mpi-support.texi 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. The integration of MPI transfers within task parallelism is done in a
  8. very natural way by the means of asynchronous interactions between the
  9. application and StarPU. This is implemented in a separate libstarpumpi library
  10. which basically provides "StarPU" equivalents of @code{MPI_*} functions, where
  11. @code{void *} buffers are replaced with @code{starpu_data_handle_t}s, and all
  12. GPU-RAM-NIC transfers are handled efficiently by StarPU-MPI. The user has to
  13. use the usual @code{mpirun} command of the MPI implementation to start StarPU on
  14. the different MPI nodes.
  15. An MPI Insert Task function provides an even more seamless transition to a
  16. distributed application, by automatically issuing all required data transfers
  17. according to the task graph and an application-provided distribution.
  18. @menu
  19. * Simple Example::
  20. * Point to point communication::
  21. * Exchanging User Defined Data Interface::
  22. * MPI Insert Task Utility::
  23. * MPI Collective Operations::
  24. @end menu
  25. @node Simple Example
  26. @section Simple Example
  27. The flags required to compile or link against the MPI layer are then
  28. accessible with the following commands:
  29. @example
  30. $ pkg-config --cflags starpumpi-1.0 # options for the compiler
  31. $ pkg-config --libs starpumpi-1.0 # options for the linker
  32. @end example
  33. Also pass the @code{--static} option if the application is to be linked statically.
  34. @cartouche
  35. @smallexample
  36. void increment_token(void)
  37. @{
  38. struct starpu_task *task = starpu_task_create();
  39. task->cl = &increment_cl;
  40. task->handles[0] = token_handle;
  41. starpu_task_submit(task);
  42. @}
  43. @end smallexample
  44. @end cartouche
  45. @cartouche
  46. @smallexample
  47. int main(int argc, char **argv)
  48. @{
  49. int rank, size;
  50. starpu_init(NULL);
  51. starpu_mpi_initialize_extended(&rank, &size);
  52. starpu_vector_data_register(&token_handle, 0, (uintptr_t)&token, 1, sizeof(unsigned));
  53. unsigned nloops = NITER;
  54. unsigned loop;
  55. unsigned last_loop = nloops - 1;
  56. unsigned last_rank = size - 1;
  57. @end smallexample
  58. @end cartouche
  59. @cartouche
  60. @smallexample
  61. for (loop = 0; loop < nloops; loop++) @{
  62. int tag = loop*size + rank;
  63. if (loop == 0 && rank == 0)
  64. @{
  65. token = 0;
  66. fprintf(stdout, "Start with token value %d\n", token);
  67. @}
  68. else
  69. @{
  70. starpu_mpi_irecv_detached(token_handle, (rank+size-1)%size, tag,
  71. MPI_COMM_WORLD, NULL, NULL);
  72. @}
  73. increment_token();
  74. if (loop == last_loop && rank == last_rank)
  75. @{
  76. starpu_data_acquire(token_handle, STARPU_R);
  77. fprintf(stdout, "Finished: token value %d\n", token);
  78. starpu_data_release(token_handle);
  79. @}
  80. else
  81. @{
  82. starpu_mpi_isend_detached(token_handle, (rank+1)%size, tag+1,
  83. MPI_COMM_WORLD, NULL, NULL);
  84. @}
  85. @}
  86. starpu_task_wait_for_all();
  87. @end smallexample
  88. @end cartouche
  89. @cartouche
  90. @smallexample
  91. starpu_mpi_shutdown();
  92. starpu_shutdown();
  93. if (rank == last_rank)
  94. @{
  95. fprintf(stderr, "[%d] token = %d == %d * %d ?\n", rank, token, nloops, size);
  96. STARPU_ASSERT(token == nloops*size);
  97. @}
  98. @end smallexample
  99. @end cartouche
  100. @node Point to point communication
  101. @section Point to point communication
  102. The standard point to point communications of MPI have been
  103. implemented. The semantic is similar to the MPI one, but adapted to
  104. the DSM provided by StarPU. A MPI request will only be submitted when
  105. the data is available in the main memory of the node submitting the
  106. request.
  107. There is two types of asynchronous communications: the classic
  108. asynchronous communications and the detached communications. The
  109. classic asynchronous communications (@code{starpu_mpi_isend} and
  110. @code{starpu_mpi_irecv}) need to be followed by a call to
  111. @code{starpu_mpi_wait} or to @code{starpu_mpi_test} to wait for or to
  112. test the completion of the communication. Waiting for or testing the
  113. completion of detached communications is not possible, this is done
  114. internally by StarPU-MPI, on completion, the resources are
  115. automatically released. This mechanism is similar to the pthread
  116. detach state attribute which determines whether a thread will be
  117. created in a joinable or a detached state.
  118. For any communication, the call of the function will result in the
  119. creation of a StarPU-MPI request, the function
  120. @code{starpu_data_acquire_cb} is then called to asynchronously request
  121. StarPU to fetch the data in main memory; when the data is available in
  122. main memory, a StarPU-MPI function is called to put the new request in
  123. the list of the ready requests.
  124. The StarPU-MPI progression thread regularly polls this list of ready
  125. requests. For each new ready request, the appropriate function is
  126. called to post the corresponding MPI call. For example, calling
  127. @code{starpu_mpi_isend} will result in posting @code{MPI_Isend}. If
  128. the request is marked as detached, the request will be put in the list
  129. of detached requests.
  130. The StarPU-MPI progression thread also polls the list of detached
  131. requests. For each detached request, it regularly tests the completion
  132. of the MPI request by calling @code{MPI_Test}. On completion, the data
  133. handle is released, and if a callback was defined, it is called.
  134. @ref{Communication} gives the list of all the point to point
  135. communications defined in StarPU-MPI.
  136. @node Exchanging User Defined Data Interface
  137. @section Exchanging User Defined Data Interface
  138. New data interfaces defined as explained in @ref{An example
  139. of data interface} can also be used within StarPU-MPI and exchanged
  140. between nodes. Two functions needs to be defined through
  141. the type @code{struct starpu_data_interface_ops} (@pxref{Data
  142. Interface API}). The pack function takes a handle and returns a
  143. contiguous memory buffer along with its size where data to be conveyed to another node
  144. should be copied. The reversed operation is implemented in the unpack
  145. function which takes a contiguous memory buffer and recreates the data
  146. handle.
  147. @cartouche
  148. @smallexample
  149. static int complex_pack_data(starpu_data_handle_t handle, unsigned node, void **ptr, ssize_t *count)
  150. @{
  151. STARPU_ASSERT(starpu_data_test_if_allocated_on_node(handle, node));
  152. struct starpu_complex_interface *complex_interface =
  153. (struct starpu_complex_interface *) starpu_data_get_interface_on_node(handle, node);
  154. *count = complex_get_size(handle);
  155. *ptr = malloc(*count);
  156. memcpy(*ptr, complex_interface->real, complex_interface->nx*sizeof(double));
  157. memcpy(*ptr+complex_interface->nx*sizeof(double), complex_interface->imaginary,
  158. complex_interface->nx*sizeof(double));
  159. return 0;
  160. @}
  161. @end smallexample
  162. @end cartouche
  163. @cartouche
  164. @smallexample
  165. static int complex_unpack_data(starpu_data_handle_t handle, unsigned node, void *ptr, size_t count)
  166. @{
  167. STARPU_ASSERT(starpu_data_test_if_allocated_on_node(handle, node));
  168. struct starpu_complex_interface *complex_interface =
  169. (struct starpu_complex_interface *) starpu_data_get_interface_on_node(handle, node);
  170. memcpy(complex_interface->real, ptr, complex_interface->nx*sizeof(double));
  171. memcpy(complex_interface->imaginary, ptr+complex_interface->nx*sizeof(double),
  172. complex_interface->nx*sizeof(double));
  173. return 0;
  174. @}
  175. @end smallexample
  176. @end cartouche
  177. @cartouche
  178. @smallexample
  179. static struct starpu_data_interface_ops interface_complex_ops =
  180. @{
  181. ...
  182. .pack_data = complex_pack_data,
  183. .unpack_data = complex_unpack_data
  184. @};
  185. @end smallexample
  186. @end cartouche
  187. @page
  188. @node MPI Insert Task Utility
  189. @section MPI Insert Task Utility
  190. To save the programmer from having to explicit all communications, StarPU
  191. provides an "MPI Insert Task Utility". The principe is that the application
  192. decides a distribution of the data over the MPI nodes by allocating it and
  193. notifying StarPU of that decision, i.e. tell StarPU which MPI node "owns"
  194. which data. It also decides, for each handle, an MPI tag which will be used to
  195. exchange the content of the handle. All MPI nodes then process the whole task
  196. graph, and StarPU automatically determines which node actually execute which
  197. task, and trigger the required MPI transfers.
  198. @deftypefun int starpu_data_set_tag (starpu_data_handle_t @var{handle}, int @var{tag})
  199. Tell StarPU-MPI which MPI tag to use when exchanging the data.
  200. @end deftypefun
  201. @deftypefun int starpu_data_get_tag (starpu_data_handle_t @var{handle})
  202. Returns the MPI tag to be used when exchanging the data.
  203. @end deftypefun
  204. @deftypefun int starpu_data_set_rank (starpu_data_handle_t @var{handle}, int @var{rank})
  205. Tell StarPU-MPI which MPI node "owns" a given data, that is, the node which will
  206. always keep an up-to-date value, and will by default execute tasks which write
  207. to it.
  208. @end deftypefun
  209. @deftypefun int starpu_data_get_rank (starpu_data_handle_t @var{handle})
  210. Returns the last value set by @code{starpu_data_set_rank}.
  211. @end deftypefun
  212. @defmac STARPU_EXECUTE_ON_NODE
  213. this macro is used when calling @code{starpu_mpi_insert_task}, and
  214. must be followed by a integer value which specified the node on which
  215. to execute the codelet.
  216. @end defmac
  217. @defmac STARPU_EXECUTE_ON_DATA
  218. this macro is used when calling @code{starpu_mpi_insert_task}, and
  219. must be followed by a data handle to specify that the node owning the
  220. given data will execute the codelet.
  221. @end defmac
  222. @deftypefun int starpu_mpi_insert_task (MPI_Comm @var{comm}, struct starpu_codelet *@var{codelet}, ...)
  223. Create and submit a task corresponding to @var{codelet} with the following
  224. arguments. The argument list must be zero-terminated.
  225. The arguments following the codelets are the same types as for the
  226. function @code{starpu_insert_task} defined in @ref{Insert Task
  227. Utility}. The extra argument @code{STARPU_EXECUTE_ON_NODE} followed by an
  228. integer allows to specify the MPI node to execute the codelet. It is also
  229. possible to specify that the node owning a specific data will execute
  230. the codelet, by using @code{STARPU_EXECUTE_ON_DATA} followed by a data
  231. handle.
  232. The internal algorithm is as follows:
  233. @enumerate
  234. @item Find out which MPI node is going to execute the codelet.
  235. @enumerate
  236. @item If there is only one node owning data in W mode, it will
  237. be selected;
  238. @item If there is several nodes owning data in W node, the one
  239. selected will be the one having the least data in R mode so as
  240. to minimize the amount of data to be transfered;
  241. @item The argument @code{STARPU_EXECUTE_ON_NODE} followed by an
  242. integer can be used to specify the node;
  243. @item The argument @code{STARPU_EXECUTE_ON_DATA} followed by a
  244. data handle can be used to specify that the node owing the given
  245. data will execute the codelet.
  246. @end enumerate
  247. @item Send and receive data as requested. Nodes owning data which need to be
  248. read by the task are sending them to the MPI node which will execute it. The
  249. latter receives them.
  250. @item Execute the codelet. This is done by the MPI node selected in the
  251. 1st step of the algorithm.
  252. @item If several MPI nodes own data to be written to, send written
  253. data back to their owners.
  254. @end enumerate
  255. The algorithm also includes a communication cache mechanism that
  256. allows not to send data twice to the same MPI node, unless the data
  257. has been modified. The cache can be disabled
  258. (@pxref{STARPU_MPI_CACHE}).
  259. @c todo parler plus du cache
  260. @end deftypefun
  261. @deftypefun void starpu_mpi_get_data_on_node (MPI_Comm @var{comm}, starpu_data_handle_t @var{data_handle}, int @var{node})
  262. Transfer data @var{data_handle} to MPI node @var{node}, sending it from its
  263. owner if needed. At least the target node and the owner have to call the
  264. function.
  265. @end deftypefun
  266. Here an stencil example showing how to use @code{starpu_mpi_insert_task}. One
  267. first needs to define a distribution function which specifies the
  268. locality of the data. Note that that distribution information needs to
  269. be given to StarPU by calling @code{starpu_data_set_rank}.
  270. @cartouche
  271. @smallexample
  272. /* Returns the MPI node number where data is */
  273. int my_distrib(int x, int y, int nb_nodes) @{
  274. /* Block distrib */
  275. return ((int)(x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * sqrt(nb_nodes))) % nb_nodes;
  276. // /* Other examples useful for other kinds of computations */
  277. // /* / distrib */
  278. // return (x+y) % nb_nodes;
  279. // /* Block cyclic distrib */
  280. // unsigned side = sqrt(nb_nodes);
  281. // return x % side + (y % side) * size;
  282. @}
  283. @end smallexample
  284. @end cartouche
  285. Now the data can be registered within StarPU. Data which are not
  286. owned but will be needed for computations can be registered through
  287. the lazy allocation mechanism, i.e. with a @code{home_node} set to -1.
  288. StarPU will automatically allocate the memory when it is used for the
  289. first time.
  290. One can note an optimization here (the @code{else if} test): we only register
  291. data which will be needed by the tasks that we will execute.
  292. @cartouche
  293. @smallexample
  294. unsigned matrix[X][Y];
  295. starpu_data_handle_t data_handles[X][Y];
  296. for(x = 0; x < X; x++) @{
  297. for (y = 0; y < Y; y++) @{
  298. int mpi_rank = my_distrib(x, y, size);
  299. if (mpi_rank == my_rank)
  300. /* Owning data */
  301. starpu_variable_data_register(&data_handles[x][y], 0,
  302. (uintptr_t)&(matrix[x][y]), sizeof(unsigned));
  303. else if (my_rank == my_distrib(x+1, y, size) || my_rank == my_distrib(x-1, y, size)
  304. || my_rank == my_distrib(x, y+1, size) || my_rank == my_distrib(x, y-1, size))
  305. /* I don't own that index, but will need it for my computations */
  306. starpu_variable_data_register(&data_handles[x][y], -1,
  307. (uintptr_t)NULL, sizeof(unsigned));
  308. else
  309. /* I know it's useless to allocate anything for this */
  310. data_handles[x][y] = NULL;
  311. if (data_handles[x][y])
  312. starpu_data_set_rank(data_handles[x][y], mpi_rank);
  313. @}
  314. @}
  315. @end smallexample
  316. @end cartouche
  317. Now @code{starpu_mpi_insert_task()} can be called for the different
  318. steps of the application.
  319. @cartouche
  320. @smallexample
  321. for(loop=0 ; loop<niter; loop++)
  322. for (x = 1; x < X-1; x++)
  323. for (y = 1; y < Y-1; y++)
  324. starpu_mpi_insert_task(MPI_COMM_WORLD, &stencil5_cl,
  325. STARPU_RW, data_handles[x][y],
  326. STARPU_R, data_handles[x-1][y],
  327. STARPU_R, data_handles[x+1][y],
  328. STARPU_R, data_handles[x][y-1],
  329. STARPU_R, data_handles[x][y+1],
  330. 0);
  331. starpu_task_wait_for_all();
  332. @end smallexample
  333. @end cartouche
  334. I.e. all MPI nodes process the whole task graph, but as mentioned above, for
  335. each task, only the MPI node which owns the data being written to (here,
  336. @code{data_handles[x][y]}) will actually run the task. The other MPI nodes will
  337. automatically send the required data.
  338. This can be a concern with a growing number of nodes. To avoid this, the
  339. application can prune the task for loops according to the data distribution,
  340. so as to only submit tasks on nodes which have to care about them (either to
  341. execute them, or to send the required data).
  342. @node MPI Collective Operations
  343. @section MPI Collective Operations
  344. @deftypefun int starpu_mpi_scatter_detached (starpu_data_handle_t *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm}, {void (*}@var{scallback})(void *), {void *}@var{sarg}, {void (*}@var{rcallback})(void *), {void *}@var{rarg})
  345. Scatter data among processes of the communicator based on the ownership of
  346. the data. For each data of the array @var{data_handles}, the
  347. process @var{root} sends the data to the process owning this data.
  348. Processes receiving data must have valid data handles to receive them.
  349. On completion of the collective communication, the @var{scallback} function is
  350. called with the argument @var{sarg} on the process @var{root}, the @var{rcallback} function is
  351. called with the argument @var{rarg} on any other process.
  352. @end deftypefun
  353. @deftypefun int starpu_mpi_gather_detached (starpu_data_handle_t *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm}, {void (*}@var{scallback})(void *), {void *}@var{sarg}, {void (*}@var{rcallback})(void *), {void *}@var{rarg})
  354. Gather data from the different processes of the communicator onto the
  355. process @var{root}. Each process owning data handle in the array
  356. @var{data_handles} will send them to the process @var{root}. The
  357. process @var{root} must have valid data handles to receive the data.
  358. On completion of the collective communication, the @var{rcallback} function is
  359. called with the argument @var{rarg} on the process @var{root}, the @var{scallback} function is
  360. called with the argument @var{sarg} on any other process.
  361. @end deftypefun
  362. @page
  363. @cartouche
  364. @smallexample
  365. if (rank == root)
  366. @{
  367. /* Allocate the vector */
  368. vector = malloc(nblocks * sizeof(float *));
  369. for(x=0 ; x<nblocks ; x++)
  370. @{
  371. starpu_malloc((void **)&vector[x], block_size*sizeof(float));
  372. @}
  373. @}
  374. /* Allocate data handles and register data to StarPU */
  375. data_handles = malloc(nblocks*sizeof(starpu_data_handle_t *));
  376. for(x = 0; x < nblocks ; x++)
  377. @{
  378. int mpi_rank = my_distrib(x, nodes);
  379. if (rank == root) @{
  380. starpu_vector_data_register(&data_handles[x], 0, (uintptr_t)vector[x],
  381. blocks_size, sizeof(float));
  382. @}
  383. else if ((mpi_rank == rank) || ((rank == mpi_rank+1 || rank == mpi_rank-1))) @{
  384. /* I own that index, or i will need it for my computations */
  385. starpu_vector_data_register(&data_handles[x], -1, (uintptr_t)NULL,
  386. block_size, sizeof(float));
  387. @}
  388. else @{
  389. /* I know it's useless to allocate anything for this */
  390. data_handles[x] = NULL;
  391. @}
  392. if (data_handles[x]) @{
  393. starpu_data_set_rank(data_handles[x], mpi_rank);
  394. @}
  395. @}
  396. /* Scatter the matrix among the nodes */
  397. starpu_mpi_scatter_detached(data_handles, nblocks, root, MPI_COMM_WORLD);
  398. /* Calculation */
  399. for(x = 0; x < nblocks ; x++) @{
  400. if (data_handles[x]) @{
  401. int owner = starpu_data_get_rank(data_handles[x]);
  402. if (owner == rank) @{
  403. starpu_insert_task(&cl, STARPU_RW, data_handles[x], 0);
  404. @}
  405. @}
  406. @}
  407. /* Gather the matrix on main node */
  408. starpu_mpi_gather_detached(data_handles, nblocks, 0, MPI_COMM_WORLD);
  409. @end smallexample
  410. @end cartouche