advanced-api.texi 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Defining a new data interface::
  9. * Multiformat Data Interface::
  10. * Task Bundles::
  11. * Task Lists::
  12. * Using Parallel Tasks::
  13. * Defining a new scheduling policy::
  14. * Running drivers::
  15. * Expert mode::
  16. @end menu
  17. @node Defining a new data interface
  18. @section Defining a new data interface
  19. @menu
  20. * Data Interface API:: Data Interface API
  21. * An example of data interface:: An example of data interface
  22. @end menu
  23. @node Data Interface API
  24. @subsection Data Interface API
  25. @deftp {Data Type} {struct starpu_data_interface_ops}
  26. @anchor{struct starpu_data_interface_ops}
  27. Per-interface data transfer methods.
  28. @table @asis
  29. @item @code{void (*register_data_handle)(starpu_data_handle_t handle, uint32_t home_node, void *data_interface)}
  30. Register an existing interface into a data handle.
  31. @item @code{starpu_ssize_t (*allocate_data_on_node)(void *data_interface, uint32_t node)}
  32. Allocate data for the interface on a given node.
  33. @item @code{ void (*free_data_on_node)(void *data_interface, uint32_t node)}
  34. Free data of the interface on a given node.
  35. @item @code{ const struct starpu_data_copy_methods *copy_methods}
  36. ram/cuda/spu/opencl synchronous and asynchronous transfer methods.
  37. @item @code{ void * (*handle_to_pointer)(starpu_data_handle_t handle, uint32_t node)}
  38. Return the current pointer (if any) for the handle on the given node.
  39. @item @code{ size_t (*get_size)(starpu_data_handle_t handle)}
  40. Return an estimation of the size of data, for performance models.
  41. @item @code{ uint32_t (*footprint)(starpu_data_handle_t handle)}
  42. Return a 32bit footprint which characterizes the data size.
  43. @item @code{ int (*compare)(void *data_interface_a, void *data_interface_b)}
  44. Compare the data size of two interfaces.
  45. @item @code{ void (*display)(starpu_data_handle_t handle, FILE *f)}
  46. Dump the sizes of a handle to a file.
  47. @item @code{enum starpu_data_interface_id interfaceid}
  48. An identifier that is unique to each interface.
  49. @item @code{size_t interface_size}
  50. The size of the interface data descriptor.
  51. @item @code{int is_multiformat}
  52. todo
  53. @item @code{struct starpu_multiformat_data_interface_ops* (*get_mf_ops)(void *data_interface)}
  54. todo
  55. @item @code{int (*pack_data)(starpu_data_handle_t handle, uint32_t node, void **ptr, size_t *count)}
  56. Pack the data handle into a contiguous buffer at the address @code{ptr} and set the size of the newly created buffer in @code{count}
  57. @item @code{int (*unpack_data)(starpu_data_handle_t handle, uint32_t node, void *ptr, size_t count)}
  58. Unpack the data handle from the contiguous buffer at the address @code{ptr} of size @var{count}
  59. @end table
  60. @end deftp
  61. @deftp {Data Type} {struct starpu_data_copy_methods}
  62. Defines the per-interface methods.
  63. @table @asis
  64. @item @code{int @{ram,cuda,opencl,spu@}_to_@{ram,cuda,opencl,spu@}(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node)}
  65. These 16 functions define how to copy data from the @var{src_interface}
  66. interface on the @var{src_node} node to the @var{dst_interface} interface
  67. on the @var{dst_node} node. They return 0 on success.
  68. @item @code{int (*ram_to_cuda_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, cudaStream_t stream)}
  69. Define how to copy data from the @var{src_interface} interface on the
  70. @var{src_node} node (in RAM) to the @var{dst_interface} interface on the
  71. @var{dst_node} node (on a CUDA device), using the given @var{stream}. Return 0
  72. on success.
  73. @item @code{int (*cuda_to_ram_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, cudaStream_t stream)}
  74. Define how to copy data from the @var{src_interface} interface on the
  75. @var{src_node} node (on a CUDA device) to the @var{dst_interface} interface on the
  76. @var{dst_node} node (in RAM), using the given @var{stream}. Return 0
  77. on success.
  78. @item @code{int (*cuda_to_cuda_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, cudaStream_t stream)}
  79. Define how to copy data from the @var{src_interface} interface on the
  80. @var{src_node} node (on a CUDA device) to the @var{dst_interface} interface on
  81. the @var{dst_node} node (on another CUDA device), using the given @var{stream}.
  82. Return 0 on success.
  83. @item @code{int (*ram_to_opencl_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, /* cl_event * */ void *event)}
  84. Define how to copy data from the @var{src_interface} interface on the
  85. @var{src_node} node (in RAM) to the @var{dst_interface} interface on the
  86. @var{dst_node} node (on an OpenCL device), using @var{event}, a pointer to a
  87. cl_event. Return 0 on success.
  88. @item @code{int (*opencl_to_ram_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, /* cl_event * */ void *event)}
  89. Define how to copy data from the @var{src_interface} interface on the
  90. @var{src_node} node (on an OpenCL device) to the @var{dst_interface} interface
  91. on the @var{dst_node} node (in RAM), using the given @var{event}, a pointer to
  92. a cl_event. Return 0 on success.
  93. @item @code{int (*opencl_to_opencl_async)(void *src_interface, unsigned src_node, void *dst_interface, unsigned dst_node, /* cl_event * */ void *event)}
  94. Define how to copy data from the @var{src_interface} interface on the
  95. @var{src_node} node (on an OpenCL device) to the @var{dst_interface} interface
  96. on the @var{dst_node} node (on another OpenCL device), using the given
  97. @var{event}, a pointer to a cl_event. Return 0 on success.
  98. @end table
  99. @end deftp
  100. @deftypefun uint32_t starpu_crc32_be_n ({void *}@var{input}, size_t @var{n}, uint32_t @var{inputcrc})
  101. Compute the CRC of a byte buffer seeded by the inputcrc "current
  102. state". The return value should be considered as the new "current
  103. state" for future CRC computation. This is used for computing data size
  104. footprint.
  105. @end deftypefun
  106. @deftypefun uint32_t starpu_crc32_be (uint32_t @var{input}, uint32_t @var{inputcrc})
  107. Compute the CRC of a 32bit number seeded by the inputcrc "current
  108. state". The return value should be considered as the new "current
  109. state" for future CRC computation. This is used for computing data size
  110. footprint.
  111. @end deftypefun
  112. @deftypefun uint32_t starpu_crc32_string ({char *}@var{str}, uint32_t @var{inputcrc})
  113. Compute the CRC of a string seeded by the inputcrc "current state".
  114. The return value should be considered as the new "current state" for
  115. future CRC computation. This is used for computing data size footprint.
  116. @end deftypefun
  117. @node An example of data interface
  118. @subsection An example of data interface
  119. @deftypefun int starpu_data_interface_get_next_id (void)
  120. Returns the next available id for a newly created data interface.
  121. @end deftypefun
  122. Let's define a new data interface to manage complex numbers.
  123. @cartouche
  124. @smallexample
  125. /* interface for complex numbers */
  126. struct starpu_complex_interface
  127. @{
  128. double *real;
  129. double *imaginary;
  130. int nx;
  131. @};
  132. @end smallexample
  133. @end cartouche
  134. Registering such a data to StarPU is easily done using the function
  135. @code{starpu_data_register} (@pxref{Basic Data Management API}). The last
  136. parameter of the function, @code{interface_complex_ops}, will be
  137. described below.
  138. @cartouche
  139. @smallexample
  140. void starpu_complex_data_register(starpu_data_handle_t *handle,
  141. uint32_t home_node, double *real, double *imaginary, int nx)
  142. @{
  143. struct starpu_complex_interface complex =
  144. @{
  145. .real = real,
  146. .imaginary = imaginary,
  147. .nx = nx
  148. @};
  149. if (interface_complex_ops.interfaceid == -1)
  150. @{
  151. interface_complex_ops.interfaceid = starpu_data_interface_get_next_id();
  152. @}
  153. starpu_data_register(handleptr, home_node, &complex, &interface_complex_ops);
  154. @}
  155. @end smallexample
  156. @end cartouche
  157. Different operations need to be defined for a data interface through
  158. the type @code{struct starpu_data_interface_ops} (@pxref{Data
  159. Interface API}). We only define here the basic operations needed to
  160. run simple applications. The source code for the different functions
  161. can be found in the file
  162. @code{examples/interface/complex_interface.c}.
  163. @cartouche
  164. @smallexample
  165. static struct starpu_data_interface_ops interface_complex_ops =
  166. @{
  167. .register_data_handle = complex_register_data_handle,
  168. .allocate_data_on_node = complex_allocate_data_on_node,
  169. .copy_methods = &complex_copy_methods,
  170. .get_size = complex_get_size,
  171. .footprint = complex_footprint,
  172. .interfaceid = -1,
  173. .interface_size = sizeof(struct starpu_complex_interface),
  174. @};
  175. @end smallexample
  176. @end cartouche
  177. Functions need to be defined to access the different fields of the
  178. complex interface from a StarPU data handle.
  179. @cartouche
  180. @smallexample
  181. double *starpu_complex_get_real(starpu_data_handle_t handle)
  182. @{
  183. struct starpu_complex_interface *complex_interface =
  184. (struct starpu_complex_interface *) starpu_data_get_interface_on_node(handle, 0);
  185. return complex_interface->real;
  186. @}
  187. double *starpu_complex_get_imaginary(starpu_data_handle_t handle);
  188. int starpu_complex_get_nx(starpu_data_handle_t handle);
  189. @end smallexample
  190. @end cartouche
  191. Similar functions need to be defined to access the different fields of the
  192. complex interface from a @code{void *} pointer to be used within codelet
  193. implemetations.
  194. @cartouche
  195. @smallexample
  196. #define STARPU_COMPLEX_GET_REAL(interface) \
  197. (((struct starpu_complex_interface *)(interface))->real)
  198. #define STARPU_COMPLEX_GET_IMAGINARY(interface) \
  199. (((struct starpu_complex_interface *)(interface))->imaginary)
  200. #define STARPU_COMPLEX_GET_NX(interface) \
  201. (((struct starpu_complex_interface *)(interface))->nx)
  202. @end smallexample
  203. @end cartouche
  204. Complex data interfaces can then be registered to StarPU.
  205. @cartouche
  206. @smallexample
  207. double real = 45.0;
  208. double imaginary = 12.0;
  209. starpu_complex_data_register(&handle1, 0, &real, &imaginary, 1);
  210. starpu_insert_task(&cl_display, STARPU_R, handle1, 0);
  211. @end smallexample
  212. @end cartouche
  213. and used by codelets.
  214. @cartouche
  215. @smallexample
  216. void display_complex_codelet(void *descr[], __attribute__ ((unused)) void *_args)
  217. @{
  218. int nx = STARPU_COMPLEX_GET_NX(descr[0]);
  219. double *real = STARPU_COMPLEX_GET_REAL(descr[0]);
  220. double *imaginary = STARPU_COMPLEX_GET_IMAGINARY(descr[0]);
  221. int i;
  222. for(i=0 ; i<nx ; i++)
  223. @{
  224. fprintf(stderr, "Complex[%d] = %3.2f + %3.2f i\n", i, real[i], imaginary[i]);
  225. @}
  226. @}
  227. @end smallexample
  228. @end cartouche
  229. The whole code for this complex data interface is available in the
  230. directory @code{examples/interface/}.
  231. @node Multiformat Data Interface
  232. @section Multiformat Data Interface
  233. @deftp {Data Type} {struct starpu_multiformat_data_interface_ops}
  234. The different fields are:
  235. @table @asis
  236. @item @code{size_t cpu_elemsize}
  237. the size of each element on CPUs,
  238. @item @code{size_t opencl_elemsize}
  239. the size of each element on OpenCL devices,
  240. @item @code{struct starpu_codelet *cpu_to_opencl_cl}
  241. pointer to a codelet which converts from CPU to OpenCL
  242. @item @code{struct starpu_codelet *opencl_to_cpu_cl}
  243. pointer to a codelet which converts from OpenCL to CPU
  244. @item @code{size_t cuda_elemsize}
  245. the size of each element on CUDA devices,
  246. @item @code{struct starpu_codelet *cpu_to_cuda_cl}
  247. pointer to a codelet which converts from CPU to CUDA
  248. @item @code{struct starpu_codelet *cuda_to_cpu_cl}
  249. pointer to a codelet which converts from CUDA to CPU
  250. @end table
  251. @end deftp
  252. @deftypefun void starpu_multiformat_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, void *@var{ptr}, uint32_t @var{nobjects}, struct starpu_multiformat_data_interface_ops *@var{format_ops})
  253. Register a piece of data that can be represented in different ways, depending upon
  254. the processing unit that manipulates it. It allows the programmer, for instance, to
  255. use an array of structures when working on a CPU, and a structure of arrays when
  256. working on a GPU.
  257. @var{nobjects} is the number of elements in the data. @var{format_ops} describes
  258. the format.
  259. @end deftypefun
  260. @defmac STARPU_MULTIFORMAT_GET_CPU_PTR ({void *}@var{interface})
  261. returns the local pointer to the data with CPU format.
  262. @end defmac
  263. @defmac STARPU_MULTIFORMAT_GET_CUDA_PTR ({void *}@var{interface})
  264. returns the local pointer to the data with CUDA format.
  265. @end defmac
  266. @defmac STARPU_MULTIFORMAT_GET_OPENCL_PTR ({void *}@var{interface})
  267. returns the local pointer to the data with OpenCL format.
  268. @end defmac
  269. @defmac STARPU_MULTIFORMAT_GET_NX ({void *}@var{interface})
  270. returns the number of elements in the data.
  271. @end defmac
  272. @node Task Bundles
  273. @section Task Bundles
  274. @deftp {Data Type} {starpu_task_bundle_t}
  275. Opaque structure describing a list of tasks that should be scheduled
  276. on the same worker whenever it's possible. It must be considered as a
  277. hint given to the scheduler as there is no guarantee that they will be
  278. executed on the same worker.
  279. @end deftp
  280. @deftypefun void starpu_task_bundle_create ({starpu_task_bundle_t *}@var{bundle})
  281. Factory function creating and initializing @var{bundle}, when the call returns, memory needed is allocated and @var{bundle} is ready to use.
  282. @end deftypefun
  283. @deftypefun int starpu_task_bundle_insert (starpu_task_bundle_t @var{bundle}, {struct starpu_task *}@var{task})
  284. Insert @var{task} in @var{bundle}. Until @var{task} is removed from @var{bundle} its expected length and data transfer time will be considered along those of the other tasks of @var{bundle}.
  285. This function mustn't be called if @var{bundle} is already closed and/or @var{task} is already submitted.
  286. @end deftypefun
  287. @deftypefun int starpu_task_bundle_remove (starpu_task_bundle_t @var{bundle}, {struct starpu_task *}@var{task})
  288. Remove @var{task} from @var{bundle}.
  289. Of course @var{task} must have been previously inserted @var{bundle}.
  290. This function mustn't be called if @var{bundle} is already closed and/or @var{task} is already submitted. Doing so would result in undefined behaviour.
  291. @end deftypefun
  292. @deftypefun void starpu_task_bundle_close (starpu_task_bundle_t @var{bundle})
  293. Inform the runtime that the user won't modify @var{bundle} anymore, it means no more inserting or removing task. Thus the runtime can destroy it when possible.
  294. @end deftypefun
  295. @deftypefun double starpu_task_bundle_expected_length (starpu_task_bundle_t @var{bundle}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl})
  296. Return the expected duration of the entire task bundle in µs.
  297. @end deftypefun
  298. @deftypefun double starpu_task_bundle_expected_power (starpu_task_bundle_t @var{bundle}, enum starpu_perf_archtype @var{arch}, unsigned @var{nimpl})
  299. Return the expected power consumption of the entire task bundle in J.
  300. @end deftypefun
  301. @deftypefun double starpu_task_bundle_expected_data_transfer_time (starpu_task_bundle_t @var{bundle}, unsigned @var{memory_node})
  302. Return the time (in µs) expected to transfer all data used within the bundle.
  303. @end deftypefun
  304. @node Task Lists
  305. @section Task Lists
  306. @deftp {Data Type} {struct starpu_task_list}
  307. Stores a double-chained list of tasks
  308. @end deftp
  309. @deftypefun void starpu_task_list_init ({struct starpu_task_list *}@var{list})
  310. Initialize a list structure
  311. @end deftypefun
  312. @deftypefun void starpu_task_list_push_front ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  313. Push a task at the front of a list
  314. @end deftypefun
  315. @deftypefun void starpu_task_list_push_back ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  316. Push a task at the back of a list
  317. @end deftypefun
  318. @deftypefun {struct starpu_task *} starpu_task_list_front ({struct starpu_task_list *}@var{list})
  319. Get the front of the list (without removing it)
  320. @end deftypefun
  321. @deftypefun {struct starpu_task *} starpu_task_list_back ({struct starpu_task_list *}@var{list})
  322. Get the back of the list (without removing it)
  323. @end deftypefun
  324. @deftypefun int starpu_task_list_empty ({struct starpu_task_list *}@var{list})
  325. Test if a list is empty
  326. @end deftypefun
  327. @deftypefun void starpu_task_list_erase ({struct starpu_task_list *}@var{list}, {struct starpu_task *}@var{task})
  328. Remove an element from the list
  329. @end deftypefun
  330. @deftypefun {struct starpu_task *} starpu_task_list_pop_front ({struct starpu_task_list *}@var{list})
  331. Remove the element at the front of the list
  332. @end deftypefun
  333. @deftypefun {struct starpu_task *} starpu_task_list_pop_back ({struct starpu_task_list *}@var{list})
  334. Remove the element at the back of the list
  335. @end deftypefun
  336. @deftypefun {struct starpu_task *} starpu_task_list_begin ({struct starpu_task_list *}@var{list})
  337. Get the first task of the list.
  338. @end deftypefun
  339. @deftypefun {struct starpu_task *} starpu_task_list_end ({struct starpu_task_list *}@var{list})
  340. Get the end of the list.
  341. @end deftypefun
  342. @deftypefun {struct starpu_task *} starpu_task_list_next ({struct starpu_task *}@var{task})
  343. Get the next task of the list. This is not erase-safe.
  344. @end deftypefun
  345. @node Using Parallel Tasks
  346. @section Using Parallel Tasks
  347. These are used by parallel tasks:
  348. @deftypefun int starpu_combined_worker_get_size (void)
  349. Return the size of the current combined worker, i.e. the total number of cpus
  350. running the same task in the case of SPMD parallel tasks, or the total number
  351. of threads that the task is allowed to start in the case of FORKJOIN parallel
  352. tasks.
  353. @end deftypefun
  354. @deftypefun int starpu_combined_worker_get_rank (void)
  355. Return the rank of the current thread within the combined worker. Can only be
  356. used in FORKJOIN parallel tasks, to know which part of the task to work on.
  357. @end deftypefun
  358. Most of these are used for schedulers which support parallel tasks.
  359. @deftypefun unsigned starpu_combined_worker_get_count (void)
  360. Return the number of different combined workers.
  361. @end deftypefun
  362. @deftypefun int starpu_combined_worker_get_id (void)
  363. Return the identifier of the current combined worker.
  364. @end deftypefun
  365. @deftypefun int starpu_combined_worker_assign_workerid (int @var{nworkers}, int @var{workerid_array}[])
  366. Register a new combined worker and get its identifier
  367. @end deftypefun
  368. @deftypefun int starpu_combined_worker_get_description (int @var{workerid}, {int *}@var{worker_size}, {int **}@var{combined_workerid})
  369. Get the description of a combined worker
  370. @end deftypefun
  371. @deftypefun int starpu_combined_worker_can_execute_task (unsigned @var{workerid}, {struct starpu_task *}@var{task}, unsigned @var{nimpl})
  372. Variant of starpu_worker_can_execute_task compatible with combined workers
  373. @end deftypefun
  374. @node Defining a new scheduling policy
  375. @section Defining a new scheduling policy
  376. TODO
  377. A full example showing how to define a new scheduling policy is available in
  378. the StarPU sources in the directory @code{examples/scheduler/}.
  379. @menu
  380. * Scheduling Policy API:: Scheduling Policy API
  381. * Source code::
  382. @end menu
  383. @node Scheduling Policy API
  384. @subsection Scheduling Policy API
  385. While StarPU comes with a variety of scheduling policies (@pxref{Task
  386. scheduling policy}), it may sometimes be desirable to implement custom
  387. policies to address specific problems. The API described below allows
  388. users to write their own scheduling policy.
  389. @deftp {Data Type} {struct starpu_machine_topology}
  390. @table @asis
  391. @item @code{unsigned nworkers}
  392. Total number of workers.
  393. @item @code{unsigned ncombinedworkers}
  394. Total number of combined workers.
  395. @item @code{hwloc_topology_t hwtopology}
  396. Topology as detected by hwloc.
  397. To maintain ABI compatibility when hwloc is not available, the field
  398. is replaced with @code{void *dummy}
  399. @item @code{unsigned nhwcpus}
  400. Total number of CPUs, as detected by the topology code. May be different from
  401. the actual number of CPU workers.
  402. @item @code{unsigned nhwcudagpus}
  403. Total number of CUDA devices, as detected. May be different from the actual
  404. number of CUDA workers.
  405. @item @code{unsigned nhwopenclgpus}
  406. Total number of OpenCL devices, as detected. May be different from the actual
  407. number of CUDA workers.
  408. @item @code{unsigned ncpus}
  409. Actual number of CPU workers used by StarPU.
  410. @item @code{unsigned ncudagpus}
  411. Actual number of CUDA workers used by StarPU.
  412. @item @code{unsigned nopenclgpus}
  413. Actual number of OpenCL workers used by StarPU.
  414. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  415. Indicates the successive cpu identifier that should be used to bind the
  416. workers. It is either filled according to the user's explicit
  417. parameters (from starpu_conf) or according to the STARPU_WORKERS_CPUID env.
  418. variable. Otherwise, a round-robin policy is used to distributed the workers
  419. over the cpus.
  420. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  421. Indicates the successive cpu identifier that should be used by the CUDA
  422. driver. It is either filled according to the user's explicit parameters (from
  423. starpu_conf) or according to the STARPU_WORKERS_CUDAID env. variable. Otherwise,
  424. they are taken in ID order.
  425. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  426. Indicates the successive cpu identifier that should be used by the OpenCL
  427. driver. It is either filled according to the user's explicit parameters (from
  428. starpu_conf) or according to the STARPU_WORKERS_OPENCLID env. variable. Otherwise,
  429. they are taken in ID order.
  430. @end table
  431. @end deftp
  432. @deftp {Data Type} {struct starpu_sched_policy}
  433. This structure contains all the methods that implement a scheduling policy. An
  434. application may specify which scheduling strategy in the @code{sched_policy}
  435. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  436. function. The different fields are:
  437. @table @asis
  438. @item @code{void (*init_sched)(struct starpu_machine_topology *, struct starpu_sched_policy *)}
  439. Initialize the scheduling policy.
  440. @item @code{void (*deinit_sched)(struct starpu_machine_topology *, struct starpu_sched_policy *)}
  441. Cleanup the scheduling policy.
  442. @item @code{int (*push_task)(struct starpu_task *)}
  443. Insert a task into the scheduler.
  444. @item @code{void (*push_task_notify)(struct starpu_task *, int workerid)}
  445. Notify the scheduler that a task was pushed on a given worker. This method is
  446. called when a task that was explicitely assigned to a worker becomes ready and
  447. is about to be executed by the worker. This method therefore permits to keep
  448. the state of of the scheduler coherent even when StarPU bypasses the scheduling
  449. strategy.
  450. @item @code{struct starpu_task *(*pop_task)(void)} (optional)
  451. Get a task from the scheduler. The mutex associated to the worker is already
  452. taken when this method is called. If this method is defined as @code{NULL}, the
  453. worker will only execute tasks from its local queue. In this case, the
  454. @code{push_task} method should use the @code{starpu_push_local_task} method to
  455. assign tasks to the different workers.
  456. @item @code{struct starpu_task *(*pop_every_task)(void)}
  457. Remove all available tasks from the scheduler (tasks are chained by the means
  458. of the prev and next fields of the starpu_task structure). The mutex associated
  459. to the worker is already taken when this method is called. This is currently
  460. not used.
  461. @item @code{void (*pre_exec_hook)(struct starpu_task *)} (optional)
  462. This method is called every time a task is starting.
  463. @item @code{void (*post_exec_hook)(struct starpu_task *)} (optional)
  464. This method is called every time a task has been executed.
  465. @item @code{const char *policy_name} (optional)
  466. Name of the policy.
  467. @item @code{const char *policy_description} (optional)
  468. Description of the policy.
  469. @end table
  470. @end deftp
  471. @deftypefun void starpu_worker_set_sched_condition (int @var{workerid}, pthread_cond_t *@var{sched_cond}, pthread_mutex_t *@var{sched_mutex})
  472. This function specifies the condition variable associated to a worker
  473. When there is no available task for a worker, StarPU blocks this worker on a
  474. condition variable. This function specifies which condition variable (and the
  475. associated mutex) should be used to block (and to wake up) a worker. Note that
  476. multiple workers may use the same condition variable. For instance, in the case
  477. of a scheduling strategy with a single task queue, the same condition variable
  478. would be used to block and wake up all workers.
  479. The initialization method of a scheduling strategy (@code{init_sched}) must
  480. call this function once per worker.
  481. @end deftypefun
  482. @deftypefun void starpu_sched_set_min_priority (int @var{min_prio})
  483. Defines the minimum priority level supported by the scheduling policy. The
  484. default minimum priority level is the same as the default priority level which
  485. is 0 by convention. The application may access that value by calling the
  486. @code{starpu_sched_get_min_priority} function. This function should only be
  487. called from the initialization method of the scheduling policy, and should not
  488. be used directly from the application.
  489. @end deftypefun
  490. @deftypefun void starpu_sched_set_max_priority (int @var{max_prio})
  491. Defines the maximum priority level supported by the scheduling policy. The
  492. default maximum priority level is 1. The application may access that value by
  493. calling the @code{starpu_sched_get_max_priority} function. This function should
  494. only be called from the initialization method of the scheduling policy, and
  495. should not be used directly from the application.
  496. @end deftypefun
  497. @deftypefun int starpu_sched_get_min_priority (void)
  498. Returns the current minimum priority level supported by the
  499. scheduling policy
  500. @end deftypefun
  501. @deftypefun int starpu_sched_get_max_priority (void)
  502. Returns the current maximum priority level supported by the
  503. scheduling policy
  504. @end deftypefun
  505. @deftypefun int starpu_push_local_task (int @var{workerid}, {struct starpu_task} *@var{task}, int @var{back})
  506. The scheduling policy may put tasks directly into a worker's local queue so
  507. that it is not always necessary to create its own queue when the local queue
  508. is sufficient. If @var{back} not null, @var{task} is put at the back of the queue
  509. where the worker will pop tasks first. Setting @var{back} to 0 therefore ensures
  510. a FIFO ordering.
  511. @end deftypefun
  512. @deftypefun int starpu_worker_can_execute_task (unsigned @var{workerid}, {struct starpu_task *}@var{task}, unsigned {nimpl})
  513. Check if the worker specified by workerid can execute the codelet. Schedulers need to call it before assigning a task to a worker, otherwise the task may fail to execute.
  514. @end deftypefun
  515. @deftypefun double starpu_timing_now (void)
  516. Return the current date in µs
  517. @end deftypefun
  518. @deftypefun double starpu_task_expected_length ({struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl})
  519. Returns expected task duration in µs
  520. @end deftypefun
  521. @deftypefun double starpu_worker_get_relative_speedup ({enum starpu_perf_archtype} @var{perf_archtype})
  522. Returns an estimated speedup factor relative to CPU speed
  523. @end deftypefun
  524. @deftypefun double starpu_task_expected_data_transfer_time (uint32_t @var{memory_node}, {struct starpu_task *}@var{task})
  525. Returns expected data transfer time in µs
  526. @end deftypefun
  527. @deftypefun double starpu_data_expected_transfer_time (starpu_data_handle_t @var{handle}, unsigned @var{memory_node}, {enum starpu_access_mode} @var{mode})
  528. Predict the transfer time (in µs) to move a handle to a memory node
  529. @end deftypefun
  530. @deftypefun double starpu_task_expected_power ({struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl})
  531. Returns expected power consumption in J
  532. @end deftypefun
  533. @deftypefun double starpu_task_expected_conversion_time ({struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned {nimpl})
  534. Returns expected conversion time in ms (multiformat interface only)
  535. @end deftypefun
  536. @node Source code
  537. @subsection Source code
  538. @cartouche
  539. @smallexample
  540. static struct starpu_sched_policy dummy_sched_policy = @{
  541. .init_sched = init_dummy_sched,
  542. .deinit_sched = deinit_dummy_sched,
  543. .push_task = push_task_dummy,
  544. .push_prio_task = NULL,
  545. .pop_task = pop_task_dummy,
  546. .post_exec_hook = NULL,
  547. .pop_every_task = NULL,
  548. .policy_name = "dummy",
  549. .policy_description = "dummy scheduling strategy"
  550. @};
  551. @end smallexample
  552. @end cartouche
  553. @node Running drivers
  554. @section Running drivers
  555. @menu
  556. * Driver API::
  557. * Example::
  558. @end menu
  559. @node Driver API
  560. @subsection Driver API
  561. @deftypefun int starpu_driver_run ({struct starpu_driver *}@var{d})
  562. Initialize the given driver, run it until it receives a request to terminate,
  563. deinitialize it and return 0 on success. It returns -EINVAL if @code{d->type}
  564. is not a valid StarPU device type (STARPU_CPU_WORKER, STARPU_CUDA_WORKER or
  565. STARPU_OPENCL_WORKER). This is the same as using the following
  566. functions: calling @code{starpu_driver_init()}, then calling
  567. @code{starpu_driver_run_once()} in a loop, and eventually
  568. @code{starpu_driver_deinit()}.
  569. @end deftypefun
  570. @deftypefun int starpu_driver_init (struct starpu_driver *@var{d})
  571. Initialize the given driver. Returns 0 on success, -EINVAL if
  572. @code{d->type} is not a valid StarPU device type (STARPU_CPU_WORKER,
  573. STARPU_CUDA_WORKER or STARPU_OPENCL_WORKER).
  574. @end deftypefun
  575. @deftypefun int starpu_driver_run_once (struct starpu_driver *@var{d})
  576. Run the driver once, then returns 0 on success, -EINVAL if
  577. @code{d->type} is not a valid StarPU device type (STARPU_CPU_WORKER,
  578. STARPU_CUDA_WORKER or STARPU_OPENCL_WORKER).
  579. @end deftypefun
  580. @deftypefun int starpu_driver_deinit (struct starpu_driver *@var{d})
  581. Deinitialize the given driver. Returns 0 on success, -EINVAL if
  582. @code{d->type} is not a valid StarPU device type (STARPU_CPU_WORKER,
  583. STARPU_CUDA_WORKER or STARPU_OPENCL_WORKER).
  584. @end deftypefun
  585. @deftypefun void starpu_drivers_request_termination (void)
  586. Notify all running drivers they should terminate.
  587. @end deftypefun
  588. @node Example
  589. @subsection Example
  590. @cartouche
  591. @smallexample
  592. int ret;
  593. struct starpu_driver = @{
  594. .type = STARPU_CUDA_WORKER,
  595. .id.cuda_id = 0
  596. @};
  597. ret = starpu_driver_init(&d);
  598. if (ret != 0)
  599. error();
  600. while (some_condition) @{
  601. ret = starpu_driver_run_once(&d);
  602. if (ret != 0)
  603. error();
  604. @}
  605. ret = starpu_driver_deinit(&d);
  606. if (ret != 0)
  607. error();
  608. @end smallexample
  609. @end cartouche
  610. @node Expert mode
  611. @section Expert mode
  612. @deftypefun void starpu_wake_all_blocked_workers (void)
  613. Wake all the workers, so they can inspect data requests and task submissions
  614. again.
  615. @end deftypefun
  616. @deftypefun int starpu_progression_hook_register (unsigned (*@var{func})(void *arg), void *@var{arg})
  617. Register a progression hook, to be called when workers are idle.
  618. @end deftypefun
  619. @deftypefun void starpu_progression_hook_deregister (int @var{hook_id})
  620. Unregister a given progression hook.
  621. @end deftypefun