Callbacks: what can we put in callbacks ?
  1581. @node Explicit Dependencies
  1582. @section Explicit Dependencies
  1583. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1584. Declare task dependencies between a @var{task} and an array of tasks of length
  1585. @var{ndeps}. This function must be called prior to the submission of the task,
  1586. but it may called after the submission or the execution of the tasks in the
  1587. array, provided the tasks are still valid (ie. they were not automatically
  1588. destroyed). Calling this function on a task that was already submitted or with
  1589. an entry of @var{task_array} that is not a valid task anymore results in an
  1590. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1591. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1592. same task, in this case, the dependencies are added. It is possible to have
  1593. redundancy in the task dependencies.
  1594. @end deftypefun
  1595. @deftp {Data Type} {starpu_tag_t}
  1596. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1597. dependencies between tasks by the means of those tags. To do so, fill the
  1598. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1599. be arbitrary) and set the @code{use_tag} field to 1.
  1600. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1601. not be started until the tasks which holds the declared dependency tags are
  1602. completed.
  1603. @end deftp
  1604. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  1605. Specify the dependencies of the task identified by tag @var{id}. The first
  1606. argument specifies the tag which is configured, the second argument gives the
  1607. number of tag(s) on which @var{id} depends. The following arguments are the
  1608. tags which have to be terminated to unlock the task.
  1609. This function must be called before the associated task is submitted to StarPU
  1610. with @code{starpu_task_submit}.
  1611. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  1612. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  1613. typically need to be explicitly casted. Using the
  1614. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  1615. @cartouche
  1616. @smallexample
  1617. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1618. starpu_tag_declare_deps((starpu_tag_t)0x1,
  1619. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  1620. @end smallexample
  1621. @end cartouche
  1622. @end deftypefun
  1623. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  1624. This function is similar to @code{starpu_tag_declare_deps}, except
  1625. that its does not take a variable number of arguments but an array of
  1626. tags of size @var{ndeps}.
  1627. @cartouche
  1628. @smallexample
  1629. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1630. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  1631. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  1632. @end smallexample
  1633. @end cartouche
  1634. @end deftypefun
  1635. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  1636. This function blocks until the task associated to tag @var{id} has been
  1637. executed. This is a blocking call which must therefore not be called within
  1638. tasks or callbacks, but only from the application directly. It is possible to
  1639. synchronize with the same tag multiple times, as long as the
  1640. @code{starpu_tag_remove} function is not called. Note that it is still
  1641. possible to synchronize with a tag associated to a task which @code{starpu_task}
  1642. data structure was freed (e.g. if the @code{destroy} flag of the
  1643. @code{starpu_task} was enabled).
  1644. @end deftypefun
  1645. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  1646. This function is similar to @code{starpu_tag_wait} except that it blocks until
  1647. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  1648. terminated.
  1649. @end deftypefun
  1650. @deftypefun void starpu_tag_restart (starpu_tag_t @var{id})
  1651. This function can be used to clear the "already notified" status
  1652. of a tag which is not associated with a task. Before that, calling
  1653. @code{starpu_tag_notify_from_apps} again will not notify the successors. After
  1654. that, the next call to @code{starpu_tag_notify_from_apps} will notify the
  1655. successors.
  1656. @end deftypefun
  1657. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  1658. This function releases the resources associated to tag @var{id}. It can be
  1659. called once the corresponding task has been executed and when there is
  1660. no other tag that depend on this tag anymore.
  1661. @end deftypefun
  1662. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  1663. This function explicitly unlocks tag @var{id}. It may be useful in the
  1664. case of applications which execute part of their computation outside StarPU
  1665. tasks (e.g. third-party libraries). It is also provided as a
  1666. convenient tool for the programmer, for instance to entirely construct the task
  1667. DAG before actually giving StarPU the opportunity to execute the tasks. When
  1668. called several times on the same tag, notification will be done only on first
  1669. call, thus implementing "OR" dependencies, until the tag is restarted using
  1670. @code{starpu_tag_restart}.
  1671. @end deftypefun
  1672. @node Implicit Data Dependencies
  1673. @section Implicit Data Dependencies
  1674. In this section, we describe how StarPU makes it possible to insert implicit
  1675. task dependencies in order to enforce sequential data consistency. When this
  1676. data consistency is enabled on a specific data handle, any data access will
  1677. appear as sequentially consistent from the application. For instance, if the
  1678. application submits two tasks that access the same piece of data in read-only
  1679. mode, and then a third task that access it in write mode, dependencies will be
  1680. added between the two first tasks and the third one. Implicit data dependencies
  1681. are also inserted in the case of data accesses from the application.
  1682. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  1683. Set the default sequential consistency flag. If a non-zero value is passed, a
  1684. sequential data consistency will be enforced for all handles registered after
  1685. this function call, otherwise it is disabled. By default, StarPU enables
  1686. sequential data consistency. It is also possible to select the data consistency
  1687. mode of a specific data handle with the
  1688. @code{starpu_data_set_sequential_consistency_flag} function.
  1689. @end deftypefun
  1690. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  1691. Return the default sequential consistency flag
  1692. @end deftypefun
  1693. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  1694. Sets the data consistency mode associated to a data handle. The consistency
  1695. mode set using this function has the priority over the default mode which can
  1696. be set with @code{starpu_data_set_default_sequential_consistency_flag}.
  1697. @end deftypefun
  1698. @node Performance Model API
  1699. @section Performance Model API
  1700. @deftp {Data Type} {enum starpu_perf_archtype}
  1701. Enumerates the various types of architectures.
  1702. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  1703. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  1704. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  1705. @table @asis
  1706. @item @code{STARPU_CPU_DEFAULT}
  1707. @item @code{STARPU_CUDA_DEFAULT}
  1708. @item @code{STARPU_OPENCL_DEFAULT}
  1709. @end table
  1710. @end deftp
  1711. @deftp {Data Type} {enum starpu_perfmodel_type}
  1712. The possible values are:
  1713. @table @asis
  1714. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  1715. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  1716. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  1717. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  1718. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  1719. @end table
  1720. @end deftp
  1721. @deftp {Data Type} {struct starpu_perfmodel}
  1722. @anchor{struct starpu_perfmodel}
  1723. contains all information about a performance model. At least the
  1724. @code{type} and @code{symbol} fields have to be filled when defining a
  1725. performance model for a codelet. For compatibility, make sure to initialize the
  1726. whole structure to zero, either by using explicit memset, or by letting the
  1727. compiler implicitly do it in e.g. static storage case.
  1728. If not provided, other fields have to be zero.
  1729. @table @asis
  1730. @item @code{type}
  1731. is the type of performance model @code{enum starpu_perfmodel_type}:
  1732. @code{STARPU_HISTORY_BASED},
  1733. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  1734. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  1735. @code{per_arch} has to be filled with functions which return the cost in
  1736. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  1737. a function that returns the cost in micro-seconds on a CPU, timing on other
  1738. archs will be determined by multiplying by an arch-specific factor.
  1739. @item @code{const char *symbol}
  1740. is the symbol name for the performance model, which will be used as
  1741. file name to store the model. It must be set otherwise the model will
  1742. be ignored.
  1743. @item @code{double (*cost_model)(struct starpu_buffer_descr *)}
  1744. This field is deprecated. Use instead the @code{cost_function} field.
  1745. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  1746. Used by @code{STARPU_COMMON}: takes a task and
  1747. implementation number, and must return a task duration estimation in micro-seconds.
  1748. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  1749. Used by @code{STARPU_HISTORY_BASED} and
  1750. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  1751. implementation number, and returns the size to be used as index for
  1752. history and regression.
  1753. @item @code{struct starpu_perfmodel_per_arch per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  1754. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  1755. starpu_per_arch_perfmodel} structures.
  1756. @item @code{unsigned is_loaded}
  1757. Whether the performance model is already loaded from the disk.
  1758. @item @code{unsigned benchmarking}
  1759. Whether the performance model is still being calibrated.
  1760. @item @code{pthread_rwlock_t model_rwlock}
  1761. Lock to protect concurrency between loading from disk (W), updating the values
  1762. (W), and making a performance estimation (R).
  1763. @end table
  1764. @end deftp
  1765. @deftp {Data Type} {struct starpu_perfmodel_regression_model}
  1766. @table @asis
  1767. @item @code{double sumlny} sum of ln(measured)
  1768. @item @code{double sumlnx} sum of ln(size)
  1769. @item @code{double sumlnx2} sum of ln(size)^2
  1770. @item @code{unsigned long minx} minimum size
  1771. @item @code{unsigned long maxx} maximum size
  1772. @item @code{double sumlnxlny} sum of ln(size)*ln(measured)
  1773. @item @code{double alpha} estimated = alpha * size ^ beta
  1774. @item @code{double beta}
  1775. @item @code{unsigned valid} whether the linear regression model is valid (i.e. enough measures)
  1776. @item @code{double a, b, c} estimaed = a size ^b + c
  1777. @item @code{unsigned nl_valid} whether the non-linear regression model is valid (i.e. enough measures)
  1778. @item @code{unsigned nsample} number of sample values for non-linear regression
  1779. @end table
  1780. @end deftp
  1781. @deftp {Data Type} {struct starpu_perfmodel_per_arch}
  1782. contains information about the performance model of a given arch.
  1783. @table @asis
  1784. @item @code{double (*cost_model)(struct starpu_buffer_descr *t)}
  1785. This field is deprecated. Use instead the @code{cost_function} field.
  1786. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perf_archtype arch, unsigned nimpl)}
  1787. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  1788. target arch and implementation number (as mere conveniency, since the array
  1789. is already indexed by these), and must return a task duration estimation in
  1790. micro-seconds.
  1791. @item @code{size_t (*size_base)(struct starpu_task *, enum
  1792. starpu_perf_archtype arch, unsigned nimpl)}
  1793. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  1794. case it depends on the architecture-specific implementation.
  1795. @item @code{struct starpu_htbl32_node *history}
  1796. The history of performance measurements.
  1797. @item @code{struct starpu_perfmodel_history_list *list}
  1798. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  1799. records all execution history measures.
  1800. @item @code{struct starpu_perfmodel_regression_model regression}
  1801. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  1802. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  1803. regression.
  1804. @end table
  1805. @end deftp
  1806. @deftypefun int starpu_perfmodel_load_symbol ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  1807. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{$HOME/.starpu} (@code{$USERPROFILE/.starpu} in windows environments).
  1808. @end deftypefun
  1809. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  1810. returns the path to the debugging information for the performance model.
  1811. @end deftypefun
  1812. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  1813. returns the architecture name for @var{arch}.
  1814. @end deftypefun
  1815. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  1816. returns the architecture type of a given worker.
  1817. @end deftypefun
  1818. @deftypefun int starpu_perfmodel_list ({FILE *}@var{output})
  1819. prints a list of all performance models on @var{output}.
  1820. @end deftypefun
  1821. @deftypefun void starpu_perfmodel_print ({struct starpu_perfmodel *}@var{model}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl}, {char *}@var{parameter}, {uint32_t *}footprint, {FILE *}@var{output})
  1822. todo
  1823. @end deftypefun
  1824. @deftypefun int starpu_perfmodel_print_all ({struct starpu_perfmodel *}@var{model}, {char *}@var{arch}, @var{char *}parameter, {uint32_t *}@var{footprint}, {FILE *}@var{output})
  1825. todo
  1826. @end deftypefun
  1827. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  1828. prints a matrix of bus bandwidths on @var{f}.
  1829. @end deftypefun
  1830. @deftypefun void starpu_bus_print_affinity ({FILE *}@var{f})
  1831. prints the affinity devices on @var{f}.
  1832. @end deftypefun
  1833. @deftypefun void starpu_topology_print ({FILE *}@var{f})
  1834. prints a description of the topology on @var{f}.
  1835. @end deftypefun
  1836. @deftypefun void starpu_perfmodel_update_history ({struct starpu_perfmodel *}@var{model}, {struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{cpuid}, unsigned @var{nimpl}, double @var{measured});
  1837. This feeds the performance model @var{model} with an explicit measurement
  1838. @var{measured}, in addition to measurements done by StarPU itself. This can be
  1839. useful when the application already has an existing set of measurements done
  1840. in good conditions, that StarPU could benefit from instead of doing on-line
  1841. measurements. And example of use can be see in @ref{Performance model example}.
  1842. @end deftypefun
  1843. @node Profiling API
  1844. @section Profiling API
  1845. @deftypefun int starpu_profiling_status_set (int @var{status})
  1846. Thie function sets the profiling status. Profiling is activated by passing
  1847. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  1848. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  1849. resets all profiling measurements. When profiling is enabled, the
  1850. @code{profiling_info} field of the @code{struct starpu_task} structure points
  1851. to a valid @code{struct starpu_task_profiling_info} structure containing
  1852. information about the execution of the task.
  1853. Negative return values indicate an error, otherwise the previous status is
  1854. returned.
  1855. @end deftypefun
  1856. @deftypefun int starpu_profiling_status_get (void)
  1857. Return the current profiling status or a negative value in case there was an error.
  1858. @end deftypefun
  1859. @deftypefun void starpu_set_profiling_id (int @var{new_id})
  1860. This function sets the ID used for profiling trace filename
  1861. @end deftypefun
  1862. @deftp {Data Type} {struct starpu_task_profiling_info}
  1863. This structure contains information about the execution of a task. It is
  1864. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  1865. structure if profiling was enabled. The different fields are:
  1866. @table @asis
  1867. @item @code{struct timespec submit_time}
  1868. Date of task submission (relative to the initialization of StarPU).
  1869. @item @code{struct timespec push_start_time}
  1870. Time when the task was submitted to the scheduler.
  1871. @item @code{struct timespec push_end_time}
  1872. Time when the scheduler finished with the task submission.
  1873. @item @code{struct timespec pop_start_time}
  1874. Time when the scheduler started to be requested for a task, and eventually gave
  1875. that task.
  1876. @item @code{struct timespec pop_end_time}
  1877. Time when the scheduler finished providing the task for execution.
  1878. @item @code{struct timespec acquire_data_start_time}
  1879. Time when the worker started fetching input data.
  1880. @item @code{struct timespec acquire_data_end_time}
  1881. Time when the worker finished fetching input data.
  1882. @item @code{struct timespec start_time}
  1883. Date of task execution beginning (relative to the initialization of StarPU).
  1884. @item @code{struct timespec end_time}
  1885. Date of task execution termination (relative to the initialization of StarPU).
  1886. @item @code{struct timespec release_data_start_time}
  1887. Time when the worker started releasing data.
  1888. @item @code{struct timespec release_data_end_time}
  1889. Time when the worker finished releasing data.
  1890. @item @code{struct timespec callback_start_time}
  1891. Time when the worker started the application callback for the task.
  1892. @item @code{struct timespec callback_end_time}
  1893. Time when the worker finished the application callback for the task.
  1894. @item @code{workerid}
  1895. Identifier of the worker which has executed the task.
  1896. @item @code{uint64_t used_cycles}
  1897. Number of cycles used by the task, only available in the MoviSim
  1898. @item @code{uint64_t stall_cycles}
  1899. Number of cycles stalled within the task, only available in the MoviSim
  1900. @item @code{double power_consumed}
  1901. Power consumed by the task, only available in the MoviSim
  1902. @end table
  1903. @end deftp
  1904. @deftp {Data Type} {struct starpu_worker_profiling_info}
  1905. This structure contains the profiling information associated to a
  1906. worker. The different fields are:
  1907. @table @asis
  1908. @item @code{struct timespec start_time}
  1909. Starting date for the reported profiling measurements.
  1910. @item @code{struct timespec total_time}
  1911. Duration of the profiling measurement interval.
  1912. @item @code{struct timespec executing_time}
  1913. Time spent by the worker to execute tasks during the profiling measurement interval.
  1914. @item @code{struct timespec sleeping_time}
  1915. Time spent idling by the worker during the profiling measurement interval.
  1916. @item @code{int executed_tasks}
  1917. Number of tasks executed by the worker during the profiling measurement interval.
  1918. @item @code{uint64_t used_cycles}
  1919. Number of cycles used by the worker, only available in the MoviSim
  1920. @item @code{uint64_t stall_cycles}
  1921. Number of cycles stalled within the worker, only available in the MoviSim
  1922. @item @code{double power_consumed}
  1923. Power consumed by the worker, only available in the MoviSim
  1924. @end table
  1925. @end deftp
  1926. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  1927. Get the profiling info associated to the worker identified by @var{workerid},
  1928. and reset the profiling measurements. If the @var{worker_info} argument is
  1929. NULL, only reset the counters associated to worker @var{workerid}.
  1930. Upon successful completion, this function returns 0. Otherwise, a negative
  1931. value is returned.
  1932. @end deftypefun
  1933. @deftp {Data Type} {struct starpu_bus_profiling_info}
  1934. The different fields are:
  1935. @table @asis
  1936. @item @code{struct timespec start_time}
  1937. Time of bus profiling startup.
  1938. @item @code{struct timespec total_time}
  1939. Total time of bus profiling.
  1940. @item @code{int long long transferred_bytes}
  1941. Number of bytes transferred during profiling.
  1942. @item @code{int transfer_count}
  1943. Number of transfers during profiling.
  1944. @end table
  1945. @end deftp
  1946. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_bus_profiling_info *}@var{bus_info})
  1947. Get the profiling info associated to the worker designated by @var{workerid},
  1948. and reset the profiling measurements. If worker_info is NULL, only reset the
  1949. counters.
  1950. @end deftypefun
  1951. @deftypefun int starpu_bus_get_count (void)
  1952. Return the number of buses in the machine.
  1953. @end deftypefun
  1954. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  1955. Return the identifier of the bus between @var{src} and @var{dst}
  1956. @end deftypefun
  1957. @deftypefun int starpu_bus_get_src (int @var{busid})
  1958. Return the source point of bus @var{busid}
  1959. @end deftypefun
  1960. @deftypefun int starpu_bus_get_dst (int @var{busid})
  1961. Return the destination point of bus @var{busid}
  1962. @end deftypefun
  1963. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  1964. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  1965. @end deftypefun
  1966. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  1967. Converts the given timespec @var{ts} into microseconds.
  1968. @end deftypefun
  1969. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  1970. Displays statistics about the bus on stderr.
  1971. @end deftypefun
  1972. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  1973. Displays statistics about the workers on stderr.
  1974. @end deftypefun
  1975. @node CUDA extensions
  1976. @section CUDA extensions
  1977. @defmac STARPU_USE_CUDA
  1978. This macro is defined when StarPU has been installed with CUDA
  1979. support. It should be used in your code to detect the availability of
  1980. CUDA as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  1981. @end defmac
  1982. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  1983. This function gets the current worker's CUDA stream.
  1984. StarPU provides a stream for every CUDA device controlled by StarPU. This
  1985. function is only provided for convenience so that programmers can easily use
  1986. asynchronous operations within codelets without having to create a stream by
  1987. hand. Note that the application is not forced to use the stream provided by
  1988. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  1989. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  1990. the likelihood of having all transfers overlapped.
  1991. @end deftypefun
  1992. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  1993. This function returns a pointer to device properties for worker @var{workerid}
  1994. (assumed to be a CUDA worker).
  1995. @end deftypefun
  1996. @deftypefun size_t starpu_cuda_get_global_mem_size (unsigned @var{devid})
  1997. Return the size of the global memory of CUDA device @var{devid}.
  1998. @end deftypefun
  1999. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  2000. Report a CUDA error.
  2001. @end deftypefun
  2002. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  2003. Calls starpu_cuda_report_error, passing the current function, file and line
  2004. position.
  2005. @end defmac
  2006. @deftypefun int starpu_cuda_copy_async_sync ({void *}@var{src_ptr}, unsigned @var{src_node}, {void *}@var{dst_ptr}, unsigned @var{dst_node}, size_t @var{ssize}, cudaStream_t @var{stream}, {enum cudaMemcpyKind} @var{kind})
  2007. Copy @var{ssize} bytes from the pointer @var{src_ptr} on
  2008. @var{src_node} to the pointer @var{dst_ptr} on @var{dst_node}.
  2009. The function first tries to copy the data asynchronous (unless
  2010. @var{stream} is @code{NULL}. If the asynchronous copy fails or if
  2011. @var{stream} is @code{NULL}, it copies the data synchronously.
  2012. The function returns @code{-EAGAIN} if the asynchronous copy was
  2013. successfull. It returns 0 if the synchronous copy was successful, or
  2014. fails otherwise.
  2015. @end deftypefun
  2016. @deftypefun void starpu_cuda_set_device (unsigned @var{devid})
  2017. Calls @code{cudaSetDevice(devid)} or @code{cudaGLSetGLDevice(devid)}, according to
  2018. whether @code{devid} is among the @code{cuda_opengl_interoperability} field of
  2019. the @code{starpu_conf} structure.
  2020. @end deftypefun
  2021. @deftypefun void starpu_helper_cublas_init (void)
  2022. This function initializes CUBLAS on every CUDA device.
  2023. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  2024. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  2025. controlled by StarPU. This call blocks until CUBLAS has been properly
  2026. initialized on every device.
  2027. @end deftypefun
  2028. @deftypefun void starpu_helper_cublas_shutdown (void)
  2029. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  2030. @end deftypefun
  2031. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  2032. Report a cublas error.
  2033. @end deftypefun
  2034. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  2035. Calls starpu_cublas_report_error, passing the current function, file and line
  2036. position.
  2037. @end defmac
  2038. @node OpenCL extensions
  2039. @section OpenCL extensions
  2040. @menu
  2041. * Writing OpenCL kernels:: Writing OpenCL kernels
  2042. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  2043. * Loading OpenCL kernels:: Loading OpenCL kernels
  2044. * OpenCL statistics:: Collecting statistics from OpenCL
  2045. * OpenCL utilities:: Utilities for OpenCL
  2046. @end menu
  2047. @defmac STARPU_USE_OPENCL
  2048. This macro is defined when StarPU has been installed with OpenCL
  2049. support. It should be used in your code to detect the availability of
  2050. OpenCL as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2051. @end defmac
  2052. @node Writing OpenCL kernels
  2053. @subsection Writing OpenCL kernels
  2054. @deftypefun size_t starpu_opencl_get_global_mem_size (int @var{devid})
  2055. Return the size of global device memory in bytes.
  2056. @end deftypefun
  2057. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  2058. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  2059. @end deftypefun
  2060. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  2061. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  2062. @end deftypefun
  2063. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  2064. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  2065. @end deftypefun
  2066. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  2067. Return the context of the current worker.
  2068. @end deftypefun
  2069. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  2070. Return the computation kernel command queue of the current worker.
  2071. @end deftypefun
  2072. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  2073. Sets the arguments of a given kernel. The list of arguments must be given as
  2074. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  2075. The last argument must be 0. Returns the number of arguments that were
  2076. successfully set. In case of failure, returns the id of the argument
  2077. that could not be set and @var{err} is set to the error returned by
  2078. OpenCL. Otherwise, returns the number of arguments that were set.
  2079. @cartouche
  2080. @smallexample
  2081. int n;
  2082. cl_int err;
  2083. cl_kernel kernel;
  2084. n = starpu_opencl_set_kernel_args(&err, 2, &kernel,
  2085. sizeof(foo), &foo,
  2086. sizeof(bar), &bar,
  2087. 0);
  2088. if (n != 2)
  2089. fprintf(stderr, "Error : %d\n", err);
  2090. @end smallexample
  2091. @end cartouche
  2092. @end deftypefun
  2093. @node Compiling OpenCL kernels
  2094. @subsection Compiling OpenCL kernels
  2095. Source codes for OpenCL kernels can be stored in a file or in a
  2096. string. StarPU provides functions to build the program executable for
  2097. each available OpenCL device as a @code{cl_program} object. This
  2098. program executable can then be loaded within a specific queue as
  2099. explained in the next section. These are only helpers, Applications
  2100. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  2101. use (e.g. different programs on the different OpenCL devices, for
  2102. relocation purpose for instance).
  2103. @deftp {Data Type} {struct starpu_opencl_program}
  2104. Stores the OpenCL programs as compiled for the different OpenCL devices.
  2105. @table @asis
  2106. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  2107. Stores each program for each OpenCL device.
  2108. @end table
  2109. @end deftp
  2110. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2111. @anchor{starpu_opencl_load_opencl_from_file}
  2112. This function compiles an OpenCL source code stored in a file.
  2113. @end deftypefun
  2114. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2115. This function compiles an OpenCL source code stored in a string.
  2116. @end deftypefun
  2117. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  2118. This function unloads an OpenCL compiled code.
  2119. @end deftypefun
  2120. @deftypefun void starpu_opencl_load_program_source ({const char *}@var{source_file_name}, char *@var{located_file_name}, char *@var{located_dir_name}, char *@var{opencl_program_source})
  2121. Store the contents of the file @var{source_file_name} in the buffer
  2122. @var{opencl_program_source}. The file @var{source_file_name} can be
  2123. located in the current directory, or in the directory specified by the
  2124. environment variable @code{STARPU_OPENCL_PROGRAM_DIR}, or in the
  2125. directory @code{share/starpu/opencl} of the installation directory of
  2126. StarPU, or in the source directory of StarPU.
  2127. When the file is found, @code{located_file_name} is the full name of
  2128. the file as it has been located on the system, @code{located_dir_name}
  2129. the directory where it has been located. Otherwise, they are both set
  2130. to the empty string.
  2131. @end deftypefun
  2132. @deftypefun int starpu_opencl_compile_opencl_from_file ({const char *}@var{source_file_name}, {const char *} @var{build_options})
  2133. Compile the OpenCL kernel stored in the file @code{source_file_name}
  2134. with the given options @code{build_options} and stores the result in
  2135. the directory @code{$STARPU_HOME/.starpu/opencl} with the same
  2136. filename as @code{source_file_name} (@code{$USERPROFILE/.starpu/opencl} in
  2137. windows environments). The compilation is done for every
  2138. OpenCL device, and the filename is suffixed with the vendor id and the
  2139. device id of the OpenCL device.
  2140. @end deftypefun
  2141. @deftypefun int starpu_opencl_compile_opencl_from_string ({const char *}@var{opencl_program_source}, {const char *}@var{file_name}, {const char* }@var{build_options})
  2142. Compile the OpenCL kernel in the string @code{opencl_program_source}
  2143. with the given options @code{build_options} and stores the result in
  2144. the directory @code{$STARPU_HOME/.starpu/opencl}
  2145. (@code{$USERPROFILE/.starpu/opencl} in windows environments) with the filename
  2146. @code{file_name}. The compilation is done for every
  2147. OpenCL device, and the filename is suffixed with the vendor id and the
  2148. device id of the OpenCL device.
  2149. @end deftypefun
  2150. @deftypefun int starpu_opencl_load_binary_opencl ({const char *}@var{kernel_id}, {struct starpu_opencl_program *}@var{opencl_programs})
  2151. Compile the binary OpenCL kernel identified with @var{id}. For every
  2152. OpenCL device, the binary OpenCL kernel will be loaded from the file
  2153. @code{$STARPU_HOME/.starpu/opencl/<kernel_id>.<device_type>.vendor_id_<vendor_id>_device_id_<device_id>}.
  2154. @end deftypefun
  2155. @node Loading OpenCL kernels
  2156. @subsection Loading OpenCL kernels
  2157. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  2158. Create a kernel @var{kernel} for device @var{devid}, on its computation command
  2159. queue returned in @var{queue}, using program @var{opencl_programs} and name
  2160. @var{kernel_name}
  2161. @end deftypefun
  2162. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  2163. Release the given @var{kernel}, to be called after kernel execution.
  2164. @end deftypefun
  2165. @node OpenCL statistics
  2166. @subsection OpenCL statistics
  2167. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  2168. This function allows to collect statistics on a kernel execution.
  2169. After termination of the kernels, the OpenCL codelet should call this function
  2170. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  2171. collect statistics about the kernel execution (used cycles, consumed power).
  2172. @end deftypefun
  2173. @node OpenCL utilities
  2174. @subsection OpenCL utilities
  2175. @deftypefun {const char *} starpu_opencl_error_string (cl_int @var{status})
  2176. Return the error message in English corresponding to @var{status}, an
  2177. OpenCL error code.
  2178. @end deftypefun
  2179. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2180. Given a valid error @var{status}, prints the corresponding error message on
  2181. stdout, along with the given function name @var{func}, the given filename
  2182. @var{file}, the given line number @var{line} and the given message @var{msg}.
  2183. @end deftypefun
  2184. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  2185. Call the function @code{starpu_opencl_display_error} with the given
  2186. error @var{status}, the current function name, current file and line
  2187. number, and a empty message.
  2188. @end defmac
  2189. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2190. Call the function @code{starpu_opencl_display_error} and abort.
  2191. @end deftypefun
  2192. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  2193. Call the function @code{starpu_opencl_report_error} with the given
  2194. error @var{status}, with the current function name, current file and
  2195. line number, and a empty message.
  2196. @end defmac
  2197. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  2198. Call the function @code{starpu_opencl_report_error} with the given
  2199. message and the given error @var{status}, with the current function
  2200. name, current file and line number.
  2201. @end defmac
  2202. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  2203. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  2204. valid combination of cl_mem_flags values.
  2205. @end deftypefun
  2206. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2207. Copy @var{size} bytes from the given @var{ptr} on
  2208. @var{src_node} to the given @var{buffer} on @var{dst_node}.
  2209. @var{offset} is the offset, in bytes, in @var{buffer}.
  2210. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2211. synchronised before returning. If non NULL, @var{event} can be used
  2212. after the call to wait for this particular copy to complete.
  2213. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2214. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  2215. was successful, or to 0 if event was NULL.
  2216. @end deftypefun
  2217. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2218. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  2219. @var{src_node} to the given @var{ptr} on @var{dst_node}.
  2220. @var{offset} is the offset, in bytes, in @var{buffer}.
  2221. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2222. synchronised before returning. If non NULL, @var{event} can be used
  2223. after the call to wait for this particular copy to complete.
  2224. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2225. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  2226. was successful, or to 0 if event was NULL.
  2227. @end deftypefun
  2228. @node Miscellaneous helpers
  2229. @section Miscellaneous helpers
  2230. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  2231. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  2232. The @var{asynchronous} parameter indicates whether the function should
  2233. block or not. In the case of an asynchronous call, it is possible to
  2234. synchronize with the termination of this operation either by the means of
  2235. implicit dependencies (if enabled) or by calling
  2236. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  2237. this callback function is executed after the handle has been copied, and it is
  2238. given the @var{callback_arg} pointer as argument.
  2239. @end deftypefun
  2240. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  2241. This function executes the given function on a subset of workers.
  2242. When calling this method, the offloaded function specified by the first argument is
  2243. executed by every StarPU worker that may execute the function.
  2244. The second argument is passed to the offloaded function.
  2245. The last argument specifies on which types of processing units the function
  2246. should be executed. Similarly to the @var{where} field of the
  2247. @code{struct starpu_codelet} structure, it is possible to specify that the function
  2248. should be executed on every CUDA device and every CPU by passing
  2249. @code{STARPU_CPU|STARPU_CUDA}.
  2250. This function blocks until the function has been executed on every appropriate
  2251. processing units, so that it may not be called from a callback function for
  2252. instance.
  2253. @end deftypefun