basic-api.texi 129 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Versioning::
  9. * Initialization and Termination::
  10. * Standard memory library::
  11. * Workers' Properties::
  12. * Data Management::
  13. * Data Interfaces::
  14. * Data Partition::
  15. * Codelets and Tasks::
  16. * Explicit Dependencies::
  17. * Implicit Data Dependencies::
  18. * Performance Model API::
  19. * Profiling API::
  20. * CUDA extensions::
  21. * OpenCL extensions::
  22. * Miscellaneous helpers::
  23. @end menu
  24. @node Versioning
  25. @section Versioning
  26. @defmac STARPU_MAJOR_VERSION
  27. Define the major version of StarPU
  28. @end defmac
  29. @defmac STARPU_MINOR_VERSION
  30. Define the minor version of StarPU
  31. @end defmac
  32. @node Initialization and Termination
  33. @section Initialization and Termination
  34. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  35. This is StarPU initialization method, which must be called prior to any other
  36. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  37. policy, number of cores, ...) by passing a non-null argument. Default
  38. configuration is used if the passed argument is @code{NULL}.
  39. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  40. indicates that no worker was available (so that StarPU was not initialized).
  41. @end deftypefun
  42. @deftp {Data Type} {struct starpu_driver}
  43. @table @asis
  44. @item @code{enum starpu_archtype type}
  45. The type of the driver. Only STARPU_CPU_DRIVER, STARPU_CUDA_DRIVER and
  46. STARPU_OPENCL_DRIVER are currently supported.
  47. @item @code{union id} Anonymous union
  48. @table @asis
  49. @item @code{unsigned cpu_id}
  50. Should only be used if type is STARPU_CPU_WORKER.
  51. @item @code{unsigned cuda_id}
  52. Should only be used if type is STARPU_CUDA_WORKER.
  53. @item @code{cl_device_id opencl_id}
  54. Should only be used if type is STARPU_OPENCL_WORKER.
  55. @end table
  56. @end table
  57. @end deftp
  58. @deftp {Data Type} {struct starpu_conf}
  59. This structure is passed to the @code{starpu_init} function in order
  60. to configure StarPU. It has to be initialized with @code{starpu_conf_init}.
  61. When the default value is used, StarPU automatically selects the number of
  62. processing units and takes the default scheduling policy. The environment
  63. variables overwrite the equivalent parameters.
  64. @table @asis
  65. @item @code{const char *sched_policy_name} (default = NULL)
  66. This is the name of the scheduling policy. This can also be specified
  67. with the @code{STARPU_SCHED} environment variable.
  68. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  69. This is the definition of the scheduling policy. This field is ignored
  70. if @code{sched_policy_name} is set.
  71. @item @code{int ncpus} (default = -1)
  72. This is the number of CPU cores that StarPU can use. This can also be
  73. specified with the @code{STARPU_NCPU} environment variable.
  74. @item @code{int ncuda} (default = -1)
  75. This is the number of CUDA devices that StarPU can use. This can also
  76. be specified with the @code{STARPU_NCUDA} environment variable.
  77. @item @code{int nopencl} (default = -1)
  78. This is the number of OpenCL devices that StarPU can use. This can
  79. also be specified with the @code{STARPU_NOPENCL} environment variable.
  80. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  81. If this flag is set, the @code{workers_bindid} array indicates where the
  82. different workers are bound, otherwise StarPU automatically selects where to
  83. bind the different workers. This can also be specified with the
  84. @code{STARPU_WORKERS_CPUID} environment variable.
  85. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  86. If the @code{use_explicit_workers_bindid} flag is set, this array
  87. indicates where to bind the different workers. The i-th entry of the
  88. @code{workers_bindid} indicates the logical identifier of the
  89. processor which should execute the i-th worker. Note that the logical
  90. ordering of the CPUs is either determined by the OS, or provided by
  91. the @code{hwloc} library in case it is available.
  92. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  93. If this flag is set, the CUDA workers will be attached to the CUDA devices
  94. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  95. CUDA devices in a round-robin fashion. This can also be specified with the
  96. @code{STARPU_WORKERS_CUDAID} environment variable.
  97. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  98. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  99. contains the logical identifiers of the CUDA devices (as used by
  100. @code{cudaGetDevice}).
  101. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  102. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  103. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects
  104. the OpenCL devices in a round-robin fashion. This can also be specified with
  105. the @code{STARPU_WORKERS_OPENCLID} environment variable.
  106. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  107. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  108. contains the logical identifiers of the OpenCL devices to be used.
  109. @item @code{int calibrate} (default = 0)
  110. If this flag is set, StarPU will calibrate the performance models when
  111. executing tasks. If this value is equal to @code{-1}, the default value is
  112. used. If the value is equal to @code{1}, it will force continuing
  113. calibration. If the value is equal to @code{2}, the existing performance
  114. models will be overwritten. This can also be specified with the
  115. @code{STARPU_CALIBRATE} environment variable.
  116. @item @code{int bus_calibrate} (default = 0)
  117. If this flag is set, StarPU will recalibrate the bus. If this value is equal
  118. to @code{-1}, the default value is used. This can also be specified with the
  119. @code{STARPU_BUS_CALIBRATE} environment variable.
  120. @item @code{int single_combined_worker} (default = 0)
  121. By default, StarPU executes parallel tasks concurrently.
  122. Some parallel libraries (e.g. most OpenMP implementations) however do
  123. not support concurrent calls to parallel code. In such case, setting this flag
  124. makes StarPU only start one parallel task at a time (but other
  125. CPU and GPU tasks are not affected and can be run concurrently). The parallel
  126. task scheduler will however still however still try varying combined worker
  127. sizes to look for the most efficient ones.
  128. This can also be specified with the @code{STARPU_SINGLE_COMBINED_WORKER} environment variable.
  129. @item @code{int disable_asynchronous_copy} (default = 0)
  130. This flag should be set to 1 to disable asynchronous copies between
  131. CPUs and all accelerators. This can also be specified with the
  132. @code{STARPU_DISABLE_ASYNCHRONOUS_COPY} environment variable.
  133. The AMD implementation of OpenCL is known to
  134. fail when copying data asynchronously. When using this implementation,
  135. it is therefore necessary to disable asynchronous data transfers.
  136. This can also be specified at compilation time by giving to the
  137. configure script the option @code{--disable-asynchronous-copy}.
  138. @item @code{int disable_asynchronous_cuda_copy} (default = 0)
  139. This flag should be set to 1 to disable asynchronous copies between
  140. CPUs and CUDA accelerators. This can also be specified with the
  141. @code{STARPU_DISABLE_ASYNCHRONOUS_CUDA_COPY} environment variable.
  142. This can also be specified at compilation time by giving to the
  143. configure script the option @code{--disable-asynchronous-cuda-copy}.
  144. @item @code{int disable_asynchronous_opencl_copy} (default = 0)
  145. This flag should be set to 1 to disable asynchronous copies between
  146. CPUs and OpenCL accelerators. This can also be specified with the
  147. @code{STARPU_DISABLE_ASYNCHRONOUS_OPENCL_COPY} environment variable.
  148. The AMD implementation of OpenCL is known to
  149. fail when copying data asynchronously. When using this implementation,
  150. it is therefore necessary to disable asynchronous data transfers.
  151. This can also be specified at compilation time by giving to the
  152. configure script the option @code{--disable-asynchronous-opencl-copy}.
  153. @item @code{int *cuda_opengl_interoperability} (default = NULL)
  154. This can be set to an array of CUDA device identifiers for which
  155. @code{cudaGLSetGLDevice} should be called instead of @code{cudaSetDevice}. Its
  156. size is specified by the @code{n_cuda_opengl_interoperability} field below
  157. @item @code{int *n_cuda_opengl_interoperability} (default = 0)
  158. This has to be set to the size of the array pointed to by the
  159. @code{cuda_opengl_interoperability} field.
  160. @item @code{struct starpu_driver *not_launched_drivers}
  161. The drivers that should not be launched by StarPU.
  162. @item @code{unsigned n_not_launched_drivers}
  163. The number of StarPU drivers that should not be launched by StarPU.
  164. @item @code{trace_buffer_size}
  165. Specifies the buffer size used for FxT tracing. Starting from FxT version
  166. 0.2.12, the buffer will automatically be flushed when it fills in, but it may
  167. still be interesting to specify a bigger value to avoid any flushing (which
  168. would disturb the trace).
  169. @end table
  170. @end deftp
  171. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  172. This function initializes the @var{conf} structure passed as argument
  173. with the default values. In case some configuration parameters are already
  174. specified through environment variables, @code{starpu_conf_init} initializes
  175. the fields of the structure according to the environment variables. For
  176. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  177. @code{.calibrate} field of the structure passed as argument.
  178. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  179. indicates that the argument was NULL.
  180. @end deftypefun
  181. @deftypefun void starpu_shutdown (void)
  182. This is StarPU termination method. It must be called at the end of the
  183. application: statistics and other post-mortem debugging information are not
  184. guaranteed to be available until this method has been called.
  185. @end deftypefun
  186. @deftypefun int starpu_asynchronous_copy_disabled (void)
  187. Return 1 if asynchronous data transfers between CPU and accelerators
  188. are disabled.
  189. @end deftypefun
  190. @deftypefun int starpu_asynchronous_cuda_copy_disabled (void)
  191. Return 1 if asynchronous data transfers between CPU and CUDA accelerators
  192. are disabled.
  193. @end deftypefun
  194. @deftypefun int starpu_asynchronous_opencl_copy_disabled (void)
  195. Return 1 if asynchronous data transfers between CPU and OpenCL accelerators
  196. are disabled.
  197. @end deftypefun
  198. @node Standard memory library
  199. @section Standard memory library
  200. @defmac STARPU_MALLOC_PINNED
  201. Value passed to the function @code{starpu_malloc_flags} to
  202. indicate the memory allocation should be pinned.
  203. @end defmac
  204. @defmac STARPU_MALLOC_COUNT
  205. Value passed to the function @code{starpu_malloc_flags} to
  206. indicate the memory allocation should be in the limit defined by
  207. the environment variables @code{STARPU_LIMIT_CUDA_devid_MEM},
  208. @code{STARPU_LIMIT_CUDA_MEM}, @code{STARPU_LIMIT_OPENCL_devid_MEM},
  209. @code{STARPU_LIMIT_OPENCL_MEM} and @code{STARPU_LIMIT_CPU_MEM}
  210. (@pxref{Limit memory}). If no memory is available, it tries to reclaim
  211. memory from StarPU. Memory allocated this way needs to be freed by
  212. calling the @code{starpu_free_flags} function with the same flag.
  213. @end defmac
  214. @deftypefun int starpu_malloc_flags (void **@var{A}, size_t @var{dim}, int @var{flags})
  215. Performs a memory allocation based on the constraints defined by the
  216. given @var{flag}.
  217. @end deftypefun
  218. @deftypefun void starpu_malloc_set_align (size_t @var{align})
  219. This functions sets an alignment constraints for @code{starpu_malloc}
  220. allocations. @var{align} must be a power of two. This is for instance called
  221. automatically by the OpenCL driver to specify its own alignment constraints.
  222. @end deftypefun
  223. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  224. This function allocates data of the given size in main memory. It will also try to pin it in
  225. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  226. thus permit data transfer and computation overlapping. The allocated buffer must
  227. be freed thanks to the @code{starpu_free} function.
  228. @end deftypefun
  229. @deftypefun int starpu_free (void *@var{A})
  230. This function frees memory which has previously been allocated with
  231. @code{starpu_malloc}.
  232. @end deftypefun
  233. @deftypefun int starpu_free_flags (void *@var{A}, size_t @var{dim}, int @var{flags})
  234. This function frees memory by specifying its size. The given
  235. @var{flags} should be consistent with the ones given to
  236. @code{starpu_malloc_flags} when allocating the memory.
  237. @end deftypefun
  238. @node Workers' Properties
  239. @section Workers' Properties
  240. @deftp {Data Type} {enum starpu_archtype}
  241. The different values are:
  242. @table @asis
  243. @item @code{STARPU_CPU_WORKER}
  244. @item @code{STARPU_CUDA_WORKER}
  245. @item @code{STARPU_OPENCL_WORKER}
  246. @end table
  247. @end deftp
  248. @deftypefun unsigned starpu_worker_get_count (void)
  249. This function returns the number of workers (i.e. processing units executing
  250. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  251. @end deftypefun
  252. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  253. Returns the number of workers of the given @var{type}. A positive
  254. (or @code{NULL}) value is returned in case of success, @code{-EINVAL} indicates that
  255. the type is not valid otherwise.
  256. @end deftypefun
  257. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  258. This function returns the number of CPUs controlled by StarPU. The returned
  259. value should be at most @code{STARPU_MAXCPUS}.
  260. @end deftypefun
  261. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  262. This function returns the number of CUDA devices controlled by StarPU. The returned
  263. value should be at most @code{STARPU_MAXCUDADEVS}.
  264. @end deftypefun
  265. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  266. This function returns the number of OpenCL devices controlled by StarPU. The returned
  267. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  268. @end deftypefun
  269. @deftypefun int starpu_worker_get_id (void)
  270. This function returns the identifier of the current worker, i.e the one associated to the calling
  271. thread. The returned value is either -1 if the current context is not a StarPU
  272. worker (i.e. when called from the application outside a task or a callback), or
  273. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  274. @end deftypefun
  275. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  276. This function gets the list of identifiers of workers with the given
  277. type. It fills the workerids array with the identifiers of the workers that have the type
  278. indicated in the first argument. The maxsize argument indicates the size of the
  279. workids array. The returned value gives the number of identifiers that were put
  280. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  281. workers with the appropriate type: in that case, the array is filled with the
  282. maxsize first elements. To avoid such overflows, the value of maxsize can be
  283. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  284. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  285. @end deftypefun
  286. @deftypefun int starpu_worker_get_by_type ({enum starpu_archtype} @var{type}, int @var{num})
  287. This returns the identifier of the @var{num}-th worker that has the specified type
  288. @var{type}. If there are no such worker, -1 is returned.
  289. @end deftypefun
  290. @deftypefun int starpu_worker_get_by_devid ({enum starpu_archtype} @var{type}, int @var{devid})
  291. This returns the identifier of the worker that has the specified type
  292. @var{type} and devid @var{devid} (which may not be the n-th, if some devices are
  293. skipped for instance). If there are no such worker, -1 is returned.
  294. @end deftypefun
  295. @deftypefun int starpu_worker_get_devid (int @var{id})
  296. This functions returns the device id of the given worker. The worker
  297. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  298. CUDA worker, this device identifier is the logical device identifier exposed by
  299. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  300. identifier of a CPU worker is the logical identifier of the core on which the
  301. worker was bound; this identifier is either provided by the OS or by the
  302. @code{hwloc} library in case it is available.
  303. @end deftypefun
  304. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  305. This function returns the type of processing unit associated to a
  306. worker. The worker identifier is a value returned by the
  307. @code{starpu_worker_get_id} function). The returned value
  308. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  309. core, @code{STARPU_CUDA_WORKER} for a CUDA device, and
  310. @code{STARPU_OPENCL_WORKER} for a OpenCL device. The value returned for an invalid
  311. identifier is unspecified.
  312. @end deftypefun
  313. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  314. This function allows to get the name of a given worker.
  315. StarPU associates a unique human readable string to each processing unit. This
  316. function copies at most the @var{maxlen} first bytes of the unique string
  317. associated to a worker identified by its identifier @var{id} into the
  318. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  319. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  320. function on an invalid identifier results in an unspecified behaviour.
  321. @end deftypefun
  322. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  323. This function returns the identifier of the memory node associated to the
  324. worker identified by @var{workerid}.
  325. @end deftypefun
  326. @deftp {Data Type} {enum starpu_node_kind}
  327. todo
  328. @table @asis
  329. @item @code{STARPU_UNUSED}
  330. @item @code{STARPU_CPU_RAM}
  331. @item @code{STARPU_CUDA_RAM}
  332. @item @code{STARPU_OPENCL_RAM}
  333. @end table
  334. @end deftp
  335. @deftypefun {enum starpu_node_kind} starpu_node_get_kind (unsigned @var{node})
  336. Returns the type of the given node as defined by @code{enum
  337. starpu_node_kind}. For example, when defining a new data interface,
  338. this function should be used in the allocation function to determine
  339. on which device the memory needs to be allocated.
  340. @end deftypefun
  341. @node Data Management
  342. @section Data Management
  343. @menu
  344. * Introduction to Data Management::
  345. * Basic Data Management API::
  346. * Access registered data from the application::
  347. @end menu
  348. This section describes the data management facilities provided by StarPU.
  349. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  350. design their own data interfaces if required.
  351. @node Introduction to Data Management
  352. @subsection Introduction
  353. Data management is done at a high-level in StarPU: rather than accessing a mere
  354. list of contiguous buffers, the tasks may manipulate data that are described by
  355. a high-level construct which we call data interface.
  356. An example of data interface is the "vector" interface which describes a
  357. contiguous data array on a spefic memory node. This interface is a simple
  358. structure containing the number of elements in the array, the size of the
  359. elements, and the address of the array in the appropriate address space (this
  360. address may be invalid if there is no valid copy of the array in the memory
  361. node). More informations on the data interfaces provided by StarPU are
  362. given in @ref{Data Interfaces}.
  363. When a piece of data managed by StarPU is used by a task, the task
  364. implementation is given a pointer to an interface describing a valid copy of
  365. the data that is accessible from the current processing unit.
  366. Every worker is associated to a memory node which is a logical abstraction of
  367. the address space from which the processing unit gets its data. For instance,
  368. the memory node associated to the different CPU workers represents main memory
  369. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  370. Every memory node is identified by a logical index which is accessible from the
  371. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  372. to StarPU, the specified memory node indicates where the piece of data
  373. initially resides (we also call this memory node the home node of a piece of
  374. data).
  375. @node Basic Data Management API
  376. @subsection Basic Data Management API
  377. @deftp {Data Type} {enum starpu_access_mode}
  378. This datatype describes a data access mode. The different available modes are:
  379. @table @asis
  380. @item @code{STARPU_R}: read-only mode.
  381. @item @code{STARPU_W}: write-only mode.
  382. @item @code{STARPU_RW}: read-write mode.
  383. This is equivalent to @code{STARPU_R|STARPU_W}.
  384. @item @code{STARPU_SCRATCH}: scratch memory.
  385. A temporary buffer is allocated for the task, but StarPU does not
  386. enforce data consistency---i.e. each device has its own buffer,
  387. independently from each other (even for CPUs), and no data transfer is
  388. ever performed. This is useful for temporary variables to avoid
  389. allocating/freeing buffers inside each task.
  390. Currently, no behavior is defined concerning the relation with the
  391. @code{STARPU_R} and @code{STARPU_W} modes and the value provided at
  392. registration---i.e., the value of the scratch buffer is undefined at
  393. entry of the codelet function. It is being considered for future
  394. extensions at least to define the initial value. For now, data to be
  395. used in @code{SCRATCH} mode should be registered with node @code{-1} and
  396. a @code{NULL} pointer, since the value of the provided buffer is simply
  397. ignored for now.
  398. @item @code{STARPU_REDUX}: reduction mode. TODO!
  399. @end table
  400. @end deftp
  401. @deftp {Data Type} {starpu_data_handle_t}
  402. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  403. data. Once a piece of data has been registered to StarPU, it is associated to a
  404. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  405. over the entire machine, so that we can maintain data consistency and locate
  406. data replicates for instance.
  407. @end deftp
  408. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, unsigned @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  409. Register a piece of data into the handle located at the @var{handleptr}
  410. address. The @var{data_interface} buffer contains the initial description of the
  411. data in the home node. The @var{ops} argument is a pointer to a structure
  412. describing the different methods used to manipulate this type of interface. See
  413. @ref{struct starpu_data_interface_ops} for more details on this structure.
  414. If @code{home_node} is -1, StarPU will automatically
  415. allocate the memory when it is used for the
  416. first time in write-only mode. Once such data handle has been automatically
  417. allocated, it is possible to access it using any access mode.
  418. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  419. matrix) which can be registered by the means of helper functions (e.g.
  420. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  421. @end deftypefun
  422. @deftypefun void starpu_data_register_same ({starpu_data_handle_t *}@var{handledst}, starpu_data_handle_t @var{handlesrc})
  423. Register a new piece of data into the handle @var{handledst} with the
  424. same interface as the handle @var{handlesrc}.
  425. @end deftypefun
  426. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  427. This function unregisters a data handle from StarPU. If the data was
  428. automatically allocated by StarPU because the home node was -1, all
  429. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  430. is put back into the home node in the buffer that was initially registered.
  431. Using a data handle that has been unregistered from StarPU results in an
  432. undefined behaviour.
  433. @end deftypefun
  434. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  435. This is the same as starpu_data_unregister, except that StarPU does not put back
  436. a valid copy into the home node, in the buffer that was initially registered.
  437. @end deftypefun
  438. @deftypefun void starpu_data_unregister_submit (starpu_data_handle_t @var{handle})
  439. Destroy the data handle once it is not needed anymore by any submitted
  440. task. No coherency is assumed.
  441. @end deftypefun
  442. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  443. Destroy all replicates of the data handle immediately. After data invalidation,
  444. the first access to the handle must be performed in write-only mode.
  445. Accessing an invalidated data in read-mode results in undefined
  446. behaviour.
  447. @end deftypefun
  448. @deftypefun void starpu_data_invalidate_submit (starpu_data_handle_t @var{handle})
  449. Submits invalidation of the data handle after completion of previously submitted tasks.
  450. @end deftypefun
  451. @c TODO create a specific sections about user interaction with the DSM ?
  452. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  453. This function sets the write-through mask of a given data, i.e. a bitmask of
  454. nodes where the data should be always replicated after modification. It also
  455. prevents the data from being evicted from these nodes when memory gets scarse.
  456. @end deftypefun
  457. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  458. Issue a prefetch request for a given data to a given node, i.e.
  459. requests that the data be replicated to the given node, so that it is available
  460. there for tasks. If the @var{async} parameter is 0, the call will block until
  461. the transfer is achieved, else the call will return as soon as the request is
  462. scheduled (which may however have to wait for a task completion).
  463. @end deftypefun
  464. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  465. Return the handle corresponding to the data pointed to by the @var{ptr}
  466. host pointer.
  467. @end deftypefun
  468. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, unsigned @var{node})
  469. Explicitly ask StarPU to allocate room for a piece of data on the specified
  470. memory node.
  471. @end deftypefun
  472. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  473. Query the status of the handle on the specified memory node.
  474. @end deftypefun
  475. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  476. This function allows to specify that a piece of data can be discarded
  477. without impacting the application.
  478. @end deftypefun
  479. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  480. This sets the codelets to be used for the @var{handle} when it is accessed in
  481. REDUX mode. Per-worker buffers will be initialized with the @var{init_cl}
  482. codelet, and reduction between per-worker buffers will be done with the
  483. @var{redux_cl} codelet.
  484. @end deftypefun
  485. @node Access registered data from the application
  486. @subsection Access registered data from the application
  487. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode})
  488. The application must call this function prior to accessing registered data from
  489. main memory outside tasks. StarPU ensures that the application will get an
  490. up-to-date copy of the data in main memory located where the data was
  491. originally registered, and that all concurrent accesses (e.g. from tasks) will
  492. be consistent with the access mode specified in the @var{mode} argument.
  493. @code{starpu_data_release} must be called once the application does not need to
  494. access the piece of data anymore. Note that implicit data
  495. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  496. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  497. the data, unless they have been disabled explictly by calling
  498. @code{starpu_data_set_default_sequential_consistency_flag} or
  499. @code{starpu_data_set_sequential_consistency_flag}.
  500. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  501. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  502. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  503. @end deftypefun
  504. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  505. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  506. @code{starpu_data_acquire}. When the data specified in the first argument is
  507. available in the appropriate access mode, the callback function is executed.
  508. The application may access the requested data during the execution of this
  509. callback. The callback function must call @code{starpu_data_release} once the
  510. application does not need to access the piece of data anymore.
  511. Note that implicit data dependencies are also enforced by
  512. @code{starpu_data_acquire_cb} in case they are not disabled.
  513. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  514. be called from task callbacks. Upon successful completion, this function
  515. returns 0.
  516. @end deftypefun
  517. @deftypefun int starpu_data_acquire_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode})
  518. This is the same as @code{starpu_data_acquire}, except that the data will be
  519. available on the given memory node instead of main memory.
  520. @end deftypefun
  521. @deftypefun int starpu_data_acquire_on_node_cb (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  522. This is the same as @code{starpu_data_acquire_cb}, except that the data will be
  523. available on the given memory node instead of main memory.
  524. @end deftypefun
  525. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, code)
  526. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  527. except that the code to be executed in a callback is directly provided as a
  528. macro parameter, and the data handle is automatically released after it. This
  529. permits to easily execute code which depends on the value of some registered
  530. data. This is non-blocking too and may be called from task callbacks.
  531. @end defmac
  532. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  533. This function releases the piece of data acquired by the application either by
  534. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  535. @end deftypefun
  536. @deftypefun void starpu_data_release_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node})
  537. This is the same as @code{starpu_data_release}, except that the data will be
  538. available on the given memory node instead of main memory.
  539. @end deftypefun
  540. @node Data Interfaces
  541. @section Data Interfaces
  542. @menu
  543. * Registering Data::
  544. * Accessing Data Interfaces::
  545. * Defining Interface::
  546. @end menu
  547. @node Registering Data
  548. @subsection Registering Data
  549. There are several ways to register a memory region so that it can be managed by
  550. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  551. matrices as well as BCSR and CSR sparse matrices.
  552. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  553. Register a void interface. There is no data really associated to that
  554. interface, but it may be used as a synchronization mechanism. It also
  555. permits to express an abstract piece of data that is managed by the
  556. application internally: this makes it possible to forbid the
  557. concurrent execution of different tasks accessing the same "void" data
  558. in read-write concurrently.
  559. @end deftypefun
  560. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  561. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  562. typically a scalar, and initialize @var{handle} to represent this data
  563. item.
  564. @cartouche
  565. @smallexample
  566. float var;
  567. starpu_data_handle_t var_handle;
  568. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  569. @end smallexample
  570. @end cartouche
  571. @end deftypefun
  572. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  573. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  574. @var{ptr} and initialize @var{handle} to represent it.
  575. @cartouche
  576. @smallexample
  577. float vector[NX];
  578. starpu_data_handle_t vector_handle;
  579. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  580. sizeof(vector[0]));
  581. @end smallexample
  582. @end cartouche
  583. @end deftypefun
  584. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  585. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  586. pointed by @var{ptr} and initialize @var{handle} to represent it.
  587. @var{ld} specifies the number of elements between rows.
  588. a value greater than @var{nx} adds padding, which can be useful for
  589. alignment purposes.
  590. @cartouche
  591. @smallexample
  592. float *matrix;
  593. starpu_data_handle_t matrix_handle;
  594. matrix = (float*)malloc(width * height * sizeof(float));
  595. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  596. width, width, height, sizeof(float));
  597. @end smallexample
  598. @end cartouche
  599. @end deftypefun
  600. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  601. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  602. elements pointed by @var{ptr} and initialize @var{handle} to represent
  603. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  604. between rows and between z planes.
  605. @cartouche
  606. @smallexample
  607. float *block;
  608. starpu_data_handle_t block_handle;
  609. block = (float*)malloc(nx*ny*nz*sizeof(float));
  610. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  611. nx, nx*ny, nx, ny, nz, sizeof(float));
  612. @end smallexample
  613. @end cartouche
  614. @end deftypefun
  615. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, unsigned @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  616. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  617. Compressed Sparse Row Representation) sparse matrix interface.
  618. Register the sparse matrix made of @var{nnz} non-zero blocks of elements of size
  619. @var{elemsize} stored in @var{nzval} and initializes @var{handle} to represent
  620. it. Blocks have size @var{r} * @var{c}. @var{nrow} is the number of rows (in
  621. terms of blocks), @code{colind[i]} is the block-column index for block @code{i}
  622. in @code{nzval}, @code{rowptr[i]} is the block-index (in nzval) of the first block of row @code{i}.
  623. @var{firstentry} is the index of the first entry of the given arrays (usually 0
  624. or 1).
  625. @end deftypefun
  626. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, unsigned @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  627. This variant of @code{starpu_data_register} uses the CSR (Compressed
  628. Sparse Row Representation) sparse matrix interface.
  629. TODO
  630. @end deftypefun
  631. @deftypefun void starpu_coo_data_register (starpu_data_handle_t *@var{handleptr}, unsigned @var{home_node}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{n_values}, uint32_t *@var{columns}, uint32_t *@var{rows}, uintptr_t @var{values}, size_t @var{elemsize});
  632. Register the @var{nx}x@var{ny} 2D matrix given in the COO format, using the
  633. @var{columns}, @var{rows}, @var{values} arrays, which must have @var{n_values}
  634. elements of size @var{elemsize}. Initialize @var{handleptr}.
  635. @end deftypefun
  636. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  637. Return the interface associated with @var{handle} on @var{memory_node}.
  638. @end deftypefun
  639. @node Accessing Data Interfaces
  640. @subsection Accessing Data Interfaces
  641. Each data interface is provided with a set of field access functions.
  642. The ones using a @code{void *} parameter aimed to be used in codelet
  643. implementations (see for example the code in @ref{Vector Scaling Using StarPU's API}).
  644. @deftp {Data Type} {enum starpu_data_interface_id}
  645. The different values are:
  646. @table @asis
  647. @item @code{STARPU_MATRIX_INTERFACE_ID}
  648. @item @code{STARPU_BLOCK_INTERFACE_ID}
  649. @item @code{STARPU_VECTOR_INTERFACE_ID}
  650. @item @code{STARPU_CSR_INTERFACE_ID}
  651. @item @code{STARPU_BCSR_INTERFACE_ID}
  652. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  653. @item @code{STARPU_VOID_INTERFACE_ID}
  654. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  655. @item @code{STARPU_COO_INTERCACE_ID}
  656. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  657. @end table
  658. @end deftp
  659. @menu
  660. * Accessing Handle::
  661. * Accessing Variable Data Interfaces::
  662. * Accessing Vector Data Interfaces::
  663. * Accessing Matrix Data Interfaces::
  664. * Accessing Block Data Interfaces::
  665. * Accessing BCSR Data Interfaces::
  666. * Accessing CSR Data Interfaces::
  667. * Accessing COO Data Interfaces::
  668. @end menu
  669. @node Accessing Handle
  670. @subsubsection Handle
  671. @deftypefun {void *} starpu_handle_to_pointer (starpu_data_handle_t @var{handle}, unsigned @var{node})
  672. Return the pointer associated with @var{handle} on node @var{node} or
  673. @code{NULL} if @var{handle}'s interface does not support this
  674. operation or data for this handle is not allocated on that node.
  675. @end deftypefun
  676. @deftypefun {void *} starpu_handle_get_local_ptr (starpu_data_handle_t @var{handle})
  677. Return the local pointer associated with @var{handle} or @code{NULL}
  678. if @var{handle}'s interface does not have data allocated locally
  679. @end deftypefun
  680. @deftypefun {enum starpu_data_interface_id} starpu_handle_get_interface_id (starpu_data_handle_t @var{handle})
  681. Return the unique identifier of the interface associated with the given @var{handle}.
  682. @end deftypefun
  683. @deftypefun size_t starpu_handle_get_size (starpu_data_handle_t @var{handle})
  684. Return the size of the data associated with @var{handle}
  685. @end deftypefun
  686. @deftypefun int starpu_handle_pack_data (starpu_data_handle_t @var{handle}, {void **}@var{ptr}, {ssize_t *}@var{count})
  687. Execute the packing operation of the interface of the data registered
  688. at @var{handle} (@pxref{struct starpu_data_interface_ops}). This
  689. packing operation must allocate a buffer large enough at @var{ptr} and
  690. copy into the newly allocated buffer the data associated to
  691. @var{handle}. @var{count} will be set to the size of the allocated
  692. buffer.
  693. If @var{ptr} is @code{NULL}, the function should not copy the data in the
  694. buffer but just set @var{count} to the size of the buffer which
  695. would have been allocated. The special value @code{-1} indicates the
  696. size is yet unknown.
  697. @end deftypefun
  698. @deftypefun int starpu_handle_unpack_data (starpu_data_handle_t @var{handle}, {void *}@var{ptr}, size_t @var{count})
  699. Unpack in @var{handle} the data located at @var{ptr} of size
  700. @var{count} as described by the interface of the data. The interface
  701. registered at @var{handle} must define a unpacking operation
  702. (@pxref{struct starpu_data_interface_ops}). The memory at the address @code{ptr}
  703. is freed after calling the data unpacking operation.
  704. @end deftypefun
  705. @node Accessing Variable Data Interfaces
  706. @subsubsection Variable Data Interfaces
  707. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  708. Return the size of the variable designated by @var{handle}.
  709. @end deftypefun
  710. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  711. Return a pointer to the variable designated by @var{handle}.
  712. @end deftypefun
  713. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  714. Return a pointer to the variable designated by @var{interface}.
  715. @end defmac
  716. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  717. Return the size of the variable designated by @var{interface}.
  718. @end defmac
  719. @defmac STARPU_VARIABLE_GET_DEV_HANDLE ({void *}@var{interface})
  720. Return a device handle for the variable designated by @var{interface}, to be
  721. used on OpenCL. The offset documented below has to be used in addition to this.
  722. @end defmac
  723. @defmac STARPU_VARIABLE_GET_OFFSET ({void *}@var{interface})
  724. Return the offset in the variable designated by @var{interface}, to be used
  725. with the device handle.
  726. @end defmac
  727. @node Accessing Vector Data Interfaces
  728. @subsubsection Vector Data Interfaces
  729. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  730. Return the number of elements registered into the array designated by @var{handle}.
  731. @end deftypefun
  732. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  733. Return the size of each element of the array designated by @var{handle}.
  734. @end deftypefun
  735. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  736. Return the local pointer associated with @var{handle}.
  737. @end deftypefun
  738. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  739. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  740. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  741. @end defmac
  742. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  743. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  744. documented below has to be used in addition to this.
  745. @end defmac
  746. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  747. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  748. @end defmac
  749. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  750. Return the number of elements registered into the array designated by @var{interface}.
  751. @end defmac
  752. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  753. Return the size of each element of the array designated by @var{interface}.
  754. @end defmac
  755. @node Accessing Matrix Data Interfaces
  756. @subsubsection Matrix Data Interfaces
  757. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  758. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  759. @end deftypefun
  760. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  761. Return the number of elements on the y-axis of the matrix designated by
  762. @var{handle}.
  763. @end deftypefun
  764. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  765. Return the number of elements between each row of the matrix designated by
  766. @var{handle}. Maybe be equal to nx when there is no padding.
  767. @end deftypefun
  768. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  769. Return the local pointer associated with @var{handle}.
  770. @end deftypefun
  771. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  772. Return the size of the elements registered into the matrix designated by
  773. @var{handle}.
  774. @end deftypefun
  775. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  776. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  777. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  778. used instead.
  779. @end defmac
  780. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  781. Return a device handle for the matrix designated by @var{interface}, to be used
  782. on OpenCL. The offset documented below has to be used in addition to this.
  783. @end defmac
  784. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  785. Return the offset in the matrix designated by @var{interface}, to be used with
  786. the device handle.
  787. @end defmac
  788. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  789. Return the number of elements on the x-axis of the matrix designated by
  790. @var{interface}.
  791. @end defmac
  792. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  793. Return the number of elements on the y-axis of the matrix designated by
  794. @var{interface}.
  795. @end defmac
  796. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  797. Return the number of elements between each row of the matrix designated by
  798. @var{interface}. May be equal to nx when there is no padding.
  799. @end defmac
  800. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  801. Return the size of the elements registered into the matrix designated by
  802. @var{interface}.
  803. @end defmac
  804. @node Accessing Block Data Interfaces
  805. @subsubsection Block Data Interfaces
  806. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  807. Return the number of elements on the x-axis of the block designated by @var{handle}.
  808. @end deftypefun
  809. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  810. Return the number of elements on the y-axis of the block designated by @var{handle}.
  811. @end deftypefun
  812. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  813. Return the number of elements on the z-axis of the block designated by @var{handle}.
  814. @end deftypefun
  815. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  816. Return the number of elements between each row of the block designated by
  817. @var{handle}, in the format of the current memory node.
  818. @end deftypefun
  819. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  820. Return the number of elements between each z plane of the block designated by
  821. @var{handle}, in the format of the current memory node.
  822. @end deftypefun
  823. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  824. Return the local pointer associated with @var{handle}.
  825. @end deftypefun
  826. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  827. Return the size of the elements of the block designated by @var{handle}.
  828. @end deftypefun
  829. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  830. Return a pointer to the block designated by @var{interface}.
  831. @end defmac
  832. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  833. Return a device handle for the block designated by @var{interface}, to be used
  834. on OpenCL. The offset document below has to be used in addition to this.
  835. @end defmac
  836. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  837. Return the offset in the block designated by @var{interface}, to be used with
  838. the device handle.
  839. @end defmac
  840. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  841. Return the number of elements on the x-axis of the block designated by @var{handle}.
  842. @end defmac
  843. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  844. Return the number of elements on the y-axis of the block designated by @var{handle}.
  845. @end defmac
  846. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  847. Return the number of elements on the z-axis of the block designated by @var{handle}.
  848. @end defmac
  849. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  850. Return the number of elements between each row of the block designated by
  851. @var{interface}. May be equal to nx when there is no padding.
  852. @end defmac
  853. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  854. Return the number of elements between each z plane of the block designated by
  855. @var{interface}. May be equal to nx*ny when there is no padding.
  856. @end defmac
  857. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  858. Return the size of the elements of the matrix designated by @var{interface}.
  859. @end defmac
  860. @node Accessing BCSR Data Interfaces
  861. @subsubsection BCSR Data Interfaces
  862. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  863. Return the number of non-zero elements in the matrix designated by @var{handle}.
  864. @end deftypefun
  865. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  866. Return the number of rows (in terms of blocks of size r*c) in the matrix
  867. designated by @var{handle}.
  868. @end deftypefun
  869. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  870. Return the index at which all arrays (the column indexes, the row pointers...)
  871. of the matrix desginated by @var{handle} start.
  872. @end deftypefun
  873. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  874. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  875. @end deftypefun
  876. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  877. Return a pointer to the column index, which holds the positions of the non-zero
  878. entries in the matrix designated by @var{handle}.
  879. @end deftypefun
  880. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  881. Return the row pointer array of the matrix designated by @var{handle}.
  882. @end deftypefun
  883. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  884. Return the number of rows in a block.
  885. @end deftypefun
  886. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  887. Return the numberof columns in a block.
  888. @end deftypefun
  889. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  890. Return the size of the elements in the matrix designated by @var{handle}.
  891. @end deftypefun
  892. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  893. Return the number of non-zero values in the matrix designated by @var{interface}.
  894. @end defmac
  895. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  896. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  897. @end defmac
  898. @defmac STARPU_BCSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  899. Return a device handle for the array of non-zero values in the matrix designated
  900. by @var{interface}. The offset documented below has to be used in addition to
  901. this.
  902. @end defmac
  903. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  904. Return a pointer to the column index of the matrix designated by @var{interface}.
  905. @end defmac
  906. @defmac STARPU_BCSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  907. Return a device handle for the column index of the matrix designated by
  908. @var{interface}. The offset documented below has to be used in addition to
  909. this.
  910. @end defmac
  911. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  912. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  913. @end defmac
  914. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  915. Return a device handle for the row pointer array of the matrix designated by
  916. @var{interface}. The offset documented below has to be used in addition to
  917. this.
  918. @end defmac
  919. @defmac STARPU_BCSR_GET_OFFSET ({void *}@var{interface})
  920. Return the offset in the arrays (coling, rowptr, nzval) of the matrix
  921. designated by @var{interface}, to be used with the device handles.
  922. @end defmac
  923. @node Accessing CSR Data Interfaces
  924. @subsubsection CSR Data Interfaces
  925. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  926. Return the number of non-zero values in the matrix designated by @var{handle}.
  927. @end deftypefun
  928. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  929. Return the size of the row pointer array of the matrix designated by @var{handle}.
  930. @end deftypefun
  931. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  932. Return the index at which all arrays (the column indexes, the row pointers...)
  933. of the matrix designated by @var{handle} start.
  934. @end deftypefun
  935. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  936. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  937. @end deftypefun
  938. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  939. Return a local pointer to the column index of the matrix designated by @var{handle}.
  940. @end deftypefun
  941. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  942. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  943. @end deftypefun
  944. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  945. Return the size of the elements registered into the matrix designated by @var{handle}.
  946. @end deftypefun
  947. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  948. Return the number of non-zero values in the matrix designated by @var{interface}.
  949. @end defmac
  950. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  951. Return the size of the row pointer array of the matrix designated by @var{interface}.
  952. @end defmac
  953. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  954. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  955. @end defmac
  956. @defmac STARPU_CSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  957. Return a device handle for the array of non-zero values in the matrix designated
  958. by @var{interface}. The offset documented below has to be used in addition to
  959. this.
  960. @end defmac
  961. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  962. Return a pointer to the column index of the matrix designated by @var{interface}.
  963. @end defmac
  964. @defmac STARPU_CSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  965. Return a device handle for the column index of the matrix designated by
  966. @var{interface}. The offset documented below has to be used in addition to
  967. this.
  968. @end defmac
  969. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  970. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  971. @end defmac
  972. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  973. Return a device handle for the row pointer array of the matrix designated by
  974. @var{interface}. The offset documented below has to be used in addition to
  975. this.
  976. @end defmac
  977. @defmac STARPU_CSR_GET_OFFSET ({void *}@var{interface})
  978. Return the offset in the arrays (colind, rowptr, nzval) of the matrix
  979. designated by @var{interface}, to be used with the device handles.
  980. @end defmac
  981. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  982. Return the index at which all arrays (the column indexes, the row pointers...)
  983. of the @var{interface} start.
  984. @end defmac
  985. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  986. Return the size of the elements registered into the matrix designated by @var{interface}.
  987. @end defmac
  988. @node Accessing COO Data Interfaces
  989. @subsubsection COO Data Interfaces
  990. @defmac STARPU_COO_GET_COLUMNS ({void *}@var{interface})
  991. Return a pointer to the column array of the matrix designated by
  992. @var{interface}.
  993. @end defmac
  994. @defmac STARPU_COO_GET_COLUMNS_DEV_HANDLE ({void *}@var{interface})
  995. Return a device handle for the column array of the matrix designated by
  996. @var{interface}, to be used on OpenCL. The offset documented below has to be
  997. used in addition to this.
  998. @end defmac
  999. @defmac STARPU_COO_GET_ROWS (interface)
  1000. Return a pointer to the rows array of the matrix designated by @var{interface}.
  1001. @end defmac
  1002. @defmac STARPU_COO_GET_ROWS_DEV_HANDLE ({void *}@var{interface})
  1003. Return a device handle for the row array of the matrix designated by
  1004. @var{interface}, to be used on OpenCL. The offset documented below has to be
  1005. used in addition to this.
  1006. @end defmac
  1007. @defmac STARPU_COO_GET_VALUES (interface)
  1008. Return a pointer to the values array of the matrix designated by
  1009. @var{interface}.
  1010. @end defmac
  1011. @defmac STARPU_COO_GET_VALUES_DEV_HANDLE ({void *}@var{interface})
  1012. Return a device handle for the value array of the matrix designated by
  1013. @var{interface}, to be used on OpenCL. The offset documented below has to be
  1014. used in addition to this.
  1015. @end defmac
  1016. @defmac STARPU_COO_GET_OFFSET ({void *}@var{itnerface})
  1017. Return the offset in the arrays of the COO matrix designated by @var{interface}.
  1018. @end defmac
  1019. @defmac STARPU_COO_GET_NX (interface)
  1020. Return the number of elements on the x-axis of the matrix designated by
  1021. @var{interface}.
  1022. @end defmac
  1023. @defmac STARPU_COO_GET_NY (interface)
  1024. Return the number of elements on the y-axis of the matrix designated by
  1025. @var{interface}.
  1026. @end defmac
  1027. @defmac STARPU_COO_GET_NVALUES (interface)
  1028. Return the number of values registered in the matrix designated by
  1029. @var{interface}.
  1030. @end defmac
  1031. @defmac STARPU_COO_GET_ELEMSIZE (interface)
  1032. Return the size of the elements registered into the matrix designated by
  1033. @var{interface}.
  1034. @end defmac
  1035. @node Defining Interface
  1036. @subsection Defining Interface
  1037. Applications can provide their own interface. An example is provided in
  1038. @code{examples/interface}. A few helpers are provided.
  1039. @deftypefun uintptr_t starpu_malloc_on_node (unsigned @var{dst_node}, size_t @var{size})
  1040. Allocate @var{size} bytes on node @var{dst_node}. This returns 0 if allocation
  1041. failed, the allocation method should then return -ENOMEM as allocated size.
  1042. @end deftypefun
  1043. @deftypefun void starpu_free_on_node (unsigned @var{dst_node}, uintptr_t @var{addr}, size_t @var{size})
  1044. Free @var{addr} of @var{size} bytes on node @var{dst_node}.
  1045. @end deftypefun
  1046. @node Data Partition
  1047. @section Data Partition
  1048. @menu
  1049. * Basic API::
  1050. * Predefined filter functions::
  1051. @end menu
  1052. @node Basic API
  1053. @subsection Basic API
  1054. @deftp {Data Type} {struct starpu_data_filter}
  1055. The filter structure describes a data partitioning operation, to be given to the
  1056. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  1057. for an example. The different fields are:
  1058. @table @asis
  1059. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  1060. This function fills the @code{child_interface} structure with interface
  1061. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  1062. @item @code{unsigned nchildren}
  1063. This is the number of parts to partition the data into.
  1064. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  1065. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  1066. children depends on the actual data (e.g. the number of blocks in a sparse
  1067. matrix).
  1068. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  1069. In case the resulting children use a different data interface, this function
  1070. returns which interface is used by child number @code{id}.
  1071. @item @code{unsigned filter_arg}
  1072. Allow to define an additional parameter for the filter function.
  1073. @item @code{void *filter_arg_ptr}
  1074. Allow to define an additional pointer parameter for the filter
  1075. function, such as the sizes of the different parts.
  1076. @end table
  1077. @end deftp
  1078. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  1079. @anchor{starpu_data_partition}
  1080. This requests partitioning one StarPU data @var{initial_handle} into several
  1081. subdata according to the filter @var{f}, as shown in the following example:
  1082. @cartouche
  1083. @smallexample
  1084. struct starpu_data_filter f = @{
  1085. .filter_func = starpu_matrix_filter_block,
  1086. .nchildren = nslicesx,
  1087. .get_nchildren = NULL,
  1088. .get_child_ops = NULL
  1089. @};
  1090. starpu_data_partition(A_handle, &f);
  1091. @end smallexample
  1092. @end cartouche
  1093. @end deftypefun
  1094. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, unsigned @var{gathering_node})
  1095. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  1096. collected back into one big piece in the @var{gathering_node} (usually 0). Tasks
  1097. working on the partitioned data must be already finished when calling @code{starpu_data_unpartition}.
  1098. @cartouche
  1099. @smallexample
  1100. starpu_data_unpartition(A_handle, 0);
  1101. @end smallexample
  1102. @end cartouche
  1103. @end deftypefun
  1104. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  1105. This function returns the number of children.
  1106. @end deftypefun
  1107. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  1108. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  1109. @end deftypefun
  1110. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  1111. After partitioning a StarPU data by applying a filter,
  1112. @code{starpu_data_get_sub_data} can be used to get handles for each of
  1113. the data portions. @var{root_data} is the parent data that was
  1114. partitioned. @var{depth} is the number of filters to traverse (in
  1115. case several filters have been applied, to e.g. partition in row
  1116. blocks, and then in column blocks), and the subsequent
  1117. parameters are the indexes. The function returns a handle to the
  1118. subdata.
  1119. @cartouche
  1120. @smallexample
  1121. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  1122. @end smallexample
  1123. @end cartouche
  1124. @end deftypefun
  1125. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  1126. This function is similar to @code{starpu_data_get_sub_data} but uses a
  1127. va_list for the parameter list.
  1128. @end deftypefun
  1129. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  1130. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1131. recursively. @var{nfilters} pointers to variables of the type
  1132. starpu_data_filter should be given.
  1133. @end deftypefun
  1134. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  1135. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1136. recursively. It uses a va_list of pointers to variables of the typer
  1137. starpu_data_filter.
  1138. @end deftypefun
  1139. @node Predefined filter functions
  1140. @subsection Predefined filter functions
  1141. @menu
  1142. * Partitioning Vector Data::
  1143. * Partitioning Matrix Data::
  1144. * Partitioning 3D Matrix Data::
  1145. * Partitioning BCSR Data::
  1146. @end menu
  1147. This section gives a partial list of the predefined partitioning functions.
  1148. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  1149. list can be found in @code{starpu_data_filters.h} .
  1150. @node Partitioning Vector Data
  1151. @subsubsection Partitioning Vector Data
  1152. @deftypefun void starpu_vector_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1153. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1154. vector represented by @var{father_interface} once partitioned in
  1155. @var{nparts} chunks of equal size.
  1156. @end deftypefun
  1157. @deftypefun void starpu_vector_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1158. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1159. vector represented by @var{father_interface} once partitioned in
  1160. @var{nparts} chunks of equal size with a shadow border @code{filter_arg_ptr}, thus getting a vector of size (n-2*shadow)/nparts+2*shadow
  1161. The @code{filter_arg_ptr} field must be the shadow size casted into @code{void*}.
  1162. IMPORTANT: This can only be used for read-only access, as no coherency is
  1163. enforced for the shadowed parts.
  1164. A usage example is available in examples/filters/shadow.c
  1165. @end deftypefun
  1166. @deftypefun void starpu_vector_filter_list (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1167. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1168. vector represented by @var{father_interface} once partitioned into
  1169. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  1170. @code{*@var{f}}.
  1171. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  1172. @code{uint32_t} elements, each of which specifies the number of elements
  1173. in each chunk of the partition.
  1174. @end deftypefun
  1175. @deftypefun void starpu_vector_filter_divide_in_2 (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1176. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1177. vector represented by @var{father_interface} once partitioned in two
  1178. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  1179. @code{0} or @code{1}.
  1180. @end deftypefun
  1181. @node Partitioning Matrix Data
  1182. @subsubsection Partitioning Matrix Data
  1183. @deftypefun void starpu_matrix_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1184. This partitions a dense Matrix along the x dimension, thus getting (x/nparts,y)
  1185. matrices. If nparts does not divide x, the last submatrix contains the
  1186. remainder.
  1187. @end deftypefun
  1188. @deftypefun void starpu_matrix_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1189. This partitions a dense Matrix along the x dimension, with a shadow border
  1190. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y)
  1191. matrices. If nparts does not divide x-2*shadow, the last submatrix contains the
  1192. remainder.
  1193. IMPORTANT: This can only be used for read-only access, as no coherency is
  1194. enforced for the shadowed parts.
  1195. A usage example is available in examples/filters/shadow2d.c
  1196. @end deftypefun
  1197. @deftypefun void starpu_matrix_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1198. This partitions a dense Matrix along the y dimension, thus getting (x,y/nparts)
  1199. matrices. If nparts does not divide y, the last submatrix contains the
  1200. remainder.
  1201. @end deftypefun
  1202. @deftypefun void starpu_matrix_filter_vertical_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1203. This partitions a dense Matrix along the y dimension, with a shadow border
  1204. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow)
  1205. matrices. If nparts does not divide y-2*shadow, the last submatrix contains the
  1206. remainder.
  1207. IMPORTANT: This can only be used for read-only access, as no coherency is
  1208. enforced for the shadowed parts.
  1209. A usage example is available in examples/filters/shadow2d.c
  1210. @end deftypefun
  1211. @node Partitioning 3D Matrix Data
  1212. @subsubsection Partitioning 3D Matrix Data
  1213. A usage example is available in examples/filters/shadow3d.c
  1214. @deftypefun void starpu_block_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1215. This partitions a 3D matrix along the X dimension, thus getting (x/nparts,y,z)
  1216. 3D matrices. If nparts does not divide x, the last submatrix contains the
  1217. remainder.
  1218. @end deftypefun
  1219. @deftypefun void starpu_block_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1220. This partitions a 3D matrix along the X dimension, with a shadow border
  1221. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y,z) 3D
  1222. matrices. If nparts does not divide x, the last submatrix contains the
  1223. remainder.
  1224. IMPORTANT: This can only be used for read-only access, as no coherency is
  1225. enforced for the shadowed parts.
  1226. @end deftypefun
  1227. @deftypefun void starpu_block_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1228. This partitions a 3D matrix along the Y dimension, thus getting (x,y/nparts,z)
  1229. 3D matrices. If nparts does not divide y, the last submatrix contains the
  1230. remainder.
  1231. @end deftypefun
  1232. @deftypefun void starpu_block_filter_vertical_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1233. This partitions a 3D matrix along the Y dimension, with a shadow border
  1234. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow,z) 3D
  1235. matrices. If nparts does not divide y, the last submatrix contains the
  1236. remainder.
  1237. IMPORTANT: This can only be used for read-only access, as no coherency is
  1238. enforced for the shadowed parts.
  1239. @end deftypefun
  1240. @deftypefun void starpu_block_filter_depth_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1241. This partitions a 3D matrix along the Z dimension, thus getting (x,y,z/nparts)
  1242. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1243. remainder.
  1244. @end deftypefun
  1245. @deftypefun void starpu_block_filter_depth_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1246. This partitions a 3D matrix along the Z dimension, with a shadow border
  1247. @code{filter_arg_ptr}, thus getting (x,y,(z-2*shadow)/nparts+2*shadow)
  1248. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1249. remainder.
  1250. IMPORTANT: This can only be used for read-only access, as no coherency is
  1251. enforced for the shadowed parts.
  1252. @end deftypefun
  1253. @node Partitioning BCSR Data
  1254. @subsubsection Partitioning BCSR Data
  1255. @deftypefun void starpu_bcsr_filter_canonical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1256. This partitions a block-sparse matrix into dense matrices.
  1257. @end deftypefun
  1258. @deftypefun void starpu_csr_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1259. This partitions a block-sparse matrix into vertical block-sparse matrices.
  1260. @end deftypefun
  1261. @node Codelets and Tasks
  1262. @section Codelets and Tasks
  1263. This section describes the interface to manipulate codelets and tasks.
  1264. @deftp {Data Type} {enum starpu_codelet_type}
  1265. Describes the type of parallel task. The different values are:
  1266. @table @asis
  1267. @item @code{STARPU_SEQ} (default) for classical sequential tasks.
  1268. @item @code{STARPU_SPMD} for a parallel task whose threads are handled by
  1269. StarPU, the code has to use @code{starpu_combined_worker_get_size} and
  1270. @code{starpu_combined_worker_get_rank} to distribute the work
  1271. @item @code{STARPU_FORKJOIN} for a parallel task whose threads are started by
  1272. the codelet function, which has to use @code{starpu_combined_worker_get_size} to
  1273. determine how many threads should be started.
  1274. @end table
  1275. See @ref{Parallel Tasks} for details.
  1276. @end deftp
  1277. @defmac STARPU_CPU
  1278. This macro is used when setting the field @code{where} of a @code{struct
  1279. starpu_codelet} to specify the codelet may be executed on a CPU
  1280. processing unit.
  1281. @end defmac
  1282. @defmac STARPU_CUDA
  1283. This macro is used when setting the field @code{where} of a @code{struct
  1284. starpu_codelet} to specify the codelet may be executed on a CUDA
  1285. processing unit.
  1286. @end defmac
  1287. @defmac STARPU_OPENCL
  1288. This macro is used when setting the field @code{where} of a @code{struct
  1289. starpu_codelet} to specify the codelet may be executed on a OpenCL
  1290. processing unit.
  1291. @end defmac
  1292. @defmac STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
  1293. Setting the field @code{cpu_func} of a @code{struct starpu_codelet}
  1294. with this macro indicates the codelet will have several
  1295. implementations. The use of this macro is deprecated. One should
  1296. always only define the field @code{cpu_funcs}.
  1297. @end defmac
  1298. @defmac STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
  1299. Setting the field @code{cuda_func} of a @code{struct starpu_codelet}
  1300. with this macro indicates the codelet will have several
  1301. implementations. The use of this macro is deprecated. One should
  1302. always only define the field @code{cuda_funcs}.
  1303. @end defmac
  1304. @defmac STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
  1305. Setting the field @code{opencl_func} of a @code{struct starpu_codelet}
  1306. with this macro indicates the codelet will have several
  1307. implementations. The use of this macro is deprecated. One should
  1308. always only define the field @code{opencl_funcs}.
  1309. @end defmac
  1310. @deftp {Data Type} {struct starpu_codelet}
  1311. The codelet structure describes a kernel that is possibly implemented on various
  1312. targets. For compatibility, make sure to initialize the whole structure to zero,
  1313. either by using explicit memset, or by letting the compiler implicitly do it in
  1314. e.g. static storage case.
  1315. @table @asis
  1316. @item @code{uint32_t where} (optional)
  1317. Indicates which types of processing units are able to execute the
  1318. codelet. The different values
  1319. @code{STARPU_CPU}, @code{STARPU_CUDA},
  1320. @code{STARPU_OPENCL} can be combined to specify
  1321. on which types of processing units the codelet can be executed.
  1322. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  1323. implemented for both CPU cores and CUDA devices while @code{STARPU_OPENCL}
  1324. indicates that it is only available on OpenCL devices. If the field is
  1325. unset, its value will be automatically set based on the availability
  1326. of the @code{XXX_funcs} fields defined below.
  1327. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  1328. Defines a function which should return 1 if the worker designated by
  1329. @var{workerid} can execute the @var{nimpl}th implementation of the
  1330. given @var{task}, 0 otherwise.
  1331. @item @code{enum starpu_codelet_type type} (optional)
  1332. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  1333. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  1334. implementation is also available. See @ref{Parallel Tasks} for details.
  1335. @item @code{int max_parallelism} (optional)
  1336. If a parallel implementation is available, this denotes the maximum combined
  1337. worker size that StarPU will use to execute parallel tasks for this codelet.
  1338. @item @code{starpu_cpu_func_t cpu_func} (optional)
  1339. This field has been made deprecated. One should use instead the
  1340. @code{cpu_funcs} field.
  1341. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1342. Is an array of function pointers to the CPU implementations of the codelet.
  1343. It must be terminated by a NULL value.
  1344. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  1345. argument being the array of data managed by the data management library, and
  1346. the second argument is a pointer to the argument passed from the @code{cl_arg}
  1347. field of the @code{starpu_task} structure.
  1348. If the @code{where} field is set, then the @code{cpu_funcs} field is
  1349. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  1350. field, it must be non-null otherwise.
  1351. @item @code{starpu_cuda_func_t cuda_func} (optional)
  1352. This field has been made deprecated. One should use instead the
  1353. @code{cuda_funcs} field.
  1354. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1355. Is an array of function pointers to the CUDA implementations of the codelet.
  1356. It must be terminated by a NULL value.
  1357. @emph{The functions must be host-functions written in the CUDA runtime
  1358. API}. Their prototype must
  1359. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  1360. If the @code{where} field is set, then the @code{cuda_funcs}
  1361. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  1362. field, it must be non-null otherwise.
  1363. @item @code{starpu_opencl_func_t opencl_func} (optional)
  1364. This field has been made deprecated. One should use instead the
  1365. @code{opencl_funcs} field.
  1366. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1367. Is an array of function pointers to the OpenCL implementations of the codelet.
  1368. It must be terminated by a NULL value.
  1369. The functions prototype must be:
  1370. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  1371. If the @code{where} field is set, then the @code{opencl_funcs} field
  1372. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  1373. field, it must be non-null otherwise.
  1374. @item @code{unsigned nbuffers}
  1375. Specifies the number of arguments taken by the codelet. These arguments are
  1376. managed by the DSM and are accessed from the @code{void *buffers[]}
  1377. array. The constant argument passed with the @code{cl_arg} field of the
  1378. @code{starpu_task} structure is not counted in this number. This value should
  1379. not be above @code{STARPU_NMAXBUFS}.
  1380. @item @code{enum starpu_access_mode modes[STARPU_NMAXBUFS]}
  1381. Is an array of @code{enum starpu_access_mode}. It describes the
  1382. required access modes to the data neeeded by the codelet (e.g.
  1383. @code{STARPU_RW}). The number of entries in this array must be
  1384. specified in the @code{nbuffers} field (defined above), and should not
  1385. exceed @code{STARPU_NMAXBUFS}.
  1386. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1387. option when configuring StarPU.
  1388. @item @code{struct starpu_perfmodel *model} (optional)
  1389. This is a pointer to the task duration performance model associated to this
  1390. codelet. This optional field is ignored when set to @code{NULL} or
  1391. when its @code{symbol} field is not set.
  1392. @item @code{struct starpu_perfmodel *power_model} (optional)
  1393. This is a pointer to the task power consumption performance model associated
  1394. to this codelet. This optional field is ignored when set to
  1395. @code{NULL} or when its @code{symbol} field is not set.
  1396. In the case of parallel codelets, this has to account for all processing units
  1397. involved in the parallel execution.
  1398. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  1399. Statistics collected at runtime: this is filled by StarPU and should not be
  1400. accessed directly, but for example by calling the
  1401. @code{starpu_display_codelet_stats} function (See
  1402. @ref{starpu_display_codelet_stats} for details).
  1403. @item @code{const char *name} (optional)
  1404. Define the name of the codelet. This can be useful for debugging purposes.
  1405. @end table
  1406. @end deftp
  1407. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  1408. Initialize @var{cl} with default values. Codelets should preferably be
  1409. initialized statically as shown in @ref{Defining a Codelet}. However
  1410. such a initialisation is not always possible, e.g. when using C++.
  1411. @end deftypefun
  1412. @deftp {Data Type} {enum starpu_task_status}
  1413. State of a task, can be either of
  1414. @table @asis
  1415. @item @code{STARPU_TASK_INVALID} The task has just been initialized.
  1416. @item @code{STARPU_TASK_BLOCKED} The task has just been submitted, and its dependencies has not been checked yet.
  1417. @item @code{STARPU_TASK_READY} The task is ready for execution.
  1418. @item @code{STARPU_TASK_RUNNING} The task is running on some worker.
  1419. @item @code{STARPU_TASK_FINISHED} The task is finished executing.
  1420. @item @code{STARPU_TASK_BLOCKED_ON_TAG} The task is waiting for a tag.
  1421. @item @code{STARPU_TASK_BLOCKED_ON_TASK} The task is waiting for a task.
  1422. @item @code{STARPU_TASK_BLOCKED_ON_DATA} The task is waiting for some data.
  1423. @end table
  1424. @end deftp
  1425. @deftp {Data Type} {struct starpu_buffer_descr}
  1426. This type is used to describe a data handle along with an
  1427. access mode.
  1428. @table @asis
  1429. @item @code{starpu_data_handle_t handle} describes a data,
  1430. @item @code{enum starpu_access_mode mode} describes its access mode
  1431. @end table
  1432. @end deftp
  1433. @deftp {Data Type} {struct starpu_task}
  1434. The @code{starpu_task} structure describes a task that can be offloaded on the various
  1435. processing units managed by StarPU. It instantiates a codelet. It can either be
  1436. allocated dynamically with the @code{starpu_task_create} method, or declared
  1437. statically. In the latter case, the programmer has to zero the
  1438. @code{starpu_task} structure and to fill the different fields properly. The
  1439. indicated default values correspond to the configuration of a task allocated
  1440. with @code{starpu_task_create}.
  1441. @table @asis
  1442. @item @code{struct starpu_codelet *cl}
  1443. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1444. describes where the kernel should be executed, and supplies the appropriate
  1445. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1446. such empty tasks can be useful for synchronization purposes.
  1447. @item @code{struct starpu_buffer_descr buffers[STARPU_NMAXBUFS]}
  1448. This field has been made deprecated. One should use instead the
  1449. @code{handles} field to specify the handles to the data accessed by
  1450. the task. The access modes are now defined in the @code{mode} field of
  1451. the @code{struct starpu_codelet cl} field defined above.
  1452. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1453. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1454. to the different pieces of data accessed by the task. The number
  1455. of entries in this array must be specified in the @code{nbuffers} field of the
  1456. @code{struct starpu_codelet} structure, and should not exceed
  1457. @code{STARPU_NMAXBUFS}.
  1458. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1459. option when configuring StarPU.
  1460. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1461. The actual data pointers to the memory node where execution will happen, managed
  1462. by the DSM.
  1463. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1464. This pointer is passed to the codelet through the second argument
  1465. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1466. @item @code{size_t cl_arg_size} (optional)
  1467. For some specific drivers, the @code{cl_arg} pointer cannot not be directly
  1468. given to the driver function. A buffer of size @code{cl_arg_size}
  1469. needs to be allocated on the driver. This buffer is then filled with
  1470. the @code{cl_arg_size} bytes starting at address @code{cl_arg}. In
  1471. this case, the argument given to the codelet is therefore not the
  1472. @code{cl_arg} pointer, but the address of the buffer in local store
  1473. (LS) instead.
  1474. This field is ignored for CPU, CUDA and OpenCL codelets, where the
  1475. @code{cl_arg} pointer is given as such.
  1476. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1477. This is a function pointer of prototype @code{void (*f)(void *)} which
  1478. specifies a possible callback. If this pointer is non-null, the callback
  1479. function is executed @emph{on the host} after the execution of the task. Tasks
  1480. which depend on it might already be executing. The callback is passed the
  1481. value contained in the @code{callback_arg} field. No callback is executed if the
  1482. field is set to @code{NULL}.
  1483. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1484. This is the pointer passed to the callback function. This field is ignored if
  1485. the @code{callback_func} is set to @code{NULL}.
  1486. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1487. If set, this flag indicates that the task should be associated with the tag
  1488. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1489. with the task and to express task dependencies easily.
  1490. @item @code{starpu_tag_t tag_id}
  1491. This field contains the tag associated to the task if the @code{use_tag} field
  1492. was set, it is ignored otherwise.
  1493. @item @code{unsigned sequential_consistency}
  1494. If this flag is set (which is the default), sequential consistency is enforced
  1495. for the data parameters of this task for which sequential consistency is
  1496. enabled. Clearing this flag permits to disable sequential consistency for this
  1497. task, even if data have it enabled.
  1498. @item @code{unsigned synchronous}
  1499. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1500. returns only when the task has been executed (or if no worker is able to
  1501. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1502. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1503. This field indicates a level of priority for the task. This is an integer value
  1504. that must be set between the return values of the
  1505. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1506. and that of the @code{starpu_sched_get_max_priority} for the most important
  1507. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1508. are provided for convenience and respectively returns value of
  1509. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1510. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1511. order to allow static task initialization. Scheduling strategies that take
  1512. priorities into account can use this parameter to take better scheduling
  1513. decisions, but the scheduling policy may also ignore it.
  1514. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1515. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1516. task to the worker specified by the @code{workerid} field.
  1517. @item @code{unsigned workerid} (optional)
  1518. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1519. which is the identifier of the worker that should process this task (as
  1520. returned by @code{starpu_worker_get_id}). This field is ignored if
  1521. @code{execute_on_a_specific_worker} field is set to 0.
  1522. @item @code{starpu_task_bundle_t bundle} (optional)
  1523. The bundle that includes this task. If no bundle is used, this should be NULL.
  1524. @item @code{int detach} (optional) (default: @code{1})
  1525. If this flag is set, it is not possible to synchronize with the task
  1526. by the means of @code{starpu_task_wait} later on. Internal data structures
  1527. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1528. flag is not set.
  1529. @item @code{int destroy} (optional) (default: @code{0} for starpu_task_init, @code{1} for starpu_task_create)
  1530. If this flag is set, the task structure will automatically be freed, either
  1531. after the execution of the callback if the task is detached, or during
  1532. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1533. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1534. called explicitly. Setting this flag for a statically allocated task structure
  1535. will result in undefined behaviour. The flag is set to 1 when the task is
  1536. created by calling @code{starpu_task_create()}. Note that
  1537. @code{starpu_task_wait_for_all} will not free any task.
  1538. @item @code{int regenerate} (optional)
  1539. If this flag is set, the task will be re-submitted to StarPU once it has been
  1540. executed. This flag must not be set if the destroy flag is set too.
  1541. @item @code{enum starpu_task_status status} (optional)
  1542. Current state of the task.
  1543. @item @code{struct starpu_task_profiling_info *profiling_info} (optional)
  1544. Profiling information for the task.
  1545. @item @code{double predicted} (output field)
  1546. Predicted duration of the task. This field is only set if the scheduling
  1547. strategy used performance models.
  1548. @item @code{double predicted_transfer} (optional)
  1549. Predicted data transfer duration for the task in microseconds. This field is
  1550. only valid if the scheduling strategy uses performance models.
  1551. @item @code{struct starpu_task *prev}
  1552. A pointer to the previous task. This should only be used by StarPU.
  1553. @item @code{struct starpu_task *next}
  1554. A pointer to the next task. This should only be used by StarPU.
  1555. @item @code{unsigned int mf_skip}
  1556. This is only used for tasks that use multiformat handle. This should only be
  1557. used by StarPU.
  1558. @item @code{double flops}
  1559. This can be set to the number of floating points operations that the task
  1560. will have to achieve. This is useful for easily getting GFlops curves from
  1561. @code{starpu_perfmodel_plot}, and for the hypervisor load balancing.
  1562. @item @code{void *starpu_private}
  1563. This is private to StarPU, do not modify. If the task is allocated by hand
  1564. (without starpu_task_create), this field should be set to NULL.
  1565. @item @code{int magic}
  1566. This field is set when initializing a task. It prevents a task from being
  1567. submitted if it has not been properly initialized.
  1568. @end table
  1569. @end deftp
  1570. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1571. Initialize @var{task} with default values. This function is implicitly
  1572. called by @code{starpu_task_create}. By default, tasks initialized with
  1573. @code{starpu_task_init} must be deinitialized explicitly with
  1574. @code{starpu_task_clean}. Tasks can also be initialized statically,
  1575. using @code{STARPU_TASK_INITIALIZER} defined below.
  1576. @end deftypefun
  1577. @defmac STARPU_TASK_INITIALIZER
  1578. It is possible to initialize statically allocated tasks with this
  1579. value. This is equivalent to initializing a starpu_task structure with
  1580. the @code{starpu_task_init} function defined above.
  1581. @end defmac
  1582. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1583. Allocate a task structure and initialize it with default values. Tasks
  1584. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1585. task is terminated. This means that the task pointer can not be used any more
  1586. once the task is submitted, since it can be executed at any time (unless
  1587. dependencies make it wait) and thus freed at any time.
  1588. If the destroy flag is explicitly unset, the resources used
  1589. by the task have to be freed by calling
  1590. @code{starpu_task_destroy}.
  1591. @end deftypefun
  1592. @deftypefun void starpu_task_clean ({struct starpu_task} *@var{task})
  1593. Release all the structures automatically allocated to execute @var{task}, but
  1594. not the task structure itself and values set by the user remain unchanged.
  1595. It is thus useful for statically allocated tasks for instance.
  1596. It is also useful when the user wants to execute the same operation several
  1597. times with as least overhead as possible.
  1598. It is called automatically by @code{starpu_task_destroy}.
  1599. It has to be called only after explicitly waiting for the task or after
  1600. @code{starpu_shutdown} (waiting for the callback is not enough, since starpu
  1601. still manipulates the task after calling the callback).
  1602. @end deftypefun
  1603. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1604. Free the resource allocated during @code{starpu_task_create} and
  1605. associated with @var{task}. This function is already called automatically
  1606. after the execution of a task when the @code{destroy} flag of the
  1607. @code{starpu_task} structure is set, which is the default for tasks created by
  1608. @code{starpu_task_create}. Calling this function on a statically allocated task
  1609. results in an undefined behaviour.
  1610. @end deftypefun
  1611. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1612. This function blocks until @var{task} has been executed. It is not possible to
  1613. synchronize with a task more than once. It is not possible to wait for
  1614. synchronous or detached tasks.
  1615. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1616. indicates that the specified task was either synchronous or detached.
  1617. @end deftypefun
  1618. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1619. This function submits @var{task} to StarPU. Calling this function does
  1620. not mean that the task will be executed immediately as there can be data or task
  1621. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1622. scheduling this task with respect to such dependencies.
  1623. This function returns immediately if the @code{synchronous} field of the
  1624. @code{starpu_task} structure was set to 0, and block until the termination of
  1625. the task otherwise. It is also possible to synchronize the application with
  1626. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1627. function for instance.
  1628. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1629. means that there is no worker able to process this task (e.g. there is no GPU
  1630. available and this task is only implemented for CUDA devices).
  1631. starpu_task_submit() can be called from anywhere, including codelet
  1632. functions and callbacks, provided that the @code{synchronous} field of the
  1633. @code{starpu_task} structure is left to 0.
  1634. @end deftypefun
  1635. @deftypefun int starpu_task_wait_for_all (void)
  1636. This function blocks until all the tasks that were submitted are terminated. It
  1637. does not destroy these tasks.
  1638. @end deftypefun
  1639. @deftypefun int starpu_task_nready (void)
  1640. @end deftypefun
  1641. @deftypefun int starpu_task_nsubmitted (void)
  1642. Return the number of submitted tasks which have not completed yet.
  1643. @end deftypefun
  1644. @deftypefun int starpu_task_nready (void)
  1645. Return the number of submitted tasks which are ready for execution are already
  1646. executing. It thus does not include tasks waiting for dependencies.
  1647. @end deftypefun
  1648. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1649. This function returns the task currently executed by the worker, or
  1650. NULL if it is called either from a thread that is not a task or simply
  1651. because there is no task being executed at the moment.
  1652. @end deftypefun
  1653. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet} *@var{cl})
  1654. @anchor{starpu_display_codelet_stats}
  1655. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1656. @end deftypefun
  1657. @deftypefun int starpu_task_wait_for_no_ready (void)
  1658. This function waits until there is no more ready task.
  1659. @end deftypefun
  1660. @c Callbacks: what can we put in callbacks ?
  1661. @node Explicit Dependencies
  1662. @section Explicit Dependencies
  1663. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1664. Declare task dependencies between a @var{task} and an array of tasks of length
  1665. @var{ndeps}. This function must be called prior to the submission of the task,
  1666. but it may called after the submission or the execution of the tasks in the
  1667. array, provided the tasks are still valid (ie. they were not automatically
  1668. destroyed). Calling this function on a task that was already submitted or with
  1669. an entry of @var{task_array} that is not a valid task anymore results in an
  1670. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1671. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1672. same task, in this case, the dependencies are added. It is possible to have
  1673. redundancy in the task dependencies.
  1674. @end deftypefun
  1675. @deftp {Data Type} {starpu_tag_t}
  1676. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1677. dependencies between tasks by the means of those tags. To do so, fill the
  1678. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1679. be arbitrary) and set the @code{use_tag} field to 1.
  1680. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1681. not be started until the tasks which holds the declared dependency tags are
  1682. completed.
  1683. @end deftp
  1684. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  1685. Specify the dependencies of the task identified by tag @var{id}. The first
  1686. argument specifies the tag which is configured, the second argument gives the
  1687. number of tag(s) on which @var{id} depends. The following arguments are the
  1688. tags which have to be terminated to unlock the task.
  1689. This function must be called before the associated task is submitted to StarPU
  1690. with @code{starpu_task_submit}.
  1691. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  1692. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  1693. typically need to be explicitly casted. Using the
  1694. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  1695. @cartouche
  1696. @smallexample
  1697. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1698. starpu_tag_declare_deps((starpu_tag_t)0x1,
  1699. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  1700. @end smallexample
  1701. @end cartouche
  1702. @end deftypefun
  1703. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  1704. This function is similar to @code{starpu_tag_declare_deps}, except
  1705. that its does not take a variable number of arguments but an array of
  1706. tags of size @var{ndeps}.
  1707. @cartouche
  1708. @smallexample
  1709. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1710. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  1711. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  1712. @end smallexample
  1713. @end cartouche
  1714. @end deftypefun
  1715. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  1716. This function blocks until the task associated to tag @var{id} has been
  1717. executed. This is a blocking call which must therefore not be called within
  1718. tasks or callbacks, but only from the application directly. It is possible to
  1719. synchronize with the same tag multiple times, as long as the
  1720. @code{starpu_tag_remove} function is not called. Note that it is still
  1721. possible to synchronize with a tag associated to a task which @code{starpu_task}
  1722. data structure was freed (e.g. if the @code{destroy} flag of the
  1723. @code{starpu_task} was enabled).
  1724. @end deftypefun
  1725. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  1726. This function is similar to @code{starpu_tag_wait} except that it blocks until
  1727. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  1728. terminated.
  1729. @end deftypefun
  1730. @deftypefun void starpu_tag_restart (starpu_tag_t @var{id})
  1731. This function can be used to clear the "already notified" status
  1732. of a tag which is not associated with a task. Before that, calling
  1733. @code{starpu_tag_notify_from_apps} again will not notify the successors. After
  1734. that, the next call to @code{starpu_tag_notify_from_apps} will notify the
  1735. successors.
  1736. @end deftypefun
  1737. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  1738. This function releases the resources associated to tag @var{id}. It can be
  1739. called once the corresponding task has been executed and when there is
  1740. no other tag that depend on this tag anymore.
  1741. @end deftypefun
  1742. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  1743. This function explicitly unlocks tag @var{id}. It may be useful in the
  1744. case of applications which execute part of their computation outside StarPU
  1745. tasks (e.g. third-party libraries). It is also provided as a
  1746. convenient tool for the programmer, for instance to entirely construct the task
  1747. DAG before actually giving StarPU the opportunity to execute the tasks. When
  1748. called several times on the same tag, notification will be done only on first
  1749. call, thus implementing "OR" dependencies, until the tag is restarted using
  1750. @code{starpu_tag_restart}.
  1751. @end deftypefun
  1752. @node Implicit Data Dependencies
  1753. @section Implicit Data Dependencies
  1754. In this section, we describe how StarPU makes it possible to insert implicit
  1755. task dependencies in order to enforce sequential data consistency. When this
  1756. data consistency is enabled on a specific data handle, any data access will
  1757. appear as sequentially consistent from the application. For instance, if the
  1758. application submits two tasks that access the same piece of data in read-only
  1759. mode, and then a third task that access it in write mode, dependencies will be
  1760. added between the two first tasks and the third one. Implicit data dependencies
  1761. are also inserted in the case of data accesses from the application.
  1762. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  1763. Set the default sequential consistency flag. If a non-zero value is passed, a
  1764. sequential data consistency will be enforced for all handles registered after
  1765. this function call, otherwise it is disabled. By default, StarPU enables
  1766. sequential data consistency. It is also possible to select the data consistency
  1767. mode of a specific data handle with the
  1768. @code{starpu_data_set_sequential_consistency_flag} function.
  1769. @end deftypefun
  1770. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  1771. Return the default sequential consistency flag
  1772. @end deftypefun
  1773. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  1774. Sets the data consistency mode associated to a data handle. The consistency
  1775. mode set using this function has the priority over the default mode which can
  1776. be set with @code{starpu_data_set_default_sequential_consistency_flag}.
  1777. @end deftypefun
  1778. @node Performance Model API
  1779. @section Performance Model API
  1780. @deftp {Data Type} {enum starpu_perf_archtype}
  1781. Enumerates the various types of architectures.
  1782. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  1783. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  1784. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  1785. @table @asis
  1786. @item @code{STARPU_CPU_DEFAULT}
  1787. @item @code{STARPU_CUDA_DEFAULT}
  1788. @item @code{STARPU_OPENCL_DEFAULT}
  1789. @end table
  1790. @end deftp
  1791. @deftp {Data Type} {enum starpu_perfmodel_type}
  1792. The possible values are:
  1793. @table @asis
  1794. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  1795. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  1796. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  1797. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  1798. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  1799. @end table
  1800. @end deftp
  1801. @deftp {Data Type} {struct starpu_perfmodel}
  1802. @anchor{struct starpu_perfmodel}
  1803. contains all information about a performance model. At least the
  1804. @code{type} and @code{symbol} fields have to be filled when defining a
  1805. performance model for a codelet. For compatibility, make sure to initialize the
  1806. whole structure to zero, either by using explicit memset, or by letting the
  1807. compiler implicitly do it in e.g. static storage case.
  1808. If not provided, other fields have to be zero.
  1809. @table @asis
  1810. @item @code{type}
  1811. is the type of performance model @code{enum starpu_perfmodel_type}:
  1812. @code{STARPU_HISTORY_BASED},
  1813. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  1814. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  1815. @code{per_arch} has to be filled with functions which return the cost in
  1816. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  1817. a function that returns the cost in micro-seconds on a CPU, timing on other
  1818. archs will be determined by multiplying by an arch-specific factor.
  1819. @item @code{const char *symbol}
  1820. is the symbol name for the performance model, which will be used as
  1821. file name to store the model. It must be set otherwise the model will
  1822. be ignored.
  1823. @item @code{double (*cost_model)(struct starpu_buffer_descr *)}
  1824. This field is deprecated. Use instead the @code{cost_function} field.
  1825. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  1826. Used by @code{STARPU_COMMON}: takes a task and
  1827. implementation number, and must return a task duration estimation in micro-seconds.
  1828. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  1829. Used by @code{STARPU_HISTORY_BASED} and
  1830. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  1831. implementation number, and returns the size to be used as index for
  1832. history and regression.
  1833. @item @code{struct starpu_perfmodel_per_arch per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  1834. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  1835. starpu_per_arch_perfmodel} structures.
  1836. @item @code{unsigned is_loaded}
  1837. Whether the performance model is already loaded from the disk.
  1838. @item @code{unsigned benchmarking}
  1839. Whether the performance model is still being calibrated.
  1840. @item @code{pthread_rwlock_t model_rwlock}
  1841. Lock to protect concurrency between loading from disk (W), updating the values
  1842. (W), and making a performance estimation (R).
  1843. @end table
  1844. @end deftp
  1845. @deftp {Data Type} {struct starpu_perfmodel_regression_model}
  1846. @table @asis
  1847. @item @code{double sumlny} sum of ln(measured)
  1848. @item @code{double sumlnx} sum of ln(size)
  1849. @item @code{double sumlnx2} sum of ln(size)^2
  1850. @item @code{unsigned long minx} minimum size
  1851. @item @code{unsigned long maxx} maximum size
  1852. @item @code{double sumlnxlny} sum of ln(size)*ln(measured)
  1853. @item @code{double alpha} estimated = alpha * size ^ beta
  1854. @item @code{double beta}
  1855. @item @code{unsigned valid} whether the linear regression model is valid (i.e. enough measures)
  1856. @item @code{double a, b, c} estimaed = a size ^b + c
  1857. @item @code{unsigned nl_valid} whether the non-linear regression model is valid (i.e. enough measures)
  1858. @item @code{unsigned nsample} number of sample values for non-linear regression
  1859. @end table
  1860. @end deftp
  1861. @deftp {Data Type} {struct starpu_perfmodel_per_arch}
  1862. contains information about the performance model of a given arch.
  1863. @table @asis
  1864. @item @code{double (*cost_model)(struct starpu_buffer_descr *t)}
  1865. This field is deprecated. Use instead the @code{cost_function} field.
  1866. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perf_archtype arch, unsigned nimpl)}
  1867. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  1868. target arch and implementation number (as mere conveniency, since the array
  1869. is already indexed by these), and must return a task duration estimation in
  1870. micro-seconds.
  1871. @item @code{size_t (*size_base)(struct starpu_task *, enum
  1872. starpu_perf_archtype arch, unsigned nimpl)}
  1873. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  1874. case it depends on the architecture-specific implementation.
  1875. @item @code{struct starpu_htbl32_node *history}
  1876. The history of performance measurements.
  1877. @item @code{struct starpu_perfmodel_history_list *list}
  1878. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  1879. records all execution history measures.
  1880. @item @code{struct starpu_perfmodel_regression_model regression}
  1881. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  1882. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  1883. regression.
  1884. @end table
  1885. @end deftp
  1886. @deftypefun int starpu_perfmodel_load_symbol ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  1887. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{$STARPU_HOME/.starpu}.
  1888. @end deftypefun
  1889. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  1890. returns the path to the debugging information for the performance model.
  1891. @end deftypefun
  1892. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  1893. returns the architecture name for @var{arch}.
  1894. @end deftypefun
  1895. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  1896. returns the architecture type of a given worker.
  1897. @end deftypefun
  1898. @deftypefun int starpu_perfmodel_list ({FILE *}@var{output})
  1899. prints a list of all performance models on @var{output}.
  1900. @end deftypefun
  1901. @deftypefun void starpu_perfmodel_print ({struct starpu_perfmodel *}@var{model}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl}, {char *}@var{parameter}, {uint32_t *}footprint, {FILE *}@var{output})
  1902. todo
  1903. @end deftypefun
  1904. @deftypefun int starpu_perfmodel_print_all ({struct starpu_perfmodel *}@var{model}, {char *}@var{arch}, @var{char *}parameter, {uint32_t *}@var{footprint}, {FILE *}@var{output})
  1905. todo
  1906. @end deftypefun
  1907. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  1908. prints a matrix of bus bandwidths on @var{f}.
  1909. @end deftypefun
  1910. @deftypefun void starpu_bus_print_affinity ({FILE *}@var{f})
  1911. prints the affinity devices on @var{f}.
  1912. @end deftypefun
  1913. @deftypefun void starpu_topology_print ({FILE *}@var{f})
  1914. prints a description of the topology on @var{f}.
  1915. @end deftypefun
  1916. @deftypefun void starpu_perfmodel_update_history ({struct starpu_perfmodel *}@var{model}, {struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{cpuid}, unsigned @var{nimpl}, double @var{measured});
  1917. This feeds the performance model @var{model} with an explicit measurement
  1918. @var{measured}, in addition to measurements done by StarPU itself. This can be
  1919. useful when the application already has an existing set of measurements done
  1920. in good conditions, that StarPU could benefit from instead of doing on-line
  1921. measurements. And example of use can be see in @ref{Performance model example}.
  1922. @end deftypefun
  1923. @node Profiling API
  1924. @section Profiling API
  1925. @deftypefun int starpu_profiling_status_set (int @var{status})
  1926. Thie function sets the profiling status. Profiling is activated by passing
  1927. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  1928. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  1929. resets all profiling measurements. When profiling is enabled, the
  1930. @code{profiling_info} field of the @code{struct starpu_task} structure points
  1931. to a valid @code{struct starpu_task_profiling_info} structure containing
  1932. information about the execution of the task.
  1933. Negative return values indicate an error, otherwise the previous status is
  1934. returned.
  1935. @end deftypefun
  1936. @deftypefun int starpu_profiling_status_get (void)
  1937. Return the current profiling status or a negative value in case there was an error.
  1938. @end deftypefun
  1939. @deftypefun void starpu_set_profiling_id (int @var{new_id})
  1940. This function sets the ID used for profiling trace filename. It needs to be
  1941. called before starpu_init.
  1942. @end deftypefun
  1943. @deftp {Data Type} {struct starpu_task_profiling_info}
  1944. This structure contains information about the execution of a task. It is
  1945. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  1946. structure if profiling was enabled. The different fields are:
  1947. @table @asis
  1948. @item @code{struct timespec submit_time}
  1949. Date of task submission (relative to the initialization of StarPU).
  1950. @item @code{struct timespec push_start_time}
  1951. Time when the task was submitted to the scheduler.
  1952. @item @code{struct timespec push_end_time}
  1953. Time when the scheduler finished with the task submission.
  1954. @item @code{struct timespec pop_start_time}
  1955. Time when the scheduler started to be requested for a task, and eventually gave
  1956. that task.
  1957. @item @code{struct timespec pop_end_time}
  1958. Time when the scheduler finished providing the task for execution.
  1959. @item @code{struct timespec acquire_data_start_time}
  1960. Time when the worker started fetching input data.
  1961. @item @code{struct timespec acquire_data_end_time}
  1962. Time when the worker finished fetching input data.
  1963. @item @code{struct timespec start_time}
  1964. Date of task execution beginning (relative to the initialization of StarPU).
  1965. @item @code{struct timespec end_time}
  1966. Date of task execution termination (relative to the initialization of StarPU).
  1967. @item @code{struct timespec release_data_start_time}
  1968. Time when the worker started releasing data.
  1969. @item @code{struct timespec release_data_end_time}
  1970. Time when the worker finished releasing data.
  1971. @item @code{struct timespec callback_start_time}
  1972. Time when the worker started the application callback for the task.
  1973. @item @code{struct timespec callback_end_time}
  1974. Time when the worker finished the application callback for the task.
  1975. @item @code{workerid}
  1976. Identifier of the worker which has executed the task.
  1977. @item @code{uint64_t used_cycles}
  1978. Number of cycles used by the task, only available in the MoviSim
  1979. @item @code{uint64_t stall_cycles}
  1980. Number of cycles stalled within the task, only available in the MoviSim
  1981. @item @code{double power_consumed}
  1982. Power consumed by the task, only available in the MoviSim
  1983. @end table
  1984. @end deftp
  1985. @deftp {Data Type} {struct starpu_worker_profiling_info}
  1986. This structure contains the profiling information associated to a
  1987. worker. The different fields are:
  1988. @table @asis
  1989. @item @code{struct timespec start_time}
  1990. Starting date for the reported profiling measurements.
  1991. @item @code{struct timespec total_time}
  1992. Duration of the profiling measurement interval.
  1993. @item @code{struct timespec executing_time}
  1994. Time spent by the worker to execute tasks during the profiling measurement interval.
  1995. @item @code{struct timespec sleeping_time}
  1996. Time spent idling by the worker during the profiling measurement interval.
  1997. @item @code{int executed_tasks}
  1998. Number of tasks executed by the worker during the profiling measurement interval.
  1999. @item @code{uint64_t used_cycles}
  2000. Number of cycles used by the worker, only available in the MoviSim
  2001. @item @code{uint64_t stall_cycles}
  2002. Number of cycles stalled within the worker, only available in the MoviSim
  2003. @item @code{double power_consumed}
  2004. Power consumed by the worker, only available in the MoviSim
  2005. @end table
  2006. @end deftp
  2007. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  2008. Get the profiling info associated to the worker identified by @var{workerid},
  2009. and reset the profiling measurements. If the @var{worker_info} argument is
  2010. NULL, only reset the counters associated to worker @var{workerid}.
  2011. Upon successful completion, this function returns 0. Otherwise, a negative
  2012. value is returned.
  2013. @end deftypefun
  2014. @deftp {Data Type} {struct starpu_bus_profiling_info}
  2015. The different fields are:
  2016. @table @asis
  2017. @item @code{struct timespec start_time}
  2018. Time of bus profiling startup.
  2019. @item @code{struct timespec total_time}
  2020. Total time of bus profiling.
  2021. @item @code{int long long transferred_bytes}
  2022. Number of bytes transferred during profiling.
  2023. @item @code{int transfer_count}
  2024. Number of transfers during profiling.
  2025. @end table
  2026. @end deftp
  2027. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_bus_profiling_info *}@var{bus_info})
  2028. Get the profiling info associated to the worker designated by @var{workerid},
  2029. and reset the profiling measurements. If worker_info is NULL, only reset the
  2030. counters.
  2031. @end deftypefun
  2032. @deftypefun int starpu_bus_get_count (void)
  2033. Return the number of buses in the machine.
  2034. @end deftypefun
  2035. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  2036. Return the identifier of the bus between @var{src} and @var{dst}
  2037. @end deftypefun
  2038. @deftypefun int starpu_bus_get_src (int @var{busid})
  2039. Return the source point of bus @var{busid}
  2040. @end deftypefun
  2041. @deftypefun int starpu_bus_get_dst (int @var{busid})
  2042. Return the destination point of bus @var{busid}
  2043. @end deftypefun
  2044. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  2045. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  2046. @end deftypefun
  2047. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  2048. Converts the given timespec @var{ts} into microseconds.
  2049. @end deftypefun
  2050. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  2051. Displays statistics about the bus on stderr. if the environment
  2052. variable @code{STARPU_BUS_STATS} is defined. The function is called
  2053. automatically by @code{starpu_shutdown()}.
  2054. @end deftypefun
  2055. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  2056. Displays statistics about the workers on stderr if the environment
  2057. variable @code{STARPU_WORKER_STATS} is defined. The function is called
  2058. automatically by @code{starpu_shutdown()}.
  2059. @end deftypefun
  2060. @deftypefun void starpu_memory_display_stats ()
  2061. Display statistics about the current data handles registered within
  2062. StarPU. StarPU must have been configured with the option
  2063. @code{----enable-memory-stats} (@pxref{Memory feedback}).
  2064. @end deftypefun
  2065. @node CUDA extensions
  2066. @section CUDA extensions
  2067. @defmac STARPU_USE_CUDA
  2068. This macro is defined when StarPU has been installed with CUDA
  2069. support. It should be used in your code to detect the availability of
  2070. CUDA as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2071. @end defmac
  2072. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  2073. This function gets the current worker's CUDA stream.
  2074. StarPU provides a stream for every CUDA device controlled by StarPU. This
  2075. function is only provided for convenience so that programmers can easily use
  2076. asynchronous operations within codelets without having to create a stream by
  2077. hand. Note that the application is not forced to use the stream provided by
  2078. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  2079. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  2080. the likelihood of having all transfers overlapped.
  2081. @end deftypefun
  2082. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  2083. This function returns a pointer to device properties for worker @var{workerid}
  2084. (assumed to be a CUDA worker).
  2085. @end deftypefun
  2086. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  2087. Report a CUDA error.
  2088. @end deftypefun
  2089. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  2090. Calls starpu_cuda_report_error, passing the current function, file and line
  2091. position.
  2092. @end defmac
  2093. @deftypefun int starpu_cuda_copy_async_sync ({void *}@var{src_ptr}, unsigned @var{src_node}, {void *}@var{dst_ptr}, unsigned @var{dst_node}, size_t @var{ssize}, cudaStream_t @var{stream}, {enum cudaMemcpyKind} @var{kind})
  2094. Copy @var{ssize} bytes from the pointer @var{src_ptr} on
  2095. @var{src_node} to the pointer @var{dst_ptr} on @var{dst_node}.
  2096. The function first tries to copy the data asynchronous (unless
  2097. @var{stream} is @code{NULL}. If the asynchronous copy fails or if
  2098. @var{stream} is @code{NULL}, it copies the data synchronously.
  2099. The function returns @code{-EAGAIN} if the asynchronous launch was
  2100. successfull. It returns 0 if the synchronous copy was successful, or
  2101. fails otherwise.
  2102. @end deftypefun
  2103. @deftypefun void starpu_cuda_set_device (unsigned @var{devid})
  2104. Calls @code{cudaSetDevice(devid)} or @code{cudaGLSetGLDevice(devid)}, according to
  2105. whether @code{devid} is among the @code{cuda_opengl_interoperability} field of
  2106. the @code{starpu_conf} structure.
  2107. @end deftypefun
  2108. @deftypefun void starpu_cublas_init (void)
  2109. This function initializes CUBLAS on every CUDA device.
  2110. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  2111. @code{starpu_cublas_init} will initialize CUBLAS on every CUDA device
  2112. controlled by StarPU. This call blocks until CUBLAS has been properly
  2113. initialized on every device.
  2114. @end deftypefun
  2115. @deftypefun void starpu_cublas_shutdown (void)
  2116. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  2117. @end deftypefun
  2118. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  2119. Report a cublas error.
  2120. @end deftypefun
  2121. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  2122. Calls starpu_cublas_report_error, passing the current function, file and line
  2123. position.
  2124. @end defmac
  2125. @node OpenCL extensions
  2126. @section OpenCL extensions
  2127. @menu
  2128. * Writing OpenCL kernels:: Writing OpenCL kernels
  2129. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  2130. * Loading OpenCL kernels:: Loading OpenCL kernels
  2131. * OpenCL statistics:: Collecting statistics from OpenCL
  2132. * OpenCL utilities:: Utilities for OpenCL
  2133. @end menu
  2134. @defmac STARPU_USE_OPENCL
  2135. This macro is defined when StarPU has been installed with OpenCL
  2136. support. It should be used in your code to detect the availability of
  2137. OpenCL as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2138. @end defmac
  2139. @node Writing OpenCL kernels
  2140. @subsection Writing OpenCL kernels
  2141. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  2142. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  2143. @end deftypefun
  2144. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  2145. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  2146. @end deftypefun
  2147. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  2148. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  2149. @end deftypefun
  2150. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  2151. Return the context of the current worker.
  2152. @end deftypefun
  2153. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  2154. Return the computation kernel command queue of the current worker.
  2155. @end deftypefun
  2156. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  2157. Sets the arguments of a given kernel. The list of arguments must be given as
  2158. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  2159. The last argument must be 0. Returns the number of arguments that were
  2160. successfully set. In case of failure, returns the id of the argument
  2161. that could not be set and @var{err} is set to the error returned by
  2162. OpenCL. Otherwise, returns the number of arguments that were set.
  2163. @cartouche
  2164. @smallexample
  2165. int n;
  2166. cl_int err;
  2167. cl_kernel kernel;
  2168. n = starpu_opencl_set_kernel_args(&err, 2, &kernel,
  2169. sizeof(foo), &foo,
  2170. sizeof(bar), &bar,
  2171. 0);
  2172. if (n != 2)
  2173. fprintf(stderr, "Error : %d\n", err);
  2174. @end smallexample
  2175. @end cartouche
  2176. @end deftypefun
  2177. @node Compiling OpenCL kernels
  2178. @subsection Compiling OpenCL kernels
  2179. Source codes for OpenCL kernels can be stored in a file or in a
  2180. string. StarPU provides functions to build the program executable for
  2181. each available OpenCL device as a @code{cl_program} object. This
  2182. program executable can then be loaded within a specific queue as
  2183. explained in the next section. These are only helpers, Applications
  2184. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  2185. use (e.g. different programs on the different OpenCL devices, for
  2186. relocation purpose for instance).
  2187. @deftp {Data Type} {struct starpu_opencl_program}
  2188. Stores the OpenCL programs as compiled for the different OpenCL
  2189. devices. The different fields are:
  2190. @table @asis
  2191. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  2192. Stores each program for each OpenCL device.
  2193. @end table
  2194. @end deftp
  2195. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2196. @anchor{starpu_opencl_load_opencl_from_file}
  2197. This function compiles an OpenCL source code stored in a file.
  2198. @end deftypefun
  2199. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2200. This function compiles an OpenCL source code stored in a string.
  2201. @end deftypefun
  2202. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  2203. This function unloads an OpenCL compiled code.
  2204. @end deftypefun
  2205. @deftypefun void starpu_opencl_load_program_source ({const char *}@var{source_file_name}, char *@var{located_file_name}, char *@var{located_dir_name}, char *@var{opencl_program_source})
  2206. @anchor{starpu_opencl_load_program_source}
  2207. Store the contents of the file @var{source_file_name} in the buffer
  2208. @var{opencl_program_source}. The file @var{source_file_name} can be
  2209. located in the current directory, or in the directory specified by the
  2210. environment variable @code{STARPU_OPENCL_PROGRAM_DIR} (@pxref{STARPU_OPENCL_PROGRAM_DIR}), or in the
  2211. directory @code{share/starpu/opencl} of the installation directory of
  2212. StarPU, or in the source directory of StarPU.
  2213. When the file is found, @code{located_file_name} is the full name of
  2214. the file as it has been located on the system, @code{located_dir_name}
  2215. the directory where it has been located. Otherwise, they are both set
  2216. to the empty string.
  2217. @end deftypefun
  2218. @deftypefun int starpu_opencl_compile_opencl_from_file ({const char *}@var{source_file_name}, {const char *} @var{build_options})
  2219. Compile the OpenCL kernel stored in the file @code{source_file_name}
  2220. with the given options @code{build_options} and stores the result in
  2221. the directory @code{$STARPU_HOME/.starpu/opencl} with the same
  2222. filename as @code{source_file_name}. The compilation is done for every
  2223. OpenCL device, and the filename is suffixed with the vendor id and the
  2224. device id of the OpenCL device.
  2225. @end deftypefun
  2226. @deftypefun int starpu_opencl_compile_opencl_from_string ({const char *}@var{opencl_program_source}, {const char *}@var{file_name}, {const char* }@var{build_options})
  2227. Compile the OpenCL kernel in the string @code{opencl_program_source}
  2228. with the given options @code{build_options} and stores the result in
  2229. the directory @code{$STARPU_HOME/.starpu/opencl}
  2230. with the filename
  2231. @code{file_name}. The compilation is done for every
  2232. OpenCL device, and the filename is suffixed with the vendor id and the
  2233. device id of the OpenCL device.
  2234. @end deftypefun
  2235. @deftypefun int starpu_opencl_load_binary_opencl ({const char *}@var{kernel_id}, {struct starpu_opencl_program *}@var{opencl_programs})
  2236. Compile the binary OpenCL kernel identified with @var{id}. For every
  2237. OpenCL device, the binary OpenCL kernel will be loaded from the file
  2238. @code{$STARPU_HOME/.starpu/opencl/<kernel_id>.<device_type>.vendor_id_<vendor_id>_device_id_<device_id>}.
  2239. @end deftypefun
  2240. @node Loading OpenCL kernels
  2241. @subsection Loading OpenCL kernels
  2242. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  2243. Create a kernel @var{kernel} for device @var{devid}, on its computation command
  2244. queue returned in @var{queue}, using program @var{opencl_programs} and name
  2245. @var{kernel_name}
  2246. @end deftypefun
  2247. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  2248. Release the given @var{kernel}, to be called after kernel execution.
  2249. @end deftypefun
  2250. @node OpenCL statistics
  2251. @subsection OpenCL statistics
  2252. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  2253. This function allows to collect statistics on a kernel execution.
  2254. After termination of the kernels, the OpenCL codelet should call this function
  2255. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  2256. collect statistics about the kernel execution (used cycles, consumed power).
  2257. @end deftypefun
  2258. @node OpenCL utilities
  2259. @subsection OpenCL utilities
  2260. @deftypefun {const char *} starpu_opencl_error_string (cl_int @var{status})
  2261. Return the error message in English corresponding to @var{status}, an
  2262. OpenCL error code.
  2263. @end deftypefun
  2264. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2265. Given a valid error @var{status}, prints the corresponding error message on
  2266. stdout, along with the given function name @var{func}, the given filename
  2267. @var{file}, the given line number @var{line} and the given message @var{msg}.
  2268. @end deftypefun
  2269. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  2270. Call the function @code{starpu_opencl_display_error} with the given
  2271. error @var{status}, the current function name, current file and line
  2272. number, and a empty message.
  2273. @end defmac
  2274. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2275. Call the function @code{starpu_opencl_display_error} and abort.
  2276. @end deftypefun
  2277. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  2278. Call the function @code{starpu_opencl_report_error} with the given
  2279. error @var{status}, with the current function name, current file and
  2280. line number, and a empty message.
  2281. @end defmac
  2282. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  2283. Call the function @code{starpu_opencl_report_error} with the given
  2284. message and the given error @var{status}, with the current function
  2285. name, current file and line number.
  2286. @end defmac
  2287. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  2288. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  2289. valid combination of cl_mem_flags values.
  2290. @end deftypefun
  2291. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2292. Copy @var{size} bytes from the given @var{ptr} on
  2293. RAM @var{src_node} to the given @var{buffer} on OpenCL @var{dst_node}.
  2294. @var{offset} is the offset, in bytes, in @var{buffer}.
  2295. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2296. synchronised before returning. If non NULL, @var{event} can be used
  2297. after the call to wait for this particular copy to complete.
  2298. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2299. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2300. was successful, or to 0 if event was NULL.
  2301. @end deftypefun
  2302. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2303. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  2304. OpenCL @var{src_node} to the given @var{ptr} on RAM @var{dst_node}.
  2305. @var{offset} is the offset, in bytes, in @var{buffer}.
  2306. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2307. synchronised before returning. If non NULL, @var{event} can be used
  2308. after the call to wait for this particular copy to complete.
  2309. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2310. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2311. was successful, or to 0 if event was NULL.
  2312. @end deftypefun
  2313. @deftypefun cl_int starpu_opencl_copy_opencl_to_opencl (cl_mem @var{src}, unsigned @var{src_node}, size_t @var{src_offset}, cl_mem @var{dst}, unsigned @var{dst_node}, size_t @var{dst_offset}, size_t @var{size}, {cl_event *}@var{event}, {int *}@var{ret})
  2314. Copy @var{size} bytes asynchronously from byte offset @var{src_offset} of
  2315. @var{src} on OpenCL @var{src_node} to byte offset @var{dst_offset} of @var{dst} on
  2316. OpenCL @var{dst_node}.
  2317. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2318. synchronised before returning. If non NULL, @var{event} can be used
  2319. after the call to wait for this particular copy to complete.
  2320. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2321. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2322. was successful, or to 0 if event was NULL.
  2323. @end deftypefun
  2324. @deftypefun cl_int starpu_opencl_copy_async_sync (uintptr_t @var{src}, size_t @var{src_offset}, unsigned @var{src_node}, uintptr_t @var{dst}, size_t @var{dst_offset}, unsigned @var{dst_node}, size_t @var{size}, {cl_event *}@var{event})
  2325. Copy @var{size} bytes from byte offset @var{src_offset} of
  2326. @var{src} on @var{src_node} to byte offset @var{dst_offset} of @var{dst} on
  2327. @var{dst_node}. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2328. synchronised before returning. If non NULL, @var{event} can be used
  2329. after the call to wait for this particular copy to complete.
  2330. The function returns @code{-EAGAIN} if the asynchronous launch was
  2331. successfull. It returns 0 if the synchronous copy was successful, or
  2332. fails otherwise.
  2333. @end deftypefun
  2334. @node Miscellaneous helpers
  2335. @section Miscellaneous helpers
  2336. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  2337. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  2338. The @var{asynchronous} parameter indicates whether the function should
  2339. block or not. In the case of an asynchronous call, it is possible to
  2340. synchronize with the termination of this operation either by the means of
  2341. implicit dependencies (if enabled) or by calling
  2342. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  2343. this callback function is executed after the handle has been copied, and it is
  2344. given the @var{callback_arg} pointer as argument.
  2345. @end deftypefun
  2346. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  2347. This function executes the given function on a subset of workers.
  2348. When calling this method, the offloaded function specified by the first argument is
  2349. executed by every StarPU worker that may execute the function.
  2350. The second argument is passed to the offloaded function.
  2351. The last argument specifies on which types of processing units the function
  2352. should be executed. Similarly to the @var{where} field of the
  2353. @code{struct starpu_codelet} structure, it is possible to specify that the function
  2354. should be executed on every CUDA device and every CPU by passing
  2355. @code{STARPU_CPU|STARPU_CUDA}.
  2356. This function blocks until the function has been executed on every appropriate
  2357. processing units, so that it may not be called from a callback function for
  2358. instance.
  2359. @end deftypefun