starpu.texi 156 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347
  1. \input texinfo @c -*-texinfo-*-
  2. @c %**start of header
  3. @setfilename starpu.info
  4. @settitle StarPU
  5. @c %**end of header
  6. @setchapternewpage odd
  7. @titlepage
  8. @title StarPU
  9. @page
  10. @vskip 0pt plus 1fill
  11. @comment For the @value{version-GCC} Version*
  12. @end titlepage
  13. @summarycontents
  14. @contents
  15. @page
  16. @node Top
  17. @top Preface
  18. @cindex Preface
  19. This manual documents the usage of StarPU.
  20. @comment
  21. @comment When you add a new menu item, please keep the right hand
  22. @comment aligned to the same column. Do not use tabs. This provides
  23. @comment better formatting.
  24. @comment
  25. @menu
  26. * Introduction:: A basic introduction to using StarPU
  27. * Installing StarPU:: How to configure, build and install StarPU
  28. * Using StarPU:: How to run StarPU application
  29. * Basic Examples:: Basic examples of the use of StarPU
  30. * Performance optimization:: How to optimize performance with StarPU
  31. * Performance feedback:: Performance debugging tools
  32. * StarPU MPI support:: How to combine StarPU with MPI
  33. * Configuring StarPU:: How to configure StarPU
  34. * StarPU API:: The API to use StarPU
  35. * Advanced Topics:: Advanced use of StarPU
  36. * Full source code for the 'Scaling a Vector' example::
  37. @end menu
  38. @c ---------------------------------------------------------------------
  39. @c Introduction to StarPU
  40. @c ---------------------------------------------------------------------
  41. @node Introduction
  42. @chapter Introduction to StarPU
  43. @menu
  44. * Motivation:: Why StarPU ?
  45. * StarPU in a Nutshell:: The Fundamentals of StarPU
  46. @end menu
  47. @node Motivation
  48. @section Motivation
  49. @c complex machines with heterogeneous cores/devices
  50. The use of specialized hardware such as accelerators or coprocessors offers an
  51. interesting approach to overcome the physical limits encountered by processor
  52. architects. As a result, many machines are now equipped with one or several
  53. accelerators (e.g. a GPU), in addition to the usual processor(s). While a lot of
  54. efforts have been devoted to offload computation onto such accelerators, very
  55. little attention as been paid to portability concerns on the one hand, and to the
  56. possibility of having heterogeneous accelerators and processors to interact on the other hand.
  57. StarPU is a runtime system that offers support for heterogeneous multicore
  58. architectures, it not only offers a unified view of the computational resources
  59. (i.e. CPUs and accelerators at the same time), but it also takes care of
  60. efficiently mapping and executing tasks onto an heterogeneous machine while
  61. transparently handling low-level issues such as data transfers in a portable
  62. fashion.
  63. @c this leads to a complicated distributed memory design
  64. @c which is not (easily) manageable by hand
  65. @c added value/benefits of StarPU
  66. @c - portability
  67. @c - scheduling, perf. portability
  68. @node StarPU in a Nutshell
  69. @section StarPU in a Nutshell
  70. @menu
  71. * Codelet and Tasks::
  72. * StarPU Data Management Library::
  73. * Research Papers::
  74. @end menu
  75. From a programming point of view, StarPU is not a new language but a library
  76. that executes tasks explicitly submitted by the application. The data that a
  77. task manipulates are automatically transferred onto the accelerator so that the
  78. programmer does not have to take care of complex data movements. StarPU also
  79. takes particular care of scheduling those tasks efficiently and allows
  80. scheduling experts to implement custom scheduling policies in a portable
  81. fashion.
  82. @c explain the notion of codelet and task (i.e. g(A, B)
  83. @node Codelet and Tasks
  84. @subsection Codelet and Tasks
  85. One of the StarPU primary data structures is the @b{codelet}. A codelet describes a
  86. computational kernel that can possibly be implemented on multiple architectures
  87. such as a CPU, a CUDA device or a Cell's SPU.
  88. @c TODO insert illustration f : f_spu, f_cpu, ...
  89. Another important data structure is the @b{task}. Executing a StarPU task
  90. consists in applying a codelet on a data set, on one of the architectures on
  91. which the codelet is implemented. In addition to the codelet that a task
  92. useuses, it also describes which data are accessed, and how they are
  93. accessed during the computation (read and/or write).
  94. StarPU tasks are asynchronous: submitting a task to StarPU is a non-blocking
  95. operation. The task structure can also specify a @b{callback} function that is
  96. called once StarPU has properly executed the task. It also contains optional
  97. fields that the application may use to give hints to the scheduler (such as
  98. priority levels).
  99. A task may be identified by a unique 64-bit number chosen by the application
  100. which we refer as a @b{tag}.
  101. Task dependencies can be enforced either by the means of callback functions, by
  102. expressing dependencies between explicit tasks or by expressing dependencies
  103. between tags (which can thus correspond to tasks that have not been submitted
  104. yet).
  105. @c TODO insert illustration f(Ar, Brw, Cr) + ..
  106. @c DSM
  107. @node StarPU Data Management Library
  108. @subsection StarPU Data Management Library
  109. Because StarPU schedules tasks at runtime, data transfers have to be
  110. done automatically and ``just-in-time'' between processing units,
  111. relieving the application programmer from explicit data transfers.
  112. Moreover, to avoid unnecessary transfers, StarPU keeps data
  113. where it was last needed, even if was modified there, and it
  114. allows multiple copies of the same data to reside at the same time on
  115. several processing units as long as it is not modified.
  116. @node Research Papers
  117. @subsection Research Papers
  118. Research papers about StarPU can be found at
  119. @indicateurl{http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html}
  120. Notably a good overview in the research report
  121. @indicateurl{http://hal.archives-ouvertes.fr/inria-00467677}
  122. @c ---------------------------------------------------------------------
  123. @c Installing StarPU
  124. @c ---------------------------------------------------------------------
  125. @node Installing StarPU
  126. @chapter Installing StarPU
  127. @menu
  128. * Downloading StarPU::
  129. * Configuration of StarPU::
  130. * Building and Installing StarPU::
  131. @end menu
  132. StarPU can be built and installed by the standard means of the GNU
  133. autotools. The following chapter is intended to briefly remind how these tools
  134. can be used to install StarPU.
  135. @node Downloading StarPU
  136. @section Downloading StarPU
  137. @menu
  138. * Getting Sources::
  139. * Optional dependencies::
  140. @end menu
  141. @node Getting Sources
  142. @subsection Getting Sources
  143. The simplest way to get StarPU sources is to download the latest official
  144. release tarball from @indicateurl{https://gforge.inria.fr/frs/?group_id=1570} ,
  145. or the latest nightly snapshot from
  146. @indicateurl{http://starpu.gforge.inria.fr/testing/} . The following documents
  147. how to get the very latest version from the subversion repository itself, it
  148. should be needed only if you need the very latest changes (i.e. less than a
  149. day!)
  150. The source code is managed by a Subversion server hosted by the
  151. InriaGforge. To get the source code, you need:
  152. @itemize
  153. @item
  154. To install the client side of the software Subversion if it is
  155. not already available on your system. The software can be obtained from
  156. @indicateurl{http://subversion.tigris.org} . If you are running
  157. on Windows, you will probably prefer to use TortoiseSVN from
  158. @indicateurl{http://tortoisesvn.tigris.org/} .
  159. @item
  160. You can check out the project's SVN repository through anonymous
  161. access. This will provide you with a read access to the
  162. repository.
  163. If you need to have write access on the StarPU project, you can also choose to
  164. become a member of the project @code{starpu}. For this, you first need to get
  165. an account to the gForge server. You can then send a request to join the project
  166. (@indicateurl{https://gforge.inria.fr/project/request.php?group_id=1570}).
  167. @item
  168. More information on how to get a gForge account, to become a member of
  169. a project, or on any other related task can be obtained from the
  170. InriaGforge at @indicateurl{https://gforge.inria.fr/}. The most important
  171. thing is to upload your public SSH key on the gForge server (see the
  172. FAQ at @indicateurl{http://siteadmin.gforge.inria.fr/FAQ.html#Q6} for
  173. instructions).
  174. @end itemize
  175. You can now check out the latest version from the Subversion server:
  176. @itemize
  177. @item
  178. using the anonymous access via svn:
  179. @example
  180. % svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk
  181. @end example
  182. @item
  183. using the anonymous access via https:
  184. @example
  185. % svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk
  186. @end example
  187. The password is @code{anonsvn}.
  188. @item
  189. using your gForge account
  190. @example
  191. % svn checkout svn+ssh://<login>@@scm.gforge.inria.fr/svn/starpu/trunk
  192. @end example
  193. @end itemize
  194. These steps require to run autoconf and automake to generate the
  195. @code{./configure} script. This can be done by calling
  196. @code{./autogen.sh}. The required version for autoconf is 2.60 or
  197. higher. You will also need makeinfo.
  198. @example
  199. % ./autogen.sh
  200. @end example
  201. If the autotools are not available on your machine or not recent
  202. enough, you can choose to download the latest nightly tarball, which
  203. is provided with a @code{configure} script.
  204. @example
  205. % wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz
  206. @end example
  207. @node Optional dependencies
  208. @subsection Optional dependencies
  209. The topology discovery library, @code{hwloc}, is not mandatory to use StarPU
  210. but strongly recommended. It allows to increase performance, and to
  211. perform some topology aware scheduling.
  212. @code{hwloc} is available in major distributions and for most OSes and can be
  213. downloaded from @indicateurl{http://www.open-mpi.org/software/hwloc}.
  214. @node Configuration of StarPU
  215. @section Configuration of StarPU
  216. @menu
  217. * Generating Makefiles and configuration scripts::
  218. * Running the configuration::
  219. @end menu
  220. @node Generating Makefiles and configuration scripts
  221. @subsection Generating Makefiles and configuration scripts
  222. This step is not necessary when using the tarball releases of StarPU. If you
  223. are using the source code from the svn repository, you first need to generate
  224. the configure scripts and the Makefiles.
  225. @example
  226. % ./autogen.sh
  227. @end example
  228. @node Running the configuration
  229. @subsection Running the configuration
  230. @example
  231. % ./configure
  232. @end example
  233. Details about options that are useful to give to @code{./configure} are given in
  234. @ref{Compilation configuration}.
  235. @node Building and Installing StarPU
  236. @section Building and Installing StarPU
  237. @menu
  238. * Building::
  239. * Sanity Checks::
  240. * Installing::
  241. @end menu
  242. @node Building
  243. @subsection Building
  244. @example
  245. % make
  246. @end example
  247. @node Sanity Checks
  248. @subsection Sanity Checks
  249. In order to make sure that StarPU is working properly on the system, it is also
  250. possible to run a test suite.
  251. @example
  252. % make check
  253. @end example
  254. @node Installing
  255. @subsection Installing
  256. In order to install StarPU at the location that was specified during
  257. configuration:
  258. @example
  259. % make install
  260. @end example
  261. @c ---------------------------------------------------------------------
  262. @c Using StarPU
  263. @c ---------------------------------------------------------------------
  264. @node Using StarPU
  265. @chapter Using StarPU
  266. @menu
  267. * Setting flags for compiling and linking applications::
  268. * Running a basic StarPU application::
  269. * Kernel threads started by StarPU::
  270. * Using accelerators::
  271. @end menu
  272. @node Setting flags for compiling and linking applications
  273. @section Setting flags for compiling and linking applications
  274. Compiling and linking an application against StarPU may require to use
  275. specific flags or libraries (for instance @code{CUDA} or @code{libspe2}).
  276. To this end, it is possible to use the @code{pkg-config} tool.
  277. If StarPU was not installed at some standard location, the path of StarPU's
  278. library must be specified in the @code{PKG_CONFIG_PATH} environment variable so
  279. that @code{pkg-config} can find it. For example if StarPU was installed in
  280. @code{$prefix_dir}:
  281. @example
  282. % PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig
  283. @end example
  284. The flags required to compile or link against StarPU are then
  285. accessible with the following commands:
  286. @example
  287. % pkg-config --cflags libstarpu # options for the compiler
  288. % pkg-config --libs libstarpu # options for the linker
  289. @end example
  290. @node Running a basic StarPU application
  291. @section Running a basic StarPU application
  292. Basic examples using StarPU have been built in the directory
  293. @code{$prefix_dir/lib/starpu/examples/}. You can for example run the
  294. example @code{vector_scal}.
  295. @example
  296. % $prefix_dir/lib/starpu/examples/vector_scal
  297. BEFORE : First element was 1.000000
  298. AFTER First element is 3.140000
  299. %
  300. @end example
  301. When StarPU is used for the first time, the directory
  302. @code{$HOME/.starpu/} is created, performance models will be stored in
  303. that directory.
  304. Please note that buses are benchmarked when StarPU is launched for the
  305. first time. This may take a few minutes, or less if @code{hwloc} is
  306. installed. This step is done only once per user and per machine.
  307. @node Kernel threads started by StarPU
  308. @section Kernel threads started by StarPU
  309. TODO: StarPU starts one thread per CPU core and binds them there, uses one of
  310. them per GPU. The application is not supposed to do computations in its own
  311. threads. TODO: add a StarPU function to bind an application thread (e.g. the
  312. main thread) to a dedicated core (and thus disable the corresponding StarPU CPU
  313. worker).
  314. @node Using accelerators
  315. @section Using accelerators
  316. When both CUDA and OpenCL drivers are enabled, StarPU will launch an
  317. OpenCL worker for NVIDIA GPUs only if CUDA is not already running on them.
  318. This design choice was necessary as OpenCL and CUDA can not run at the
  319. same time on the same NVIDIA GPU, as there is currently no interoperability
  320. between them.
  321. Details on how to specify devices running OpenCL and the ones running
  322. CUDA are given in @ref{Enabling OpenCL}.
  323. @c ---------------------------------------------------------------------
  324. @c Basic Examples
  325. @c ---------------------------------------------------------------------
  326. @node Basic Examples
  327. @chapter Basic Examples
  328. @menu
  329. * Compiling and linking options::
  330. * Hello World:: Submitting Tasks
  331. * Scaling a Vector:: Manipulating Data
  332. * Vector Scaling on an Hybrid CPU/GPU Machine:: Handling Heterogeneous Architectures
  333. * Task and Worker Profiling::
  334. * Partitioning Data:: Partitioning Data
  335. * Performance model example::
  336. * Theoretical lower bound on execution time::
  337. * More examples:: More examples shipped with StarPU
  338. @end menu
  339. @node Compiling and linking options
  340. @section Compiling and linking options
  341. Let's suppose StarPU has been installed in the directory
  342. @code{$STARPU_DIR}. As explained in @ref{Setting flags for compiling and linking applications},
  343. the variable @code{PKG_CONFIG_PATH} needs to be set. It is also
  344. necessary to set the variable @code{LD_LIBRARY_PATH} to locate dynamic
  345. libraries at runtime.
  346. @example
  347. % PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH
  348. % LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH
  349. @end example
  350. The Makefile could for instance contain the following lines to define which
  351. options must be given to the compiler and to the linker:
  352. @cartouche
  353. @example
  354. CFLAGS += $$(pkg-config --cflags libstarpu)
  355. LDFLAGS += $$(pkg-config --libs libstarpu)
  356. @end example
  357. @end cartouche
  358. @node Hello World
  359. @section Hello World
  360. @menu
  361. * Required Headers::
  362. * Defining a Codelet::
  363. * Submitting a Task::
  364. * Execution of Hello World::
  365. @end menu
  366. In this section, we show how to implement a simple program that submits a task to StarPU.
  367. @node Required Headers
  368. @subsection Required Headers
  369. The @code{starpu.h} header should be included in any code using StarPU.
  370. @cartouche
  371. @smallexample
  372. #include <starpu.h>
  373. @end smallexample
  374. @end cartouche
  375. @node Defining a Codelet
  376. @subsection Defining a Codelet
  377. @cartouche
  378. @smallexample
  379. struct params @{
  380. int i;
  381. float f;
  382. @};
  383. void cpu_func(void *buffers[], void *cl_arg)
  384. @{
  385. struct params *params = cl_arg;
  386. printf("Hello world (params = @{%i, %f@} )\n", params->i, params->f);
  387. @}
  388. starpu_codelet cl =
  389. @{
  390. .where = STARPU_CPU,
  391. .cpu_func = cpu_func,
  392. .nbuffers = 0
  393. @};
  394. @end smallexample
  395. @end cartouche
  396. A codelet is a structure that represents a computational kernel. Such a codelet
  397. may contain an implementation of the same kernel on different architectures
  398. (e.g. CUDA, Cell's SPU, x86, ...).
  399. The @code{nbuffers} field specifies the number of data buffers that are
  400. manipulated by the codelet: here the codelet does not access or modify any data
  401. that is controlled by our data management library. Note that the argument
  402. passed to the codelet (the @code{cl_arg} field of the @code{starpu_task}
  403. structure) does not count as a buffer since it is not managed by our data
  404. management library, but just contain trivial parameters.
  405. @c TODO need a crossref to the proper description of "where" see bla for more ...
  406. We create a codelet which may only be executed on the CPUs. The @code{where}
  407. field is a bitmask that defines where the codelet may be executed. Here, the
  408. @code{STARPU_CPU} value means that only CPUs can execute this codelet
  409. (@pxref{Codelets and Tasks} for more details on this field).
  410. When a CPU core executes a codelet, it calls the @code{cpu_func} function,
  411. which @emph{must} have the following prototype:
  412. @code{void (*cpu_func)(void *buffers[], void *cl_arg);}
  413. In this example, we can ignore the first argument of this function which gives a
  414. description of the input and output buffers (e.g. the size and the location of
  415. the matrices) since there is none.
  416. The second argument is a pointer to a buffer passed as an
  417. argument to the codelet by the means of the @code{cl_arg} field of the
  418. @code{starpu_task} structure.
  419. @c TODO rewrite so that it is a little clearer ?
  420. Be aware that this may be a pointer to a
  421. @emph{copy} of the actual buffer, and not the pointer given by the programmer:
  422. if the codelet modifies this buffer, there is no guarantee that the initial
  423. buffer will be modified as well: this for instance implies that the buffer
  424. cannot be used as a synchronization medium. If synchronization is needed, data
  425. has to be registered to StarPU, see @ref{Scaling a Vector}.
  426. @node Submitting a Task
  427. @subsection Submitting a Task
  428. @cartouche
  429. @smallexample
  430. void callback_func(void *callback_arg)
  431. @{
  432. printf("Callback function (arg %x)\n", callback_arg);
  433. @}
  434. int main(int argc, char **argv)
  435. @{
  436. /* @b{initialize StarPU} */
  437. starpu_init(NULL);
  438. struct starpu_task *task = starpu_task_create();
  439. task->cl = &cl; /* @b{Pointer to the codelet defined above} */
  440. struct params params = @{ 1, 2.0f @};
  441. task->cl_arg = &params;
  442. task->cl_arg_size = sizeof(params);
  443. task->callback_func = callback_func;
  444. task->callback_arg = 0x42;
  445. /* @b{starpu_task_submit will be a blocking call} */
  446. task->synchronous = 1;
  447. /* @b{submit the task to StarPU} */
  448. starpu_task_submit(task);
  449. /* @b{terminate StarPU} */
  450. starpu_shutdown();
  451. return 0;
  452. @}
  453. @end smallexample
  454. @end cartouche
  455. Before submitting any tasks to StarPU, @code{starpu_init} must be called. The
  456. @code{NULL} argument specifies that we use default configuration. Tasks cannot
  457. be submitted after the termination of StarPU by a call to
  458. @code{starpu_shutdown}.
  459. In the example above, a task structure is allocated by a call to
  460. @code{starpu_task_create}. This function only allocates and fills the
  461. corresponding structure with the default settings (@pxref{starpu_task_create}),
  462. but it does not submit the task to StarPU.
  463. @c not really clear ;)
  464. The @code{cl} field is a pointer to the codelet which the task will
  465. execute: in other words, the codelet structure describes which computational
  466. kernel should be offloaded on the different architectures, and the task
  467. structure is a wrapper containing a codelet and the piece of data on which the
  468. codelet should operate.
  469. The optional @code{cl_arg} field is a pointer to a buffer (of size
  470. @code{cl_arg_size}) with some parameters for the kernel
  471. described by the codelet. For instance, if a codelet implements a computational
  472. kernel that multiplies its input vector by a constant, the constant could be
  473. specified by the means of this buffer, instead of registering it as a StarPU
  474. data.
  475. Once a task has been executed, an optional callback function is be called.
  476. While the computational kernel could be offloaded on various architectures, the
  477. callback function is always executed on a CPU. The @code{callback_arg}
  478. pointer is passed as an argument of the callback. The prototype of a callback
  479. function must be:
  480. @code{void (*callback_function)(void *);}
  481. If the @code{synchronous} field is non-zero, task submission will be
  482. synchronous: the @code{starpu_task_submit} function will not return until the
  483. task was executed. Note that the @code{starpu_shutdown} method does not
  484. guarantee that asynchronous tasks have been executed before it returns,
  485. @code{starpu_task_wait_for_all} can be used to that effect..
  486. @node Execution of Hello World
  487. @subsection Execution of Hello World
  488. @smallexample
  489. % make hello_world
  490. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world
  491. % ./hello_world
  492. Hello world (params = @{1, 2.000000@} )
  493. Callback function (arg 42)
  494. @end smallexample
  495. @node Scaling a Vector
  496. @section Manipulating Data: Scaling a Vector
  497. The previous example has shown how to submit tasks. In this section,
  498. we show how StarPU tasks can manipulate data. The full source code for
  499. this example is given in @ref{Full source code for the 'Scaling a Vector' example}.
  500. @menu
  501. * Source code of Vector Scaling::
  502. * Execution of Vector Scaling::
  503. @end menu
  504. @node Source code of Vector Scaling
  505. @subsection Source code of Vector Scaling
  506. Programmers can describe the data layout of their application so that StarPU is
  507. responsible for enforcing data coherency and availability across the machine.
  508. Instead of handling complex (and non-portable) mechanisms to perform data
  509. movements, programmers only declare which piece of data is accessed and/or
  510. modified by a task, and StarPU makes sure that when a computational kernel
  511. starts somewhere (e.g. on a GPU), its data are available locally.
  512. Before submitting those tasks, the programmer first needs to declare the
  513. different pieces of data to StarPU using the @code{starpu_*_data_register}
  514. functions. To ease the development of applications for StarPU, it is possible
  515. to describe multiple types of data layout. A type of data layout is called an
  516. @b{interface}. There are different predefined interfaces available in StarPU:
  517. here we will consider the @b{vector interface}.
  518. The following lines show how to declare an array of @code{NX} elements of type
  519. @code{float} using the vector interface:
  520. @cartouche
  521. @smallexample
  522. float vector[NX];
  523. starpu_data_handle vector_handle;
  524. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  525. sizeof(vector[0]));
  526. @end smallexample
  527. @end cartouche
  528. The first argument, called the @b{data handle}, is an opaque pointer which
  529. designates the array in StarPU. This is also the structure which is used to
  530. describe which data is used by a task. The second argument is the node number
  531. where the data originally resides. Here it is 0 since the @code{vector} array is in
  532. the main memory. Then comes the pointer @code{vector} where the data can be found in main memory,
  533. the number of elements in the vector and the size of each element.
  534. The following shows how to construct a StarPU task that will manipulate the
  535. vector and a constant factor.
  536. @cartouche
  537. @smallexample
  538. float factor = 3.14;
  539. struct starpu_task *task = starpu_task_create();
  540. task->cl = &cl; /* @b{Pointer to the codelet defined below} */
  541. task->buffers[0].handle = vector_handle; /* @b{First parameter of the codelet} */
  542. task->buffers[0].mode = STARPU_RW;
  543. task->cl_arg = &factor;
  544. task->cl_arg_size = sizeof(factor);
  545. task->synchronous = 1;
  546. starpu_task_submit(task);
  547. @end smallexample
  548. @end cartouche
  549. Since the factor is a mere constant float value parameter,
  550. it does not need a preliminary registration, and
  551. can just be passed through the @code{cl_arg} pointer like in the previous
  552. example. The vector parameter is described by its handle.
  553. There are two fields in each element of the @code{buffers} array.
  554. @code{handle} is the handle of the data, and @code{mode} specifies how the
  555. kernel will access the data (@code{STARPU_R} for read-only, @code{STARPU_W} for
  556. write-only and @code{STARPU_RW} for read and write access).
  557. The definition of the codelet can be written as follows:
  558. @cartouche
  559. @smallexample
  560. void scal_cpu_func(void *buffers[], void *cl_arg)
  561. @{
  562. unsigned i;
  563. float *factor = cl_arg;
  564. /* length of the vector */
  565. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  566. /* local copy of the vector pointer */
  567. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  568. for (i = 0; i < n; i++)
  569. val[i] *= *factor;
  570. @}
  571. starpu_codelet cl = @{
  572. .where = STARPU_CPU,
  573. .cpu_func = scal_cpu_func,
  574. .nbuffers = 1
  575. @};
  576. @end smallexample
  577. @end cartouche
  578. The first argument is an array that gives
  579. a description of all the buffers passed in the @code{task->buffers}@ array. The
  580. size of this array is given by the @code{nbuffers} field of the codelet
  581. structure. For the sake of genericity, this array contains pointers to the
  582. different interfaces describing each buffer. In the case of the @b{vector
  583. interface}, the location of the vector (resp. its length) is accessible in the
  584. @code{ptr} (resp. @code{nx}) of this array. Since the vector is accessed in a
  585. read-write fashion, any modification will automatically affect future accesses
  586. to this vector made by other tasks.
  587. The second argument of the @code{scal_cpu_func} function contains a pointer to the
  588. parameters of the codelet (given in @code{task->cl_arg}), so that we read the
  589. constant factor from this pointer.
  590. @node Execution of Vector Scaling
  591. @subsection Execution of Vector Scaling
  592. @smallexample
  593. % make vector_scal
  594. cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -o vector_scal
  595. % ./vector_scal
  596. 0.000000 3.000000 6.000000 9.000000 12.000000
  597. @end smallexample
  598. @node Vector Scaling on an Hybrid CPU/GPU Machine
  599. @section Vector Scaling on an Hybrid CPU/GPU Machine
  600. Contrary to the previous examples, the task submitted in this example may not
  601. only be executed by the CPUs, but also by a CUDA device.
  602. @menu
  603. * Definition of the CUDA Kernel::
  604. * Definition of the OpenCL Kernel::
  605. * Definition of the Main Code::
  606. * Execution of Hybrid Vector Scaling::
  607. @end menu
  608. @node Definition of the CUDA Kernel
  609. @subsection Definition of the CUDA Kernel
  610. The CUDA implementation can be written as follows. It needs to be
  611. compiled with a CUDA compiler such as nvcc, the NVIDIA CUDA compiler
  612. driver.
  613. @cartouche
  614. @smallexample
  615. #include <starpu.h>
  616. static __global__ void vector_mult_cuda(float *val, unsigned n,
  617. float factor)
  618. @{
  619. unsigned i;
  620. if (i < n)
  621. val[i] *= factor;
  622. @}
  623. extern "C" void scal_cuda_func(void *buffers[], void *_args)
  624. @{
  625. float *factor = (float *)_args;
  626. /* length of the vector */
  627. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  628. /* local copy of the vector pointer */
  629. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  630. unsigned threads_per_block = 64;
  631. unsigned nblocks = (n + threads_per_block-1) / threads_per_block;
  632. @i{ vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);}
  633. @i{ cudaStreamSynchronize(starpu_cuda_get_local_stream());}
  634. @}
  635. @end smallexample
  636. @end cartouche
  637. @node Definition of the OpenCL Kernel
  638. @subsection Definition of the OpenCL Kernel
  639. The OpenCL implementation can be written as follows. StarPU provides
  640. tools to compile a OpenCL kernel stored in a file.
  641. @cartouche
  642. @smallexample
  643. __kernel void vector_mult_opencl(__global float* val, int nx, float factor)
  644. @{
  645. const int i = get_global_id(0);
  646. if (i < nx) @{
  647. val[i] *= factor;
  648. @}
  649. @}
  650. @end smallexample
  651. @end cartouche
  652. @cartouche
  653. @smallexample
  654. #include <starpu.h>
  655. @i{#include <starpu_opencl.h>}
  656. @i{extern struct starpu_opencl_program programs;}
  657. void scal_opencl_func(void *buffers[], void *_args)
  658. @{
  659. float *factor = _args;
  660. @i{ int id, devid, err;}
  661. @i{ cl_kernel kernel;}
  662. @i{ cl_command_queue queue;}
  663. @i{ cl_event event;}
  664. /* length of the vector */
  665. unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);
  666. /* local copy of the vector pointer */
  667. float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);
  668. @i{ id = starpu_worker_get_id();}
  669. @i{ devid = starpu_worker_get_devid(id);}
  670. @i{ err = starpu_opencl_load_kernel(&kernel, &queue, &programs,}
  671. @i{ "vector_mult_opencl", devid); /* @b{Name of the codelet defined above} */}
  672. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  673. @i{ err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &val);}
  674. @i{ err |= clSetKernelArg(kernel, 1, sizeof(n), &n);}
  675. @i{ err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);}
  676. @i{ if (err) STARPU_OPENCL_REPORT_ERROR(err);}
  677. @i{ @{}
  678. @i{ size_t global=1;}
  679. @i{ size_t local=1;}
  680. @i{ err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);}
  681. @i{ if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);}
  682. @i{ @}}
  683. @i{ clFinish(queue);}
  684. @i{ starpu_opencl_collect_stats(event);}
  685. @i{ clReleaseEvent(event);}
  686. @i{ starpu_opencl_release_kernel(kernel);}
  687. @}
  688. @end smallexample
  689. @end cartouche
  690. @node Definition of the Main Code
  691. @subsection Definition of the Main Code
  692. The CPU implementation is the same as in the previous section.
  693. Here is the source of the main application. You can notice the value of the
  694. field @code{where} for the codelet. We specify
  695. @code{STARPU_CPU|STARPU_CUDA|STARPU_OPENCL} to indicate to StarPU that the codelet
  696. can be executed either on a CPU or on a CUDA or an OpenCL device.
  697. @cartouche
  698. @smallexample
  699. #include <starpu.h>
  700. #define NX 2048
  701. extern void scal_cuda_func(void *buffers[], void *_args);
  702. extern void scal_cpu_func(void *buffers[], void *_args);
  703. extern void scal_opencl_func(void *buffers[], void *_args);
  704. /* @b{Definition of the codelet} */
  705. static starpu_codelet cl = @{
  706. .where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* @b{It can be executed on a CPU,} */
  707. /* @b{on a CUDA device, or on an OpenCL device} */
  708. .cuda_func = scal_cuda_func;
  709. .cpu_func = scal_cpu_func;
  710. .opencl_func = scal_opencl_func;
  711. .nbuffers = 1;
  712. @}
  713. #ifdef STARPU_USE_OPENCL
  714. /* @b{The compiled version of the OpenCL program} */
  715. struct starpu_opencl_program programs;
  716. #endif
  717. int main(int argc, char **argv)
  718. @{
  719. float *vector;
  720. int i, ret;
  721. float factor=3.0;
  722. struct starpu_task *task;
  723. starpu_data_handle vector_handle;
  724. starpu_init(NULL); /* @b{Initialising StarPU} */
  725. #ifdef STARPU_USE_OPENCL
  726. starpu_opencl_load_opencl_from_file(
  727. "examples/basic_examples/vector_scal_opencl_codelet.cl", &programs);
  728. #endif
  729. vector = malloc(NX*sizeof(vector[0]));
  730. assert(vector);
  731. for(i=0 ; i<NX ; i++) vector[i] = i;
  732. @end smallexample
  733. @end cartouche
  734. @cartouche
  735. @smallexample
  736. /* @b{Registering data within StarPU} */
  737. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,
  738. NX, sizeof(vector[0]));
  739. /* @b{Definition of the task} */
  740. task = starpu_task_create();
  741. task->cl = &cl;
  742. task->buffers[0].handle = vector_handle;
  743. task->buffers[0].mode = STARPU_RW;
  744. task->cl_arg = &factor;
  745. task->cl_arg_size = sizeof(factor);
  746. @end smallexample
  747. @end cartouche
  748. @cartouche
  749. @smallexample
  750. /* @b{Submitting the task} */
  751. ret = starpu_task_submit(task);
  752. if (ret == -ENODEV) @{
  753. fprintf(stderr, "No worker may execute this task\n");
  754. return 1;
  755. @}
  756. @c TODO: Mmm, should rather be an unregistration with an implicit dependency, no?
  757. /* @b{Waiting for its termination} */
  758. starpu_task_wait_for_all();
  759. /* @b{Update the vector in RAM} */
  760. starpu_data_acquire(vector_handle, STARPU_R);
  761. @end smallexample
  762. @end cartouche
  763. @cartouche
  764. @smallexample
  765. /* @b{Access the data} */
  766. for(i=0 ; i<NX; i++) @{
  767. fprintf(stderr, "%f ", vector[i]);
  768. @}
  769. fprintf(stderr, "\n");
  770. /* @b{Release the data and shutdown StarPU} */
  771. starpu_data_release(vector_handle);
  772. starpu_shutdown();
  773. return 0;
  774. @}
  775. @end smallexample
  776. @end cartouche
  777. @node Execution of Hybrid Vector Scaling
  778. @subsection Execution of Hybrid Vector Scaling
  779. The Makefile given at the beginning of the section must be extended to
  780. give the rules to compile the CUDA source code. Note that the source
  781. file of the OpenCL kernel does not need to be compiled now, it will
  782. be compiled at run-time when calling the function
  783. @code{starpu_opencl_load_opencl_from_file()} (@pxref{starpu_opencl_load_opencl_from_file}).
  784. @cartouche
  785. @smallexample
  786. CFLAGS += $(shell pkg-config --cflags libstarpu)
  787. LDFLAGS += $(shell pkg-config --libs libstarpu)
  788. CC = gcc
  789. vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o
  790. %.o: %.cu
  791. nvcc $(CFLAGS) $< -c $@
  792. clean:
  793. rm -f vector_scal *.o
  794. @end smallexample
  795. @end cartouche
  796. @smallexample
  797. % make
  798. @end smallexample
  799. and to execute it, with the default configuration:
  800. @smallexample
  801. % ./vector_scal
  802. 0.000000 3.000000 6.000000 9.000000 12.000000
  803. @end smallexample
  804. or for example, by disabling CPU devices:
  805. @smallexample
  806. % STARPU_NCPUS=0 ./vector_scal
  807. 0.000000 3.000000 6.000000 9.000000 12.000000
  808. @end smallexample
  809. or by disabling CUDA devices (which may permit to enable the use of OpenCL,
  810. see @ref{Using accelerators}):
  811. @smallexample
  812. % STARPU_NCUDA=0 ./vector_scal
  813. 0.000000 3.000000 6.000000 9.000000 12.000000
  814. @end smallexample
  815. @node Task and Worker Profiling
  816. @section Task and Worker Profiling
  817. A full example showing how to use the profiling API is available in
  818. the StarPU sources in the directory @code{examples/profiling/}.
  819. @cartouche
  820. @smallexample
  821. struct starpu_task *task = starpu_task_create();
  822. task->cl = &cl;
  823. task->synchronous = 1;
  824. /* We will destroy the task structure by hand so that we can
  825. * query the profiling info before the task is destroyed. */
  826. task->destroy = 0;
  827. /* Submit and wait for completion (since synchronous was set to 1) */
  828. starpu_task_submit(task);
  829. /* The task is finished, get profiling information */
  830. struct starpu_task_profiling_info *info = task->profiling_info;
  831. /* How much time did it take before the task started ? */
  832. double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);
  833. /* How long was the task execution ? */
  834. double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);
  835. /* We don't need the task structure anymore */
  836. starpu_task_destroy(task);
  837. @end smallexample
  838. @end cartouche
  839. @cartouche
  840. @smallexample
  841. /* Display the occupancy of all workers during the test */
  842. int worker;
  843. for (worker = 0; worker < starpu_worker_get_count(); worker++)
  844. @{
  845. struct starpu_worker_profiling_info worker_info;
  846. int ret = starpu_worker_get_profiling_info(worker, &worker_info);
  847. STARPU_ASSERT(!ret);
  848. double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);
  849. double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);
  850. double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);
  851. float executing_ratio = 100.0*executing_time/total_time;
  852. float sleeping_ratio = 100.0*sleeping_time/total_time;
  853. char workername[128];
  854. starpu_worker_get_name(worker, workername, 128);
  855. fprintf(stderr, "Worker %s:\n", workername);
  856. fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);
  857. fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,
  858. executing_ratio);
  859. fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,
  860. sleeping_ratio);
  861. @}
  862. @end smallexample
  863. @end cartouche
  864. @node Partitioning Data
  865. @section Partitioning Data
  866. An existing piece of data can be partitioned in sub parts to be used by different tasks, for instance:
  867. @cartouche
  868. @smallexample
  869. int vector[NX];
  870. starpu_data_handle handle;
  871. /* Declare data to StarPU */
  872. starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));
  873. /* Partition the vector in PARTS sub-vectors */
  874. starpu_filter f =
  875. @{
  876. .filter_func = starpu_block_filter_func_vector,
  877. .nchildren = PARTS,
  878. .get_nchildren = NULL,
  879. .get_child_ops = NULL
  880. @};
  881. starpu_data_partition(handle, &f);
  882. @end smallexample
  883. @end cartouche
  884. @cartouche
  885. @smallexample
  886. /* Submit a task on each sub-vector */
  887. for (i=0; i<starpu_data_get_nb_children(handle); i++) @{
  888. /* Get subdata number i (there is only 1 dimension) */
  889. starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);
  890. struct starpu_task *task = starpu_task_create();
  891. task->buffers[0].handle = sub_handle;
  892. task->buffers[0].mode = STARPU_RW;
  893. task->cl = &cl;
  894. task->synchronous = 1;
  895. task->cl_arg = &factor;
  896. task->cl_arg_size = sizeof(factor);
  897. starpu_task_submit(task);
  898. @}
  899. @end smallexample
  900. @end cartouche
  901. Partitioning can be applied several times, see
  902. @code{examples/basic_examples/mult.c} and @code{examples/filters/}.
  903. @node Performance model example
  904. @section Performance model example
  905. To achieve good scheduling, StarPU scheduling policies need to be able to
  906. estimate in advance the duration of a task. This is done by giving to codelets a
  907. performance model. There are several kinds of performance models.
  908. @itemize
  909. @item
  910. Providing an estimation from the application itself (@code{STARPU_COMMON} model type and @code{cost_model} field),
  911. see for instance
  912. @code{examples/common/blas_model.h} and @code{examples/common/blas_model.c}. It can also be provided for each architecture (@code{STARPU_PER_ARCH} model type and @code{per_arch} field)
  913. @item
  914. Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
  915. given set of data input/output sizes, the performance will always be about the
  916. same. This is very true for regular kernels on GPUs for instance (<0.1% error),
  917. and just a bit less true on CPUs (~=1% error). This also assumes that there are
  918. few different sets of data input/output sizes. StarPU will then keep record of
  919. the average time of previous executions on the various processing units, and use
  920. it as an estimation. It will also save it in @code{~/.starpu/sampling/codelets}
  921. for further executions. The following is a small code example.
  922. @cartouche
  923. @smallexample
  924. static struct starpu_perfmodel_t mult_perf_model = @{
  925. .type = STARPU_HISTORY_BASED,
  926. .symbol = "mult_perf_model"
  927. @};
  928. starpu_codelet cl = @{
  929. .where = STARPU_CPU,
  930. .cpu_func = cpu_mult,
  931. .nbuffers = 3,
  932. /* for the scheduling policy to be able to use performance models */
  933. .model = &mult_perf_model
  934. @};
  935. @end smallexample
  936. @end cartouche
  937. @item
  938. Measured at runtime and refined by regression (STARPU_REGRESSION_BASED model
  939. type). This still assumes performance regularity, but can work with various data
  940. input sizes, by applying a*n^b+c regression over observed execution times.
  941. @end itemize
  942. The same can be done for task power consumption estimation, by setting the
  943. @code{power_model} field the same way as the @code{model} field. Note: for
  944. now, the application has to give to the power consumption performance model
  945. a different name.
  946. @node Theoretical lower bound on execution time
  947. @section Theoretical lower bound on execution time
  948. For kernels with history-based performance models, StarPU can very easily provide a theoretical lower
  949. bound for the execution time of a whole set of tasks. See for
  950. instance @code{examples/lu/lu_example.c}: before submitting tasks,
  951. call @code{starpu_bound_start}, and after complete execution, call
  952. @code{starpu_bound_stop}. @code{starpu_bound_print_lp} or
  953. @code{starpu_bound_print_mps} can then be used to output a Linear Programming
  954. problem corresponding to the schedule of your tasks. Run it through
  955. @code{lp_solve} or any other linear programming solver, and that will give you a
  956. lower bound for the total execution time of your tasks. If StarPU was compiled
  957. with the glpk library installed, @code{starpu_bound_compute} can be used to
  958. solve it immediately and get the optimized minimum. Its @code{integer}
  959. parameter allows to decide whether integer resolution should be computed
  960. and returned.
  961. The @code{deps} parameter tells StarPU whether to take tasks and implicit data
  962. dependencies into account. It must be understood that the linear programming
  963. problem size is quadratic with the number of tasks and thus the time to solve it
  964. will be very long, it could be minutes for just a few dozen tasks. You should
  965. probably use @code{lp_solve -timeout 1 test.pl -wmps test.mps} to convert the
  966. problem to MPS format and then use a better solver, @code{glpsol} might be
  967. better than @code{lp_solve} for instance (the @code{--pcost} option may be
  968. useful), but sometimes doesn't manage to converge. @code{cbc} might look
  969. slower, but it is parallel. Be sure to try at least all the @code{-B} options
  970. of @code{lp_solve}. For instance, we often just use
  971. @code{lp_solve -cc -B1 -Bb -Bg -Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi} , and
  972. the @code{-gr} option can also be quite useful.
  973. Setting @code{deps} to 0 will only take into account the actual computations
  974. on processing units. It however still properly takes into account the varying
  975. performances of kernels and processing units, which is quite more accurate than
  976. just comparing StarPU performances with the fastest of the kernels being used.
  977. The @code{prio} parameter tells StarPU whether to simulate taking into account
  978. the priorities as the StarPU scheduler would, i.e. schedule prioritized
  979. tasks before less prioritized tasks, to check to which extend this results
  980. to a less optimal solution. This increases even more computation time.
  981. Note that for simplicity, all this however doesn't take into account data
  982. transfers, which are assumed to be completely overlapped.
  983. @node More examples
  984. @section More examples
  985. More examples are available in the StarPU sources in the @code{examples/}
  986. directory. Simple examples include:
  987. @table @asis
  988. @item @code{incrementer/}:
  989. Trivial incrementation test.
  990. @item @code{basic_examples/}:
  991. Simple documented Hello world (as shown in @ref{Hello World}), vector/scalar product (as shown
  992. in @ref{Vector Scaling on an Hybrid CPU/GPU Machine}), matrix
  993. product examples (as shown in @ref{Performance model example}), an example using the blocked matrix data
  994. interface, and an example using the variable data interface.
  995. @item @code{matvecmult/}:
  996. OpenCL example from NVidia, adapted to StarPU.
  997. @item @code{axpy/}:
  998. AXPY CUBLAS operation adapted to StarPU.
  999. @item @code{fortran/}:
  1000. Example of Fortran bindings.
  1001. @end table
  1002. More advanced examples include:
  1003. @table @asis
  1004. @item @code{filters/}:
  1005. Examples using filters, as shown in @ref{Partitioning Data}.
  1006. @item @code{lu/}:
  1007. LU matrix factorization.
  1008. @end table
  1009. @c ---------------------------------------------------------------------
  1010. @c Performance options
  1011. @c ---------------------------------------------------------------------
  1012. @node Performance optimization
  1013. @chapter How to optimize performance with StarPU
  1014. TODO: improve!
  1015. @menu
  1016. * Data management::
  1017. * Task submission::
  1018. * Task scheduling policy::
  1019. * Task distribution vs Data transfer::
  1020. * Power-based scheduling::
  1021. * Profiling::
  1022. * CUDA-specific optimizations::
  1023. @end menu
  1024. Simply encapsulating application kernels into tasks already permits to
  1025. seamlessly support CPU and GPUs at the same time. To achieve good performance, a
  1026. few additional changes are needed.
  1027. @node Data management
  1028. @section Data management
  1029. By default, StarPU does not enable data prefetching, because CUDA does
  1030. not announce when too many data transfers were scheduled and can thus block
  1031. unexpectedly... To enable data prefetching, use @code{export STARPU_PREFETCH=1}
  1032. .
  1033. By default, StarPU leaves replicates of data wherever they were used, in case they
  1034. will be re-used by other tasks, thus saving the data transfer time. When some
  1035. task modifies some data, all the other replicates are invalidated, and only the
  1036. processing unit will have a valid replicate of the data. If the application knows
  1037. that this data will not be re-used by further tasks, it should advise StarPU to
  1038. immediately replicate it to a desired list of memory nodes (given through a
  1039. bitmask). This can be understood like the write-through mode of CPU caches.
  1040. @example
  1041. starpu_data_set_wt_mask(img_handle, 1<<0);
  1042. @end example
  1043. will for instance request to always transfer a replicate into the main memory (node
  1044. 0), as bit 0 of the write-through bitmask is being set.
  1045. When the application allocates data, whenever possible it should use the
  1046. @code{starpu_data_malloc_pinned_if_possible} function, which will ask CUDA or
  1047. OpenCL to make the allocation itself and pin the corresponding allocated
  1048. memory. This is needed to permit asynchronous data transfer, i.e. permit data
  1049. transfer to overlap with computations.
  1050. @node Task submission
  1051. @section Task submission
  1052. To let StarPU make online optimizations, tasks should be submitted
  1053. asynchronously as much as possible. Ideally, all the tasks should be
  1054. submitted, and a mere @code{starpu_task_wait_for_all} call be done to wait for
  1055. termination. StarPU will then be able to rework the whole schedule, overlap
  1056. computation with communication, manage accelerator local memory usage, etc.
  1057. @node Task scheduling policy
  1058. @section Task scheduling policy
  1059. By default, StarPU uses the @code{eager} simple greedy scheduler. This is
  1060. because it provides correct load balance even if the application codelets do not
  1061. have performance models. If your application codelets have performance models,
  1062. you should change the scheduler thanks to the @code{STARPU_SCHED} environment
  1063. variable. For instance @code{export STARPU_SCHED=dmda} . Use @code{help} to get
  1064. the list of available schedulers.
  1065. Most schedulers are based on an estimation of codelet duration on each kind
  1066. of processing unit. For this to be possible, the application programmer needs
  1067. to configure a performance model for the codelets of the application (see
  1068. @ref{Performance model example} for instance). History-based performance models
  1069. use on-line calibration. StarPU will automatically calibrate codelets
  1070. which have never been calibrated yet. To force continuing calibration, use
  1071. @code{export STARPU_CALIBRATE=1} . To drop existing calibration information
  1072. completely and re-calibrate from start, use @code{export STARPU_CALIBRATE=2}.
  1073. Note: due to CUDA limitations, to be able to measure kernel duration,
  1074. calibration mode needs to disable asynchronous data transfers. Calibration thus
  1075. disables data transfer / computation overlapping, and should thus not be used
  1076. for eventual benchmarks.
  1077. @node Task distribution vs Data transfer
  1078. @section Task distribution vs Data transfer
  1079. Distributing tasks to balance the load induces data transfer penalty. StarPU
  1080. thus needs to find a balance between both. The target function that the
  1081. @code{dmda} scheduler of StarPU
  1082. tries to minimize is @code{alpha * T_execution + beta * T_data_transfer}, where
  1083. @code{T_execution} is the estimated execution time of the codelet (usually
  1084. accurate), and @code{T_data_transfer} is the estimated data transfer time. The
  1085. latter is however estimated based on bus calibration before execution start,
  1086. i.e. with an idle machine. You can force bus re-calibration by running
  1087. @code{starpu_calibrate_bus}. When StarPU manages several GPUs, such estimation
  1088. is not accurate any more. Beta can then be used to correct this by hand. For
  1089. instance, you can use @code{export STARPU_BETA=2} to double the transfer
  1090. time estimation, e.g. because there are two GPUs in the machine. This is of
  1091. course imprecise, but in practice, a rough estimation already gives the good
  1092. results that a precise estimation would give.
  1093. Measuring the actual data transfer time is however on our TODO-list to
  1094. accurately estimate data transfer penalty without the need of a hand-tuned beta parameter.
  1095. @node Power-based scheduling
  1096. @section Power-based scheduling
  1097. If the application can provide some power performance model (through
  1098. the @code{power_model} field of the codelet structure), StarPU will
  1099. take it into account when distributing tasks. The target function that
  1100. the @code{dmda} scheduler minimizes becomes @code{alpha * T_execution +
  1101. beta * T_data_transfer + gamma * Consumption} , where @code{Consumption}
  1102. is the estimated task consumption in Joules. To tune this parameter, use
  1103. @code{export STARPU_GAMMA=3000} for instance, to express that each Joule
  1104. (i.e kW during 1000us) is worth 3000us execution time penalty. Setting
  1105. alpha and beta to zero permits to only take into account power consumption.
  1106. The power actually consumed by the total execution can be displayed by setting
  1107. @code{export STARPU_PROFILING=1 STARPU_WORKER_STATS=1} .
  1108. @node Profiling
  1109. @section Profiling
  1110. Profiling can be enabled by using @code{export STARPU_PROFILING=1} or by
  1111. calling @code{starpu_profiling_status_set} from the source code.
  1112. Statistics on the execution can then be obtained by using @code{export
  1113. STARPU_BUS_STATS=1} and @code{export STARPU_WORKER_STATS=1} . Workers
  1114. stats will include an approximation of the number of executed tasks even if
  1115. @code{STARPU_PROFILING} is not set. This is a convenient way to check that
  1116. execution did happen on accelerators without penalizing performance with
  1117. the profiling overhead. More details on performance feedback are provided by the
  1118. next chapter.
  1119. @node CUDA-specific optimizations
  1120. @section CUDA-specific optimizations
  1121. Due to CUDA limitations, StarPU will have a hard time overlapping
  1122. communications and computations if the application does not use a dedicated
  1123. CUDA stream for its computations. StarPU provides one by the use of
  1124. @code{starpu_cuda_get_local_stream()}. For instance:
  1125. @example
  1126. func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);
  1127. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  1128. @end example
  1129. Unfortunately, a lot of cuda libraries do not have stream variants of kernels.
  1130. @c ---------------------------------------------------------------------
  1131. @c Performance feedback
  1132. @c ---------------------------------------------------------------------
  1133. @node Performance feedback
  1134. @chapter Performance feedback
  1135. @menu
  1136. * On-line:: On-line performance feedback
  1137. * Off-line:: Off-line performance feedback
  1138. * Codelet performance:: Performance of codelets
  1139. @end menu
  1140. @node On-line
  1141. @section On-line performance feedback
  1142. @menu
  1143. * Enabling monitoring:: Enabling on-line performance monitoring
  1144. * Task feedback:: Per-task feedback
  1145. * Codelet feedback:: Per-codelet feedback
  1146. * Worker feedback:: Per-worker feedback
  1147. * Bus feedback:: Bus-related feedback
  1148. @end menu
  1149. @node Enabling monitoring
  1150. @subsection Enabling on-line performance monitoring
  1151. In order to enable online performance monitoring, the application can call
  1152. @code{starpu_profiling_status_set(STARPU_PROFILING_ENABLE)}. It is possible to
  1153. detect whether monitoring is already enabled or not by calling
  1154. @code{starpu_profiling_status_get()}. Enabling monitoring also reinitialize all
  1155. previously collected feedback. The @code{STARPU_PROFILING} environment variable
  1156. can also be set to 1 to achieve the same effect.
  1157. Likewise, performance monitoring is stopped by calling
  1158. @code{starpu_profiling_status_set(STARPU_PROFILING_DISABLE)}. Note that this
  1159. does not reset the performance counters so that the application may consult
  1160. them later on.
  1161. More details about the performance monitoring API are available in section
  1162. @ref{Profiling API}.
  1163. @node Task feedback
  1164. @subsection Per-task feedback
  1165. If profiling is enabled, a pointer to a @code{starpu_task_profiling_info}
  1166. structure is put in the @code{.profiling_info} field of the @code{starpu_task}
  1167. structure when a task terminates.
  1168. This structure is automatically destroyed when the task structure is destroyed,
  1169. either automatically or by calling @code{starpu_task_destroy}.
  1170. The @code{starpu_task_profiling_info} structure indicates the date when the
  1171. task was submitted (@code{submit_time}), started (@code{start_time}), and
  1172. terminated (@code{end_time}), relative to the initialization of
  1173. StarPU with @code{starpu_init}. It also specifies the identifier of the worker
  1174. that has executed the task (@code{workerid}).
  1175. These date are stored as @code{timespec} structures which the user may convert
  1176. into micro-seconds using the @code{starpu_timing_timespec_to_us} helper
  1177. function.
  1178. It it worth noting that the application may directly access this structure from
  1179. the callback executed at the end of the task. The @code{starpu_task} structure
  1180. associated to the callback currently being executed is indeed accessible with
  1181. the @code{starpu_get_current_task()} function.
  1182. @node Codelet feedback
  1183. @subsection Per-codelet feedback
  1184. The @code{per_worker_stats} field of the @code{starpu_codelet_t} structure is
  1185. an array of counters. The i-th entry of the array is incremented every time a
  1186. task implementing the codelet is executed on the i-th worker.
  1187. This array is not reinitialized when profiling is enabled or disabled.
  1188. @node Worker feedback
  1189. @subsection Per-worker feedback
  1190. The second argument returned by the @code{starpu_worker_get_profiling_info}
  1191. function is a @code{starpu_worker_profiling_info} structure that gives
  1192. statistics about the specified worker. This structure specifies when StarPU
  1193. started collecting profiling information for that worker (@code{start_time}),
  1194. the duration of the profiling measurement interval (@code{total_time}), the
  1195. time spent executing kernels (@code{executing_time}), the time spent sleeping
  1196. because there is no task to execute at all (@code{sleeping_time}), and the
  1197. number of tasks that were executed while profiling was enabled.
  1198. These values give an estimation of the proportion of time spent do real work,
  1199. and the time spent either sleeping because there are not enough executable
  1200. tasks or simply wasted in pure StarPU overhead.
  1201. Calling @code{starpu_worker_get_profiling_info} resets the profiling
  1202. information associated to a worker.
  1203. When an FxT trace is generated (see @ref{Generating traces}), it is also
  1204. possible to use the @code{starpu_top} script (described in @ref{starpu-top}) to
  1205. generate a graphic showing the evolution of these values during the time, for
  1206. the different workers.
  1207. @node Bus feedback
  1208. @subsection Bus-related feedback
  1209. TODO
  1210. @c how to enable/disable performance monitoring
  1211. @c what kind of information do we get ?
  1212. @node Off-line
  1213. @section Off-line performance feedback
  1214. @menu
  1215. * Generating traces:: Generating traces with FxT
  1216. * Gantt diagram:: Creating a Gantt Diagram
  1217. * DAG:: Creating a DAG with graphviz
  1218. * starpu-top:: Monitoring activity
  1219. @end menu
  1220. @node Generating traces
  1221. @subsection Generating traces with FxT
  1222. StarPU can use the FxT library (see
  1223. @indicateurl{https://savannah.nongnu.org/projects/fkt/}) to generate traces
  1224. with a limited runtime overhead.
  1225. You can either get the FxT library from CVS (autotools are required):
  1226. @example
  1227. % cvs -d :pserver:anonymous@@cvs.sv.gnu.org:/sources/fkt co FxT
  1228. % ./bootstrap
  1229. @end example
  1230. If autotools are not available on your machine, or if you prefer to do so,
  1231. FxT's code is also available as a tarball:
  1232. @example
  1233. % wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.tar.gz
  1234. @end example
  1235. Compiling and installing the FxT library in the @code{$FXTDIR} path is
  1236. done following the standard procedure:
  1237. @example
  1238. % ./configure --prefix=$FXTDIR
  1239. % make
  1240. % make install
  1241. @end example
  1242. In order to have StarPU to generate traces, StarPU should be configured with
  1243. the @code{--with-fxt} option:
  1244. @example
  1245. $ ./configure --with-fxt=$FXTDIR
  1246. @end example
  1247. When FxT is enabled, a trace is generated when StarPU is terminated by calling
  1248. @code{starpu_shutdown()}). The trace is a binary file whose name has the form
  1249. @code{prof_file_XXX_YYY} where @code{XXX} is the user name, and
  1250. @code{YYY} is the pid of the process that used StarPU. This file is saved in the
  1251. @code{/tmp/} directory by default, or by the directory specified by
  1252. the @code{STARPU_FXT_PREFIX} environment variable.
  1253. @node Gantt diagram
  1254. @subsection Creating a Gantt Diagram
  1255. When the FxT trace file @code{filename} has been generated, it is possible to
  1256. generate a trace in the Paje format by calling:
  1257. @example
  1258. % starpu_fxt_tool -i filename
  1259. @end example
  1260. This will create a @code{paje.trace} file in the current directory that can be
  1261. inspected with the ViTE trace visualizing open-source tool. More information
  1262. about ViTE is available at @indicateurl{http://vite.gforge.inria.fr/}. It is
  1263. possible to open the @code{paje.trace} file with ViTE by using the following
  1264. command:
  1265. @example
  1266. % vite paje.trace
  1267. @end example
  1268. @node DAG
  1269. @subsection Creating a DAG with graphviz
  1270. When the FxT trace file @code{filename} has been generated, it is possible to
  1271. generate a task graph in the DOT format by calling:
  1272. @example
  1273. $ starpu_fxt_tool -i filename
  1274. @end example
  1275. This will create a @code{dag.dot} file in the current directory. This file is a
  1276. task graph described using the DOT language. It is possible to get a
  1277. graphical output of the graph by using the graphviz library:
  1278. @example
  1279. $ dot -Tpdf dag.dot -o output.pdf
  1280. @end example
  1281. @node starpu-top
  1282. @subsection Monitoring activity
  1283. When the FxT trace file @code{filename} has been generated, it is possible to
  1284. generate a activity trace by calling:
  1285. @example
  1286. $ starpu_fxt_tool -i filename
  1287. @end example
  1288. This will create an @code{activity.data} file in the current
  1289. directory. A profile of the application showing the activity of StarPU
  1290. during the execution of the program can be generated:
  1291. @example
  1292. $ starpu_top.sh activity.data
  1293. @end example
  1294. This will create a file named @code{activity.eps} in the current directory.
  1295. This picture is composed of two parts.
  1296. The first part shows the activity of the different workers. The green sections
  1297. indicate which proportion of the time was spent executed kernels on the
  1298. processing unit. The red sections indicate the proportion of time spent in
  1299. StartPU: an important overhead may indicate that the granularity may be too
  1300. low, and that bigger tasks may be appropriate to use the processing unit more
  1301. efficiently. The black sections indicate that the processing unit was blocked
  1302. because there was no task to process: this may indicate a lack of parallelism
  1303. which may be alleviated by creating more tasks when it is possible.
  1304. The second part of the @code{activity.eps} picture is a graph showing the
  1305. evolution of the number of tasks available in the system during the execution.
  1306. Ready tasks are shown in black, and tasks that are submitted but not
  1307. schedulable yet are shown in grey.
  1308. @node Codelet performance
  1309. @section Performance of codelets
  1310. The performance model of codelets can be examined by using the
  1311. @code{starpu_perfmodel_display} tool:
  1312. @example
  1313. $ starpu_perfmodel_display -l
  1314. file: <malloc_pinned.hannibal>
  1315. file: <starpu_slu_lu_model_21.hannibal>
  1316. file: <starpu_slu_lu_model_11.hannibal>
  1317. file: <starpu_slu_lu_model_22.hannibal>
  1318. file: <starpu_slu_lu_model_12.hannibal>
  1319. @end example
  1320. Here, the codelets of the lu example are available. We can examine the
  1321. performance of the 22 kernel:
  1322. @example
  1323. $ starpu_perfmodel_display -s starpu_slu_lu_model_22
  1324. performance model for cpu
  1325. # hash size mean dev n
  1326. 57618ab0 19660800 2.851069e+05 1.829369e+04 109
  1327. performance model for cuda_0
  1328. # hash size mean dev n
  1329. 57618ab0 19660800 1.164144e+04 1.556094e+01 315
  1330. performance model for cuda_1
  1331. # hash size mean dev n
  1332. 57618ab0 19660800 1.164271e+04 1.330628e+01 360
  1333. performance model for cuda_2
  1334. # hash size mean dev n
  1335. 57618ab0 19660800 1.166730e+04 3.390395e+02 456
  1336. @end example
  1337. We can see that for the given size, over a sample of a few hundreds of
  1338. execution, the GPUs are about 20 times faster than the CPUs (numbers are in
  1339. us). The standard deviation is extremely low for the GPUs, and less than 10% for
  1340. CPUs.
  1341. @c ---------------------------------------------------------------------
  1342. @c MPI support
  1343. @c ---------------------------------------------------------------------
  1344. @node StarPU MPI support
  1345. @chapter StarPU MPI support
  1346. TODO: document include/starpu_mpi.h and explain a simple example (pingpong?)
  1347. @c ---------------------------------------------------------------------
  1348. @c Configuration options
  1349. @c ---------------------------------------------------------------------
  1350. @node Configuring StarPU
  1351. @chapter Configuring StarPU
  1352. @menu
  1353. * Compilation configuration::
  1354. * Execution configuration through environment variables::
  1355. @end menu
  1356. @node Compilation configuration
  1357. @section Compilation configuration
  1358. The following arguments can be given to the @code{configure} script.
  1359. @menu
  1360. * Common configuration::
  1361. * Configuring workers::
  1362. * Advanced configuration::
  1363. @end menu
  1364. @node Common configuration
  1365. @subsection Common configuration
  1366. @menu
  1367. * --enable-debug::
  1368. * --enable-fast::
  1369. * --enable-verbose::
  1370. * --enable-coverage::
  1371. @end menu
  1372. @node --enable-debug
  1373. @subsubsection @code{--enable-debug}
  1374. @table @asis
  1375. @item @emph{Description}:
  1376. Enable debugging messages.
  1377. @end table
  1378. @node --enable-fast
  1379. @subsubsection @code{--enable-fast}
  1380. @table @asis
  1381. @item @emph{Description}:
  1382. Do not enforce assertions, saves a lot of time spent to compute them otherwise.
  1383. @end table
  1384. @node --enable-verbose
  1385. @subsubsection @code{--enable-verbose}
  1386. @table @asis
  1387. @item @emph{Description}:
  1388. Augment the verbosity of the debugging messages.
  1389. @end table
  1390. @node --enable-coverage
  1391. @subsubsection @code{--enable-coverage}
  1392. @table @asis
  1393. @item @emph{Description}:
  1394. Enable flags for the @code{gcov} coverage tool.
  1395. @end table
  1396. @node Configuring workers
  1397. @subsection Configuring workers
  1398. @menu
  1399. * --enable-nmaxcpus::
  1400. * --disable-cpu::
  1401. * --enable-maxcudadev::
  1402. * --disable-cuda::
  1403. * --with-cuda-dir::
  1404. * --with-cuda-include-dir::
  1405. * --with-cuda-lib-dir::
  1406. * --enable-maxopencldev::
  1407. * --disable-opencl::
  1408. * --with-opencl-dir::
  1409. * --with-opencl-include-dir::
  1410. * --with-opencl-lib-dir::
  1411. * --enable-gordon::
  1412. * --with-gordon-dir::
  1413. @end menu
  1414. @node --enable-nmaxcpus
  1415. @subsubsection @code{--enable-nmaxcpus=<number>}
  1416. @table @asis
  1417. @item @emph{Description}:
  1418. Defines the maximum number of CPU cores that StarPU will support, then
  1419. available as the @code{STARPU_NMAXCPUS} macro.
  1420. @end table
  1421. @node --disable-cpu
  1422. @subsubsection @code{--disable-cpu}
  1423. @table @asis
  1424. @item @emph{Description}:
  1425. Disable the use of CPUs of the machine. Only GPUs etc. will be used.
  1426. @end table
  1427. @node --enable-maxcudadev
  1428. @subsubsection @code{--enable-maxcudadev=<number>}
  1429. @table @asis
  1430. @item @emph{Description}:
  1431. Defines the maximum number of CUDA devices that StarPU will support, then
  1432. available as the @code{STARPU_MAXCUDADEVS} macro.
  1433. @end table
  1434. @node --disable-cuda
  1435. @subsubsection @code{--disable-cuda}
  1436. @table @asis
  1437. @item @emph{Description}:
  1438. Disable the use of CUDA, even if a valid CUDA installation was detected.
  1439. @end table
  1440. @node --with-cuda-dir
  1441. @subsubsection @code{--with-cuda-dir=<path>}
  1442. @table @asis
  1443. @item @emph{Description}:
  1444. Specify the directory where CUDA is installed. This directory should notably contain
  1445. @code{include/cuda.h}.
  1446. @end table
  1447. @node --with-cuda-include-dir
  1448. @subsubsection @code{--with-cuda-include-dir=<path>}
  1449. @table @asis
  1450. @item @emph{Description}:
  1451. Specify the directory where CUDA headers are installed. This directory should
  1452. notably contain @code{cuda.h}. This defaults to @code{/include} appended to the
  1453. value given to @code{--with-cuda-dir}.
  1454. @end table
  1455. @node --with-cuda-lib-dir
  1456. @subsubsection @code{--with-cuda-lib-dir=<path>}
  1457. @table @asis
  1458. @item @emph{Description}:
  1459. Specify the directory where the CUDA library is installed. This directory should
  1460. notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
  1461. @code{/lib} appended to the value given to @code{--with-cuda-dir}.
  1462. @end table
  1463. @node --enable-maxopencldev
  1464. @subsubsection @code{--enable-maxopencldev=<number>}
  1465. @table @asis
  1466. @item @emph{Description}:
  1467. Defines the maximum number of OpenCL devices that StarPU will support, then
  1468. available as the @code{STARPU_MAXOPENCLDEVS} macro.
  1469. @end table
  1470. @node --disable-opencl
  1471. @subsubsection @code{--disable-opencl}
  1472. @table @asis
  1473. @item @emph{Description}:
  1474. Disable the use of OpenCL, even if the SDK is detected.
  1475. @end table
  1476. @node --with-opencl-dir
  1477. @subsubsection @code{--with-opencl-dir=<path>}
  1478. @table @asis
  1479. @item @emph{Description}:
  1480. Specify the location of the OpenCL SDK. This directory should notably contain
  1481. @code{include/CL/cl.h}.
  1482. @end table
  1483. @node --with-opencl-include-dir
  1484. @subsubsection @code{--with-opencl-include-dir=<path>}
  1485. @table @asis
  1486. @item @emph{Description}:
  1487. Specify the location of OpenCL headers. This directory should notably contain
  1488. @code{CL/cl.h}. This defaults to
  1489. @code{/include} appended to the value given to @code{--with-opencl-dir}.
  1490. @end table
  1491. @node --with-opencl-lib-dir
  1492. @subsubsection @code{--with-opencl-lib-dir=<path>}
  1493. @table @asis
  1494. @item @emph{Description}:
  1495. Specify the location of the OpenCL library. This directory should notably
  1496. contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
  1497. @code{/lib} appended to the value given to @code{--with-opencl-dir}.
  1498. @end table
  1499. @node --enable-gordon
  1500. @subsubsection @code{--enable-gordon}
  1501. @table @asis
  1502. @item @emph{Description}:
  1503. Enable the use of the Gordon runtime for Cell SPUs.
  1504. @c TODO: rather default to enabled when detected
  1505. @end table
  1506. @node --with-gordon-dir
  1507. @subsubsection @code{--with-gordon-dir=<path>}
  1508. @table @asis
  1509. @item @emph{Description}:
  1510. Specify the location of the Gordon SDK.
  1511. @end table
  1512. @node Advanced configuration
  1513. @subsection Advanced configuration
  1514. @menu
  1515. * --enable-perf-debug::
  1516. * --enable-model-debug::
  1517. * --enable-stats::
  1518. * --enable-maxbuffers::
  1519. * --enable-allocation-cache::
  1520. * --enable-opengl-render::
  1521. * --enable-blas-lib::
  1522. * --with-magma::
  1523. * --with-fxt::
  1524. * --with-perf-model-dir::
  1525. * --with-mpicc::
  1526. * --with-goto-dir::
  1527. * --with-atlas-dir::
  1528. * --with-mkl-cflags::
  1529. * --with-mkl-ldflags::
  1530. @end menu
  1531. @node --enable-perf-debug
  1532. @subsubsection @code{--enable-perf-debug}
  1533. @table @asis
  1534. @item @emph{Description}:
  1535. Enable performance debugging.
  1536. @end table
  1537. @node --enable-model-debug
  1538. @subsubsection @code{--enable-model-debug}
  1539. @table @asis
  1540. @item @emph{Description}:
  1541. Enable performance model debugging.
  1542. @end table
  1543. @node --enable-stats
  1544. @subsubsection @code{--enable-stats}
  1545. @table @asis
  1546. @item @emph{Description}:
  1547. Enable statistics.
  1548. @end table
  1549. @node --enable-maxbuffers
  1550. @subsubsection @code{--enable-maxbuffers=<nbuffers>}
  1551. @table @asis
  1552. @item @emph{Description}:
  1553. Define the maximum number of buffers that tasks will be able to take
  1554. as parameters, then available as the @code{STARPU_NMAXBUFS} macro.
  1555. @end table
  1556. @node --enable-allocation-cache
  1557. @subsubsection @code{--enable-allocation-cache}
  1558. @table @asis
  1559. @item @emph{Description}:
  1560. Enable the use of a data allocation cache to avoid the cost of it with
  1561. CUDA. Still experimental.
  1562. @end table
  1563. @node --enable-opengl-render
  1564. @subsubsection @code{--enable-opengl-render}
  1565. @table @asis
  1566. @item @emph{Description}:
  1567. Enable the use of OpenGL for the rendering of some examples.
  1568. @c TODO: rather default to enabled when detected
  1569. @end table
  1570. @node --enable-blas-lib
  1571. @subsubsection @code{--enable-blas-lib=<name>}
  1572. @table @asis
  1573. @item @emph{Description}:
  1574. Specify the blas library to be used by some of the examples. The
  1575. library has to be 'atlas' or 'goto'.
  1576. @end table
  1577. @node --with-magma
  1578. @subsubsection @code{--with-magma=<path>}
  1579. @table @asis
  1580. @item @emph{Description}:
  1581. Specify where magma is installed. This directory should notably contain
  1582. @code{include/magmablas.h}.
  1583. @end table
  1584. @node --with-fxt
  1585. @subsubsection @code{--with-fxt=<path>}
  1586. @table @asis
  1587. @item @emph{Description}:
  1588. Specify the location of FxT (for generating traces and rendering them
  1589. using ViTE). This directory should notably contain
  1590. @code{include/fxt/fxt.h}.
  1591. @c TODO add ref to other section
  1592. @end table
  1593. @node --with-perf-model-dir
  1594. @subsubsection @code{--with-perf-model-dir=<dir>}
  1595. @table @asis
  1596. @item @emph{Description}:
  1597. Specify where performance models should be stored (instead of defaulting to the
  1598. current user's home).
  1599. @end table
  1600. @node --with-mpicc
  1601. @subsubsection @code{--with-mpicc=<path to mpicc>}
  1602. @table @asis
  1603. @item @emph{Description}:
  1604. Specify the location of the @code{mpicc} compiler to be used for starpumpi.
  1605. @end table
  1606. @node --with-goto-dir
  1607. @subsubsection @code{--with-goto-dir=<dir>}
  1608. @table @asis
  1609. @item @emph{Description}:
  1610. Specify the location of GotoBLAS.
  1611. @end table
  1612. @node --with-atlas-dir
  1613. @subsubsection @code{--with-atlas-dir=<dir>}
  1614. @table @asis
  1615. @item @emph{Description}:
  1616. Specify the location of ATLAS. This directory should notably contain
  1617. @code{include/cblas.h}.
  1618. @end table
  1619. @node --with-mkl-cflags
  1620. @subsubsection @code{--with-mkl-cflags=<cflags>}
  1621. @table @asis
  1622. @item @emph{Description}:
  1623. Specify the compilation flags for the MKL Library.
  1624. @end table
  1625. @node --with-mkl-ldflags
  1626. @subsubsection @code{--with-mkl-ldflags=<ldflags>}
  1627. @table @asis
  1628. @item @emph{Description}:
  1629. Specify the linking flags for the MKL Library. Note that the
  1630. @url{http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/}
  1631. website provides a script to determine the linking flags.
  1632. @end table
  1633. @c ---------------------------------------------------------------------
  1634. @c Environment variables
  1635. @c ---------------------------------------------------------------------
  1636. @node Execution configuration through environment variables
  1637. @section Execution configuration through environment variables
  1638. @menu
  1639. * Workers:: Configuring workers
  1640. * Scheduling:: Configuring the Scheduling engine
  1641. * Misc:: Miscellaneous and debug
  1642. @end menu
  1643. Note: the values given in @code{starpu_conf} structure passed when
  1644. calling @code{starpu_init} will override the values of the environment
  1645. variables.
  1646. @node Workers
  1647. @subsection Configuring workers
  1648. @menu
  1649. * STARPU_NCPUS:: Number of CPU workers
  1650. * STARPU_NCUDA:: Number of CUDA workers
  1651. * STARPU_NOPENCL:: Number of OpenCL workers
  1652. * STARPU_NGORDON:: Number of SPU workers (Cell)
  1653. * STARPU_WORKERS_CPUID:: Bind workers to specific CPUs
  1654. * STARPU_WORKERS_CUDAID:: Select specific CUDA devices
  1655. * STARPU_WORKERS_OPENCLID:: Select specific OpenCL devices
  1656. @end menu
  1657. @node STARPU_NCPUS
  1658. @subsubsection @code{STARPU_NCPUS} -- Number of CPU workers
  1659. @table @asis
  1660. @item @emph{Description}:
  1661. Specify the number of CPU workers. Note that by default, StarPU will not allocate
  1662. more CPUs than there are physical CPUs, and that some CPUs are used to control
  1663. the accelerators.
  1664. @end table
  1665. @node STARPU_NCUDA
  1666. @subsubsection @code{STARPU_NCUDA} -- Number of CUDA workers
  1667. @table @asis
  1668. @item @emph{Description}:
  1669. Specify the number of CUDA devices that StarPU can use. If
  1670. @code{STARPU_NCUDA} is lower than the number of physical devices, it is
  1671. possible to select which CUDA devices should be used by the means of the
  1672. @code{STARPU_WORKERS_CUDAID} environment variable. By default, StarPU will
  1673. create as many CUDA workers as there are CUDA devices.
  1674. @end table
  1675. @node STARPU_NOPENCL
  1676. @subsubsection @code{STARPU_NOPENCL} -- Number of OpenCL workers
  1677. @table @asis
  1678. @item @emph{Description}:
  1679. OpenCL equivalent of the @code{STARPU_NCUDA} environment variable.
  1680. @end table
  1681. @node STARPU_NGORDON
  1682. @subsubsection @code{STARPU_NGORDON} -- Number of SPU workers (Cell)
  1683. @table @asis
  1684. @item @emph{Description}:
  1685. Specify the number of SPUs that StarPU can use.
  1686. @end table
  1687. @node STARPU_WORKERS_CPUID
  1688. @subsubsection @code{STARPU_WORKERS_CPUID} -- Bind workers to specific CPUs
  1689. @table @asis
  1690. @item @emph{Description}:
  1691. Passing an array of integers (starting from 0) in @code{STARPU_WORKERS_CPUID}
  1692. specifies on which logical CPU the different workers should be
  1693. bound. For instance, if @code{STARPU_WORKERS_CPUID = "0 1 4 5"}, the first
  1694. worker will be bound to logical CPU #0, the second CPU worker will be bound to
  1695. logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
  1696. determined by the OS, or provided by the @code{hwloc} library in case it is
  1697. available.
  1698. Note that the first workers correspond to the CUDA workers, then come the
  1699. OpenCL and the SPU, and finally the CPU workers. For example if
  1700. we have @code{STARPU_NCUDA=1}, @code{STARPU_NOPENCL=1}, @code{STARPU_NCPUS=2}
  1701. and @code{STARPU_WORKERS_CPUID = "0 2 1 3"}, the CUDA device will be controlled
  1702. by logical CPU #0, the OpenCL device will be controlled by logical CPU #2, and
  1703. the logical CPUs #1 and #3 will be used by the CPU workers.
  1704. If the number of workers is larger than the array given in
  1705. @code{STARPU_WORKERS_CPUID}, the workers are bound to the logical CPUs in a
  1706. round-robin fashion: if @code{STARPU_WORKERS_CPUID = "0 1"}, the first and the
  1707. third (resp. second and fourth) workers will be put on CPU #0 (resp. CPU #1).
  1708. This variable is ignored if the @code{use_explicit_workers_bindid} flag of the
  1709. @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1710. @end table
  1711. @node STARPU_WORKERS_CUDAID
  1712. @subsubsection @code{STARPU_WORKERS_CUDAID} -- Select specific CUDA devices
  1713. @table @asis
  1714. @item @emph{Description}:
  1715. Similarly to the @code{STARPU_WORKERS_CPUID} environment variable, it is
  1716. possible to select which CUDA devices should be used by StarPU. On a machine
  1717. equipped with 4 GPUs, setting @code{STARPU_WORKERS_CUDAID = "1 3"} and
  1718. @code{STARPU_NCUDA=2} specifies that 2 CUDA workers should be created, and that
  1719. they should use CUDA devices #1 and #3 (the logical ordering of the devices is
  1720. the one reported by CUDA).
  1721. This variable is ignored if the @code{use_explicit_workers_cuda_gpuid} flag of
  1722. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1723. @end table
  1724. @node STARPU_WORKERS_OPENCLID
  1725. @subsubsection @code{STARPU_WORKERS_OPENCLID} -- Select specific OpenCL devices
  1726. @table @asis
  1727. @item @emph{Description}:
  1728. OpenCL equivalent of the @code{STARPU_WORKERS_CUDAID} environment variable.
  1729. This variable is ignored if the @code{use_explicit_workers_opencl_gpuid} flag of
  1730. the @code{starpu_conf} structure passed to @code{starpu_init} is set.
  1731. @end table
  1732. @node Scheduling
  1733. @subsection Configuring the Scheduling engine
  1734. @menu
  1735. * STARPU_SCHED:: Scheduling policy
  1736. * STARPU_CALIBRATE:: Calibrate performance models
  1737. * STARPU_PREFETCH:: Use data prefetch
  1738. * STARPU_SCHED_ALPHA:: Computation factor
  1739. * STARPU_SCHED_BETA:: Communication factor
  1740. @end menu
  1741. @node STARPU_SCHED
  1742. @subsubsection @code{STARPU_SCHED} -- Scheduling policy
  1743. @table @asis
  1744. @item @emph{Description}:
  1745. This chooses between the different scheduling policies proposed by StarPU: work
  1746. random, stealing, greedy, with performance models, etc.
  1747. Use @code{STARPU_SCHED=help} to get the list of available schedulers.
  1748. @end table
  1749. @node STARPU_CALIBRATE
  1750. @subsubsection @code{STARPU_CALIBRATE} -- Calibrate performance models
  1751. @table @asis
  1752. @item @emph{Description}:
  1753. If this variable is set to 1, the performance models are calibrated during
  1754. the execution. If it is set to 2, the previous values are dropped to restart
  1755. calibration from scratch. Setting this variable to 0 disable calibration, this
  1756. is the default behaviour.
  1757. Note: this currently only applies to dm and dmda scheduling policies.
  1758. @end table
  1759. @node STARPU_PREFETCH
  1760. @subsubsection @code{STARPU_PREFETCH} -- Use data prefetch
  1761. @table @asis
  1762. @item @emph{Description}:
  1763. This variable indicates whether data prefetching should be enabled (0 means
  1764. that it is disabled). If prefetching is enabled, when a task is scheduled to be
  1765. executed e.g. on a GPU, StarPU will request an asynchronous transfer in
  1766. advance, so that data is already present on the GPU when the task starts. As a
  1767. result, computation and data transfers are overlapped.
  1768. @end table
  1769. @node STARPU_SCHED_ALPHA
  1770. @subsubsection @code{STARPU_SCHED_ALPHA} -- Computation factor
  1771. @table @asis
  1772. @item @emph{Description}:
  1773. To estimate the cost of a task StarPU takes into account the estimated
  1774. computation time (obtained thanks to performance models). The alpha factor is
  1775. the coefficient to be applied to it before adding it to the communication part.
  1776. @end table
  1777. @node STARPU_SCHED_BETA
  1778. @subsubsection @code{STARPU_SCHED_BETA} -- Communication factor
  1779. @table @asis
  1780. @item @emph{Description}:
  1781. To estimate the cost of a task StarPU takes into account the estimated
  1782. data transfer time (obtained thanks to performance models). The beta factor is
  1783. the coefficient to be applied to it before adding it to the computation part.
  1784. @end table
  1785. @node Misc
  1786. @subsection Miscellaneous and debug
  1787. @menu
  1788. * STARPU_LOGFILENAME:: Select debug file name
  1789. * STARPU_FXT_PREFIX:: FxT trace location
  1790. * STARPU_LIMIT_GPU_MEM:: Restrict memory size on the GPUs
  1791. @end menu
  1792. @node STARPU_LOGFILENAME
  1793. @subsubsection @code{STARPU_LOGFILENAME} -- Select debug file name
  1794. @table @asis
  1795. @item @emph{Description}:
  1796. This variable specifies in which file the debugging output should be saved to.
  1797. @end table
  1798. @node STARPU_FXT_PREFIX
  1799. @subsubsection @code{STARPU_FXT_PREFIX} -- FxT trace location
  1800. @table @asis
  1801. @item @emph{Description}
  1802. This variable specifies in which directory to save the trace generated if FxT is enabled.
  1803. @end table
  1804. @node STARPU_LIMIT_GPU_MEM
  1805. @subsubsection @code{STARPU_LIMIT_GPU_MEM} -- Restrict memory size on the GPUs
  1806. @table @asis
  1807. @item @emph{Description}
  1808. This variable specifies the maximum number of megabytes that should be
  1809. available to the application on each GPUs. In case this value is smaller than
  1810. the size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
  1811. on the device. This variable is intended to be used for experimental purposes
  1812. as it emulates devices that have a limited amount of memory.
  1813. @end table
  1814. @c ---------------------------------------------------------------------
  1815. @c StarPU API
  1816. @c ---------------------------------------------------------------------
  1817. @node StarPU API
  1818. @chapter StarPU API
  1819. @menu
  1820. * Initialization and Termination:: Initialization and Termination methods
  1821. * Workers' Properties:: Methods to enumerate workers' properties
  1822. * Data Library:: Methods to manipulate data
  1823. * Data Interfaces::
  1824. * Data Partition::
  1825. * Codelets and Tasks:: Methods to construct tasks
  1826. * Explicit Dependencies:: Explicit Dependencies
  1827. * Implicit Data Dependencies:: Implicit Data Dependencies
  1828. * Performance Model API::
  1829. * Profiling API:: Profiling API
  1830. * CUDA extensions:: CUDA extensions
  1831. * OpenCL extensions:: OpenCL extensions
  1832. * Cell extensions:: Cell extensions
  1833. * Miscellaneous helpers::
  1834. @end menu
  1835. @node Initialization and Termination
  1836. @section Initialization and Termination
  1837. @menu
  1838. * starpu_init:: Initialize StarPU
  1839. * struct starpu_conf:: StarPU runtime configuration
  1840. * starpu_conf_init:: Initialize starpu_conf structure
  1841. * starpu_shutdown:: Terminate StarPU
  1842. @end menu
  1843. @node starpu_init
  1844. @subsection @code{starpu_init} -- Initialize StarPU
  1845. @table @asis
  1846. @item @emph{Description}:
  1847. This is StarPU initialization method, which must be called prior to any other
  1848. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  1849. policy, number of cores, ...) by passing a non-null argument. Default
  1850. configuration is used if the passed argument is @code{NULL}.
  1851. @item @emph{Return value}:
  1852. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  1853. indicates that no worker was available (so that StarPU was not initialized).
  1854. @item @emph{Prototype}:
  1855. @code{int starpu_init(struct starpu_conf *conf);}
  1856. @end table
  1857. @node struct starpu_conf
  1858. @subsection @code{struct starpu_conf} -- StarPU runtime configuration
  1859. @table @asis
  1860. @item @emph{Description}:
  1861. This structure is passed to the @code{starpu_init} function in order
  1862. to configure StarPU.
  1863. When the default value is used, StarPU automatically selects the number
  1864. of processing units and takes the default scheduling policy. This parameter
  1865. overwrites the equivalent environment variables.
  1866. @item @emph{Fields}:
  1867. @table @asis
  1868. @item @code{sched_policy_name} (default = NULL):
  1869. This is the name of the scheduling policy. This can also be specified with the
  1870. @code{STARPU_SCHED} environment variable.
  1871. @item @code{sched_policy} (default = NULL):
  1872. This is the definition of the scheduling policy. This field is ignored
  1873. if @code{sched_policy_name} is set.
  1874. @item @code{ncpus} (default = -1):
  1875. This is the number of CPU cores that StarPU can use. This can also be
  1876. specified with the @code{STARPU_NCPUS} environment variable.
  1877. @item @code{ncuda} (default = -1):
  1878. This is the number of CUDA devices that StarPU can use. This can also be
  1879. specified with the @code{STARPU_NCUDA} environment variable.
  1880. @item @code{nopencl} (default = -1):
  1881. This is the number of OpenCL devices that StarPU can use. This can also be
  1882. specified with the @code{STARPU_NOPENCL} environment variable.
  1883. @item @code{nspus} (default = -1):
  1884. This is the number of Cell SPUs that StarPU can use. This can also be
  1885. specified with the @code{STARPU_NGORDON} environment variable.
  1886. @item @code{use_explicit_workers_bindid} (default = 0)
  1887. If this flag is set, the @code{workers_bindid} array indicates where the
  1888. different workers are bound, otherwise StarPU automatically selects where to
  1889. bind the different workers unless the @code{STARPU_WORKERS_CPUID} environment
  1890. variable is set. The @code{STARPU_WORKERS_CPUID} environment variable is
  1891. ignored if the @code{use_explicit_workers_bindid} flag is set.
  1892. @item @code{workers_bindid[STARPU_NMAXWORKERS]}
  1893. If the @code{use_explicit_workers_bindid} flag is set, this array indicates
  1894. where to bind the different workers. The i-th entry of the
  1895. @code{workers_bindid} indicates the logical identifier of the processor which
  1896. should execute the i-th worker. Note that the logical ordering of the CPUs is
  1897. either determined by the OS, or provided by the @code{hwloc} library in case it
  1898. is available.
  1899. When this flag is set, the @ref{STARPU_WORKERS_CPUID} environment variable is
  1900. ignored.
  1901. @item @code{use_explicit_workers_cuda_gpuid} (default = 0)
  1902. If this flag is set, the CUDA workers will be attached to the CUDA devices
  1903. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  1904. CUDA devices in a round-robin fashion.
  1905. When this flag is set, the @ref{STARPU_WORKERS_CUDAID} environment variable is
  1906. ignored.
  1907. @item @code{workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  1908. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array contains
  1909. the logical identifiers of the CUDA devices (as used by @code{cudaGetDevice}).
  1910. @item @code{use_explicit_workers_opencl_gpuid} (default = 0)
  1911. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  1912. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects the
  1913. OpenCL devices in a round-robin fashion.
  1914. @item @code{workers_opencl_gpuid[STARPU_NMAXWORKERS]}:
  1915. @item @code{calibrate} (default = 0):
  1916. If this flag is set, StarPU will calibrate the performance models when
  1917. executing tasks. If this value is equal to -1, the default value is used. The
  1918. default value is overwritten by the @code{STARPU_CALIBRATE} environment
  1919. variable when it is set.
  1920. @end table
  1921. @end table
  1922. @node starpu_conf_init
  1923. @subsection @code{starpu_conf_init} -- Initialize starpu_conf structure
  1924. @table @asis
  1925. This function initializes the @code{starpu_conf} structure passed as argument
  1926. with the default values. In case some configuration parameters are already
  1927. specified through environment variables, @code{starpu_conf_init} initializes
  1928. the fields of the structure according to the environment variables. For
  1929. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  1930. @code{.ncuda} field of the structure passed as argument.
  1931. @item @emph{Return value}:
  1932. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1933. indicates that the argument was NULL.
  1934. @item @emph{Prototype}:
  1935. @code{int starpu_conf_init(struct starpu_conf *conf);}
  1936. @end table
  1937. @node starpu_shutdown
  1938. @subsection @code{starpu_shutdown} -- Terminate StarPU
  1939. @table @asis
  1940. @item @emph{Description}:
  1941. This is StarPU termination method. It must be called at the end of the
  1942. application: statistics and other post-mortem debugging information are not
  1943. guaranteed to be available until this method has been called.
  1944. @item @emph{Prototype}:
  1945. @code{void starpu_shutdown(void);}
  1946. @end table
  1947. @node Workers' Properties
  1948. @section Workers' Properties
  1949. @menu
  1950. * starpu_worker_get_count:: Get the number of processing units
  1951. * starpu_cpu_worker_get_count:: Get the number of CPU controlled by StarPU
  1952. * starpu_cuda_worker_get_count:: Get the number of CUDA devices controlled by StarPU
  1953. * starpu_opencl_worker_get_count:: Get the number of OpenCL devices controlled by StarPU
  1954. * starpu_spu_worker_get_count:: Get the number of Cell SPUs controlled by StarPU
  1955. * starpu_worker_get_id:: Get the identifier of the current worker
  1956. * starpu_worker_get_devid:: Get the device identifier of a worker
  1957. * starpu_worker_get_type:: Get the type of processing unit associated to a worker
  1958. * starpu_worker_get_name:: Get the name of a worker
  1959. * starpu_worker_get_memory_node:: Get the memory node of a worker
  1960. @end menu
  1961. @node starpu_worker_get_count
  1962. @subsection @code{starpu_worker_get_count} -- Get the number of processing units
  1963. @table @asis
  1964. @item @emph{Description}:
  1965. This function returns the number of workers (i.e. processing units executing
  1966. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  1967. @item @emph{Prototype}:
  1968. @code{unsigned starpu_worker_get_count(void);}
  1969. @end table
  1970. @node starpu_cpu_worker_get_count
  1971. @subsection @code{starpu_cpu_worker_get_count} -- Get the number of CPU controlled by StarPU
  1972. @table @asis
  1973. @item @emph{Description}:
  1974. This function returns the number of CPUs controlled by StarPU. The returned
  1975. value should be at most @code{STARPU_NMAXCPUS}.
  1976. @item @emph{Prototype}:
  1977. @code{unsigned starpu_cpu_worker_get_count(void);}
  1978. @end table
  1979. @node starpu_cuda_worker_get_count
  1980. @subsection @code{starpu_cuda_worker_get_count} -- Get the number of CUDA devices controlled by StarPU
  1981. @table @asis
  1982. @item @emph{Description}:
  1983. This function returns the number of CUDA devices controlled by StarPU. The returned
  1984. value should be at most @code{STARPU_MAXCUDADEVS}.
  1985. @item @emph{Prototype}:
  1986. @code{unsigned starpu_cuda_worker_get_count(void);}
  1987. @end table
  1988. @node starpu_opencl_worker_get_count
  1989. @subsection @code{starpu_opencl_worker_get_count} -- Get the number of OpenCL devices controlled by StarPU
  1990. @table @asis
  1991. @item @emph{Description}:
  1992. This function returns the number of OpenCL devices controlled by StarPU. The returned
  1993. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  1994. @item @emph{Prototype}:
  1995. @code{unsigned starpu_opencl_worker_get_count(void);}
  1996. @end table
  1997. @node starpu_spu_worker_get_count
  1998. @subsection @code{starpu_spu_worker_get_count} -- Get the number of Cell SPUs controlled by StarPU
  1999. @table @asis
  2000. @item @emph{Description}:
  2001. This function returns the number of Cell SPUs controlled by StarPU.
  2002. @item @emph{Prototype}:
  2003. @code{unsigned starpu_opencl_worker_get_count(void);}
  2004. @end table
  2005. @node starpu_worker_get_id
  2006. @subsection @code{starpu_worker_get_id} -- Get the identifier of the current worker
  2007. @table @asis
  2008. @item @emph{Description}:
  2009. This function returns the identifier of the worker associated to the calling
  2010. thread. The returned value is either -1 if the current context is not a StarPU
  2011. worker (i.e. when called from the application outside a task or a callback), or
  2012. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  2013. @item @emph{Prototype}:
  2014. @code{int starpu_worker_get_id(void);}
  2015. @end table
  2016. @node starpu_worker_get_devid
  2017. @subsection @code{starpu_worker_get_devid} -- Get the device identifier of a worker
  2018. @table @asis
  2019. @item @emph{Description}:
  2020. This functions returns the device id of the worker associated to an identifier
  2021. (as returned by the @code{starpu_worker_get_id} function). In the case of a
  2022. CUDA worker, this device identifier is the logical device identifier exposed by
  2023. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  2024. identifier of a CPU worker is the logical identifier of the core on which the
  2025. worker was bound; this identifier is either provided by the OS or by the
  2026. @code{hwloc} library in case it is available.
  2027. @item @emph{Prototype}:
  2028. @code{int starpu_worker_get_devid(int id);}
  2029. @end table
  2030. @node starpu_worker_get_type
  2031. @subsection @code{starpu_worker_get_type} -- Get the type of processing unit associated to a worker
  2032. @table @asis
  2033. @item @emph{Description}:
  2034. This function returns the type of worker associated to an identifier (as
  2035. returned by the @code{starpu_worker_get_id} function). The returned value
  2036. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  2037. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  2038. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  2039. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  2040. identifier is unspecified.
  2041. @item @emph{Prototype}:
  2042. @code{enum starpu_archtype starpu_worker_get_type(int id);}
  2043. @end table
  2044. @node starpu_worker_get_name
  2045. @subsection @code{starpu_worker_get_name} -- Get the name of a worker
  2046. @table @asis
  2047. @item @emph{Description}:
  2048. StarPU associates a unique human readable string to each processing unit. This
  2049. function copies at most the @code{maxlen} first bytes of the unique string
  2050. associated to a worker identified by its identifier @code{id} into the
  2051. @code{dst} buffer. The caller is responsible for ensuring that the @code{dst}
  2052. is a valid pointer to a buffer of @code{maxlen} bytes at least. Calling this
  2053. function on an invalid identifier results in an unspecified behaviour.
  2054. @item @emph{Prototype}:
  2055. @code{void starpu_worker_get_name(int id, char *dst, size_t maxlen);}
  2056. @end table
  2057. @node starpu_worker_get_memory_node
  2058. @subsection @code{starpu_worker_get_memory_node} -- Get the memory node of a worker
  2059. @table @asis
  2060. @item @emph{Description}:
  2061. This function returns the identifier of the memory node associated to the
  2062. worker identified by @code{workerid}.
  2063. @item @emph{Prototype}:
  2064. @code{unsigned starpu_worker_get_memory_node(unsigned workerid);}
  2065. @end table
  2066. @node Data Library
  2067. @section Data Library
  2068. This section describes the data management facilities provided by StarPU.
  2069. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  2070. design their own data interfaces if required.
  2071. @menu
  2072. * starpu_data_malloc_pinned_if_possible:: Allocate data and pin it
  2073. * starpu_access_mode:: Data access mode
  2074. * unsigned memory_node:: Memory node
  2075. * starpu_data_handle:: StarPU opaque data handle
  2076. * void *interface:: StarPU data interface
  2077. * starpu_data_register:: Register a piece of data to StarPU
  2078. * starpu_data_unregister:: Unregister a piece of data from StarPU
  2079. * starpu_data_invalidate:: Invalidate all data replicates
  2080. * starpu_data_acquire:: Access registered data from the application
  2081. * starpu_data_acquire_cb:: Access registered data from the application asynchronously
  2082. * starpu_data_release:: Release registered data from the application
  2083. * starpu_data_set_wt_mask:: Set the Write-Through mask
  2084. @end menu
  2085. @node starpu_data_malloc_pinned_if_possible
  2086. @subsection @code{starpu_data_malloc_pinned_if_possible} -- Allocate data and pin it
  2087. @table @asis
  2088. @item @emph{Description}:
  2089. This function allocates data of the given size. It will also try to pin it in
  2090. CUDA or OpenGL, so that data transfers from this buffer can be asynchronous, and
  2091. thus permit data transfer and computation overlapping.
  2092. @item @emph{Prototype}:
  2093. @code{int starpu_data_malloc_pinned_if_possible(void **A, size_t dim);}
  2094. @end table
  2095. @node starpu_access_mode
  2096. @subsection @code{starpu_access_mode} -- Data access mode
  2097. This datatype describes a data access mode. The different available modes are:
  2098. @table @asis
  2099. @table @asis
  2100. @item @code{STARPU_R} read-only mode.
  2101. @item @code{STARPU_W} write-only mode.
  2102. @item @code{STARPU_RW} read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  2103. @item @code{STARPU_SCRATCH} scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs). This is useful for temporary variables. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function, but this is being considered for future extensions.
  2104. @end table
  2105. @end table
  2106. @node unsigned memory_node
  2107. @subsection @code{unsigned memory_node} -- Memory node
  2108. @table @asis
  2109. @item @emph{Description}:
  2110. Every worker is associated to a memory node which is a logical abstraction of
  2111. the address space from which the processing unit gets its data. For instance,
  2112. the memory node associated to the different CPU workers represents main memory
  2113. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  2114. Every memory node is identified by a logical index which is accessible from the
  2115. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  2116. to StarPU, the specified memory node indicates where the piece of data
  2117. initially resides (we also call this memory node the home node of a piece of
  2118. data).
  2119. @end table
  2120. @node starpu_data_handle
  2121. @subsection @code{starpu_data_handle} -- StarPU opaque data handle
  2122. @table @asis
  2123. @item @emph{Description}:
  2124. StarPU uses @code{starpu_data_handle} as an opaque handle to manage a piece of
  2125. data. Once a piece of data has been registered to StarPU, it is associated to a
  2126. @code{starpu_data_handle} which keeps track of the state of the piece of data
  2127. over the entire machine, so that we can maintain data consistency and locate
  2128. data replicates for instance.
  2129. @end table
  2130. @node void *interface
  2131. @subsection @code{void *interface} -- StarPU data interface
  2132. @table @asis
  2133. @item @emph{Description}:
  2134. Data management is done at a high-level in StarPU: rather than accessing a mere
  2135. list of contiguous buffers, the tasks may manipulate data that are described by
  2136. a high-level construct which we call data interface.
  2137. An example of data interface is the "vector" interface which describes a
  2138. contiguous data array on a spefic memory node. This interface is a simple
  2139. structure containing the number of elements in the array, the size of the
  2140. elements, and the address of the array in the appropriate address space (this
  2141. address may be invalid if there is no valid copy of the array in the memory
  2142. node). More informations on the data interfaces provided by StarPU are
  2143. given in @ref{Data Interfaces}.
  2144. When a piece of data managed by StarPU is used by a task, the task
  2145. implementation is given a pointer to an interface describing a valid copy of
  2146. the data that is accessible from the current processing unit.
  2147. @end table
  2148. @node starpu_data_register
  2149. @subsection @code{starpu_data_register} -- Register a piece of data to StarPU
  2150. @table @asis
  2151. @item @emph{Description}:
  2152. Register a piece of data into the handle located at the @code{handleptr}
  2153. address. The @code{interface} buffer contains the initial description of the
  2154. data in the home node. The @code{ops} argument is a pointer to a structure
  2155. describing the different methods used to manipulate this type of interface. See
  2156. @ref{struct starpu_data_interface_ops_t} for more details on this structure.
  2157. If @code{home_node} is -1, StarPU will automatically
  2158. allocate the memory when it is used for the
  2159. first time in write-only mode. Once such data handle has been automatically
  2160. allocated, it is possible to access it using any access mode.
  2161. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  2162. matrix) which can be registered by the means of helper functions (e.g.
  2163. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  2164. @item @emph{Prototype}:
  2165. @code{void starpu_data_register(starpu_data_handle *handleptr,
  2166. uint32_t home_node,
  2167. void *interface,
  2168. struct starpu_data_interface_ops_t *ops);}
  2169. @end table
  2170. @node starpu_data_unregister
  2171. @subsection @code{starpu_data_unregister} -- Unregister a piece of data from StarPU
  2172. @table @asis
  2173. @item @emph{Description}:
  2174. This function unregisters a data handle from StarPU. If the data was
  2175. automatically allocated by StarPU because the home node was -1, all
  2176. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  2177. is put back into the home node in the buffer that was initially registered.
  2178. Using a data handle that has been unregistered from StarPU results in an
  2179. undefined behaviour.
  2180. @item @emph{Prototype}:
  2181. @code{void starpu_data_unregister(starpu_data_handle handle);}
  2182. @end table
  2183. @node starpu_data_invalidate
  2184. @subsection @code{starpu_data_invalidate} -- Invalidate all data replicates
  2185. @table @asis
  2186. @item @emph{Description}:
  2187. Destroy all replicates of the data handle. After data invalidation, the first
  2188. access to the handle must be performed in write-only mode. Accessing an
  2189. invalidated data in read-mode results in undefined behaviour.
  2190. @item @emph{Prototype}:
  2191. @code{void starpu_data_invalidate(starpu_data_handle handle);}
  2192. @end table
  2193. @c TODO create a specific sections about user interaction with the DSM ?
  2194. @node starpu_data_acquire
  2195. @subsection @code{starpu_data_acquire} -- Access registered data from the application
  2196. @table @asis
  2197. @item @emph{Description}:
  2198. The application must call this function prior to accessing registered data from
  2199. main memory outside tasks. StarPU ensures that the application will get an
  2200. up-to-date copy of the data in main memory located where the data was
  2201. originally registered, and that all concurrent accesses (e.g. from tasks) will
  2202. be consistent with the access mode specified in the @code{mode} argument.
  2203. @code{starpu_data_release} must be called once the application does not need to
  2204. access the piece of data anymore.
  2205. Note that implicit data dependencies are also enforced by
  2206. @code{starpu_data_acquire} in case they are enabled.
  2207. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  2208. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  2209. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  2210. @item @emph{Prototype}:
  2211. @code{int starpu_data_acquire(starpu_data_handle handle, starpu_access_mode mode);}
  2212. @end table
  2213. @node starpu_data_acquire_cb
  2214. @subsection @code{starpu_data_acquire_cb} -- Access registered data from the application asynchronously
  2215. @table @asis
  2216. @item @emph{Description}:
  2217. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  2218. @code{starpu_data_release}. When the data specified in the first argument is
  2219. available in the appropriate access mode, the callback function is executed.
  2220. The application may access the requested data during the execution of this
  2221. callback. The callback function must call @code{starpu_data_release} once the
  2222. application does not need to access the piece of data anymore.
  2223. Note that implicit data dependencies are also enforced by
  2224. @code{starpu_data_acquire_cb} in case they are enabled.
  2225. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  2226. be called from task callbacks. Upon successful completion, this function
  2227. returns 0.
  2228. @item @emph{Prototype}:
  2229. @code{int starpu_data_acquire_cb(starpu_data_handle handle, starpu_access_mode mode, void (*callback)(void *), void *arg);}
  2230. @end table
  2231. @node starpu_data_release
  2232. @subsection @code{starpu_data_release} -- Release registered data from the application
  2233. @table @asis
  2234. @item @emph{Description}:
  2235. This function releases the piece of data acquired by the application either by
  2236. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  2237. @item @emph{Prototype}:
  2238. @code{void starpu_data_release(starpu_data_handle handle);}
  2239. @end table
  2240. @node starpu_data_set_wt_mask
  2241. @subsection @code{starpu_data_set_wt_mask} -- Set the Write-Through mask
  2242. @table @asis
  2243. @item @emph{Description}:
  2244. This function sets the write-through mask of a given data, i.e. a bitmask of
  2245. nodes where the data should be always replicated after modification.
  2246. @item @emph{Prototype}:
  2247. @code{void starpu_data_set_wt_mask(starpu_data_handle handle, uint32_t wt_mask);}
  2248. @end table
  2249. @node Data Interfaces
  2250. @section Data Interfaces
  2251. @menu
  2252. * Variable Interface::
  2253. * Vector Interface::
  2254. * Matrix Interface::
  2255. * 3D Matrix Interface::
  2256. * BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)::
  2257. * CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)::
  2258. @end menu
  2259. @node Variable Interface
  2260. @subsection Variable Interface
  2261. @table @asis
  2262. @item @emph{Description}:
  2263. This variant of @code{starpu_data_register} uses the variable interface,
  2264. i.e. for a mere single variable. @code{ptr} is the address of the variable,
  2265. and @code{elemsize} is the size of the variable.
  2266. @item @emph{Prototype}:
  2267. @code{void starpu_variable_data_register(starpu_data_handle *handle,
  2268. uint32_t home_node,
  2269. uintptr_t ptr, size_t elemsize);}
  2270. @item @emph{Example}:
  2271. @cartouche
  2272. @smallexample
  2273. float var;
  2274. starpu_data_handle var_handle;
  2275. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  2276. @end smallexample
  2277. @end cartouche
  2278. @end table
  2279. @node Vector Interface
  2280. @subsection Vector Interface
  2281. @table @asis
  2282. @item @emph{Description}:
  2283. This variant of @code{starpu_data_register} uses the vector interface,
  2284. i.e. for mere arrays of elements. @code{ptr} is the address of the first
  2285. element in the home node. @code{nx} is the number of elements in the vector.
  2286. @code{elemsize} is the size of each element.
  2287. @item @emph{Prototype}:
  2288. @code{void starpu_vector_data_register(starpu_data_handle *handle, uint32_t home_node,
  2289. uintptr_t ptr, uint32_t nx, size_t elemsize);}
  2290. @item @emph{Example}:
  2291. @cartouche
  2292. @smallexample
  2293. float vector[NX];
  2294. starpu_data_handle vector_handle;
  2295. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  2296. sizeof(vector[0]));
  2297. @end smallexample
  2298. @end cartouche
  2299. @end table
  2300. @node Matrix Interface
  2301. @subsection Matrix Interface
  2302. @table @asis
  2303. @item @emph{Description}:
  2304. This variant of @code{starpu_data_register} uses the matrix interface, i.e. for
  2305. matrices of elements. @code{ptr} is the address of the first element in the home
  2306. node. @code{ld} is the number of elements between rows. @code{nx} is the number
  2307. of elements in a row (this can be different from @code{ld} if there are extra
  2308. elements for alignment for instance). @code{ny} is the number of rows.
  2309. @code{elemsize} is the size of each element.
  2310. @item @emph{Prototype}:
  2311. @code{void starpu_matrix_data_register(starpu_data_handle *handle, uint32_t home_node,
  2312. uintptr_t ptr, uint32_t ld, uint32_t nx,
  2313. uint32_t ny, size_t elemsize);}
  2314. @item @emph{Example}:
  2315. @cartouche
  2316. @smallexample
  2317. float *matrix;
  2318. starpu_data_handle matrix_handle;
  2319. matrix = (float*)malloc(width * height * sizeof(float));
  2320. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  2321. width, width, height, sizeof(float));
  2322. @end smallexample
  2323. @end cartouche
  2324. @end table
  2325. @node 3D Matrix Interface
  2326. @subsection 3D Matrix Interface
  2327. @table @asis
  2328. @item @emph{Description}:
  2329. This variant of @code{starpu_data_register} uses the 3D matrix interface.
  2330. @code{ptr} is the address of the array of first element in the home node.
  2331. @code{ldy} is the number of elements between rows. @code{ldz} is the number
  2332. of rows between z planes. @code{nx} is the number of elements in a row (this
  2333. can be different from @code{ldy} if there are extra elements for alignment
  2334. for instance). @code{ny} is the number of rows in a z plane (likewise with
  2335. @code{ldz}). @code{nz} is the number of z planes. @code{elemsize} is the size of
  2336. each element.
  2337. @item @emph{Prototype}:
  2338. @code{void starpu_block_data_register(starpu_data_handle *handle, uint32_t home_node,
  2339. uintptr_t ptr, uint32_t ldy, uint32_t ldz, uint32_t nx,
  2340. uint32_t ny, uint32_t nz, size_t elemsize);}
  2341. @item @emph{Example}:
  2342. @cartouche
  2343. @smallexample
  2344. float *block;
  2345. starpu_data_handle block_handle;
  2346. block = (float*)malloc(nx*ny*nz*sizeof(float));
  2347. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  2348. nx, nx*ny, nx, ny, nz, sizeof(float));
  2349. @end smallexample
  2350. @end cartouche
  2351. @end table
  2352. @node BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2353. @subsection BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
  2354. @table @asis
  2355. @item @emph{Description}:
  2356. This variant of @code{starpu_data_register} uses the BCSR sparse matrix interface.
  2357. TODO
  2358. @item @emph{Prototype}:
  2359. @code{void starpu_bcsr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2360. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, uint32_t r, uint32_t c, size_t elemsize);}
  2361. @item @emph{Example}:
  2362. @cartouche
  2363. @smallexample
  2364. @end smallexample
  2365. @end cartouche
  2366. @end table
  2367. @node CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2368. @subsection CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)
  2369. @table @asis
  2370. @item @emph{Description}:
  2371. This variant of @code{starpu_data_register} uses the CSR sparse matrix interface.
  2372. TODO
  2373. @item @emph{Prototype}:
  2374. @code{void starpu_csr_data_register(starpu_data_handle *handle, uint32_t home_node, uint32_t nnz, uint32_t nrow,
  2375. uintptr_t nzval, uint32_t *colind, uint32_t *rowptr, uint32_t firstentry, size_t elemsize);}
  2376. @item @emph{Example}:
  2377. @cartouche
  2378. @smallexample
  2379. @end smallexample
  2380. @end cartouche
  2381. @end table
  2382. @node Data Partition
  2383. @section Data Partition
  2384. @menu
  2385. * struct starpu_data_filter:: StarPU filter structure
  2386. * starpu_data_partition:: Partition Data
  2387. * starpu_data_unpartition:: Unpartition Data
  2388. * starpu_data_get_nb_children::
  2389. * starpu_data_get_sub_data::
  2390. * Predefined filter functions::
  2391. @end menu
  2392. @node struct starpu_data_filter
  2393. @subsection @code{struct starpu_data_filter} -- StarPU filter structure
  2394. @table @asis
  2395. @item @emph{Description}:
  2396. The filter structure describes a data partitioning operation, to be given to the
  2397. @code{starpu_data_partition} function, see @ref{starpu_data_partition} for an example.
  2398. @item @emph{Fields}:
  2399. @table @asis
  2400. @item @code{filter_func}:
  2401. This function fills the @code{child_interface} structure with interface
  2402. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  2403. @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts);}
  2404. @item @code{nchildren}:
  2405. This is the number of parts to partition the data into.
  2406. @item @code{get_nchildren}:
  2407. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  2408. children depends on the actual data (e.g. the number of blocks in a sparse
  2409. matrix).
  2410. @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle initial_handle);}
  2411. @item @code{get_child_ops}:
  2412. In case the resulting children use a different data interface, this function
  2413. returns which interface is used by child number @code{id}.
  2414. @code{struct starpu_data_interface_ops_t *(*get_child_ops)(struct starpu_data_filter *, unsigned id);}
  2415. @item @code{filter_arg}:
  2416. Some filters take an addition parameter, but this is usually unused.
  2417. @item @code{filter_arg_ptr}:
  2418. Some filters take an additional array parameter like the sizes of the parts, but
  2419. this is usually unused.
  2420. @end table
  2421. @end table
  2422. @node starpu_data_partition
  2423. @subsection starpu_data_partition -- Partition Data
  2424. @table @asis
  2425. @item @emph{Description}:
  2426. This requests partitioning one StarPU data @code{initial_handle} into several
  2427. subdata according to the filter @code{f}
  2428. @item @emph{Prototype}:
  2429. @code{void starpu_data_partition(starpu_data_handle initial_handle, struct starpu_data_filter *f);}
  2430. @item @emph{Example}:
  2431. @cartouche
  2432. @smallexample
  2433. struct starpu_data_filter f = @{
  2434. .filter_func = starpu_vertical_block_filter_func,
  2435. .nchildren = nslicesx,
  2436. .get_nchildren = NULL,
  2437. .get_child_ops = NULL
  2438. @};
  2439. starpu_data_partition(A_handle, &f);
  2440. @end smallexample
  2441. @end cartouche
  2442. @end table
  2443. @node starpu_data_unpartition
  2444. @subsection starpu_data_unpartition -- Unpartition data
  2445. @table @asis
  2446. @item @emph{Description}:
  2447. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  2448. collected back into one big piece in the @code{gathering_node} (usually 0).
  2449. @item @emph{Prototype}:
  2450. @code{void starpu_data_unpartition(starpu_data_handle root_data, uint32_t gathering_node);}
  2451. @item @emph{Example}:
  2452. @cartouche
  2453. @smallexample
  2454. starpu_data_unpartition(A_handle, 0);
  2455. @end smallexample
  2456. @end cartouche
  2457. @end table
  2458. @node starpu_data_get_nb_children
  2459. @subsection starpu_data_get_nb_children
  2460. @table @asis
  2461. @item @emph{Description}:
  2462. This function returns the number of children.
  2463. @item @emph{Return value}:
  2464. The number of children.
  2465. @item @emph{Prototype}:
  2466. @code{int starpu_data_get_nb_children(starpu_data_handle handle);}
  2467. @end table
  2468. @c starpu_data_handle starpu_data_get_child(starpu_data_handle handle, unsigned i);
  2469. @node starpu_data_get_sub_data
  2470. @subsection starpu_data_get_sub_data
  2471. @table @asis
  2472. @item @emph{Description}:
  2473. After partitioning a StarPU data by applying a filter,
  2474. @code{starpu_data_get_sub_data} can be used to get handles for each of the data
  2475. portions. @code{root_data} is the parent data that was partitioned. @code{depth}
  2476. is the number of filters to traverse (in case several filters have been applied,
  2477. to e.g. partition in row blocks, and then in column blocks), and the subsequent
  2478. parameters are the indexes.
  2479. @item @emph{Return value}:
  2480. A handle to the subdata.
  2481. @item @emph{Prototype}:
  2482. @code{starpu_data_handle starpu_data_get_sub_data(starpu_data_handle root_data, unsigned depth, ... );}
  2483. @item @emph{Example}:
  2484. @cartouche
  2485. @smallexample
  2486. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  2487. @end smallexample
  2488. @end cartouche
  2489. @end table
  2490. @node Predefined filter functions
  2491. @subsection Predefined filter functions
  2492. @menu
  2493. * Partitioning BCSR Data::
  2494. * Partitioning BLAS interface::
  2495. * Partitioning Vector Data::
  2496. * Partitioning Block Data::
  2497. @end menu
  2498. This section gives a partial list of the predefined partitioning functions.
  2499. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  2500. list can be found in @code{starpu_data_filters.h} .
  2501. @node Partitioning BCSR Data
  2502. @subsubsection Partitioning BCSR Data
  2503. @table @asis
  2504. @item @emph{Description}:
  2505. TODO
  2506. @item @emph{Prototype}:
  2507. @code{void starpu_canonical_block_filter_bcsr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2508. @end table
  2509. @table @asis
  2510. @item @emph{Description}:
  2511. TODO
  2512. @item @emph{Prototype}:
  2513. @code{void starpu_vertical_block_filter_func_csr(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2514. @end table
  2515. @node Partitioning BLAS interface
  2516. @subsubsection Partitioning BLAS interface
  2517. @table @asis
  2518. @item @emph{Description}:
  2519. This partitions a dense Matrix into horizontal blocks.
  2520. @item @emph{Prototype}:
  2521. @code{void starpu_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2522. @end table
  2523. @table @asis
  2524. @item @emph{Description}:
  2525. This partitions a dense Matrix into vertical blocks.
  2526. @item @emph{Prototype}:
  2527. @code{void starpu_vertical_block_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2528. @end table
  2529. @node Partitioning Vector Data
  2530. @subsubsection Partitioning Vector Data
  2531. @table @asis
  2532. @item @emph{Description}:
  2533. This partitions a vector into blocks of the same size.
  2534. @item @emph{Prototype}:
  2535. @code{void starpu_block_filter_func_vector(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2536. @end table
  2537. @table @asis
  2538. @item @emph{Description}:
  2539. This partitions a vector into blocks of sizes given in @code{filter_arg_ptr}.
  2540. @item @emph{Prototype}:
  2541. @code{void starpu_vector_list_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2542. @end table
  2543. @table @asis
  2544. @item @emph{Description}:
  2545. This partitions a vector into two blocks, the first block size being given in @code{filter_arg}.
  2546. @item @emph{Prototype}:
  2547. @code{void starpu_vector_divide_in_2_filter_func(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2548. @end table
  2549. @node Partitioning Block Data
  2550. @subsubsection Partitioning Block Data
  2551. @table @asis
  2552. @item @emph{Description}:
  2553. This partitions a 3D matrix along the X axis.
  2554. @item @emph{Prototype}:
  2555. @code{void starpu_block_filter_func_block(void *father_interface, void *child_interface, struct starpu_data_filter *f, unsigned id, unsigned nparts);}
  2556. @end table
  2557. @node Codelets and Tasks
  2558. @section Codelets and Tasks
  2559. @menu
  2560. * struct starpu_codelet:: StarPU codelet structure
  2561. * struct starpu_task:: StarPU task structure
  2562. * starpu_task_init:: Initialize a Task
  2563. * starpu_task_create:: Allocate and Initialize a Task
  2564. * starpu_task_deinit:: Release all the resources used by a Task
  2565. * starpu_task_destroy:: Destroy a dynamically allocated Task
  2566. * starpu_task_wait:: Wait for the termination of a Task
  2567. * starpu_task_submit:: Submit a Task
  2568. * starpu_task_wait_for_all:: Wait for the termination of all Tasks
  2569. * starpu_get_current_task:: Return the task currently executed by the worker
  2570. * starpu_display_codelet_stats:: Display statistics
  2571. @end menu
  2572. @node struct starpu_codelet
  2573. @subsection @code{struct starpu_codelet} -- StarPU codelet structure
  2574. @table @asis
  2575. @item @emph{Description}:
  2576. The codelet structure describes a kernel that is possibly implemented on various
  2577. targets. For compatibility, make sure to initialize the whole structure to zero.
  2578. @item @emph{Fields}:
  2579. @table @asis
  2580. @item @code{where}:
  2581. Indicates which types of processing units are able to execute the codelet.
  2582. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  2583. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  2584. indicates that it is only available on Cell SPUs.
  2585. @item @code{cpu_func} (optional):
  2586. Is a function pointer to the CPU implementation of the codelet. Its prototype
  2587. must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  2588. argument being the array of data managed by the data management library, and
  2589. the second argument is a pointer to the argument passed from the @code{cl_arg}
  2590. field of the @code{starpu_task} structure.
  2591. The @code{cpu_func} field is ignored if @code{STARPU_CPU} does not appear in
  2592. the @code{where} field, it must be non-null otherwise.
  2593. @item @code{cuda_func} (optional):
  2594. Is a function pointer to the CUDA implementation of the codelet. @emph{This
  2595. must be a host-function written in the CUDA runtime API}. Its prototype must
  2596. be: @code{void cuda_func(void *buffers[], void *cl_arg);}. The @code{cuda_func}
  2597. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  2598. field, it must be non-null otherwise.
  2599. @item @code{opencl_func} (optional):
  2600. Is a function pointer to the OpenCL implementation of the codelet. Its
  2601. prototype must be:
  2602. @code{void opencl_func(starpu_data_interface_t *descr, void *arg);}.
  2603. This pointer is ignored if @code{STARPU_OPENCL} does not appear in the
  2604. @code{where} field, it must be non-null otherwise.
  2605. @item @code{gordon_func} (optional):
  2606. This is the index of the Cell SPU implementation within the Gordon library.
  2607. See Gordon documentation for more details on how to register a kernel and
  2608. retrieve its index.
  2609. @item @code{nbuffers}:
  2610. Specifies the number of arguments taken by the codelet. These arguments are
  2611. managed by the DSM and are accessed from the @code{void *buffers[]}
  2612. array. The constant argument passed with the @code{cl_arg} field of the
  2613. @code{starpu_task} structure is not counted in this number. This value should
  2614. not be above @code{STARPU_NMAXBUFS}.
  2615. @item @code{model} (optional):
  2616. This is a pointer to the task duration performance model associated to this
  2617. codelet. This optional field is ignored when set to @code{NULL}. TODO
  2618. @item @code{power_model} (optional):
  2619. This is a pointer to the task power consumption performance model associated
  2620. to this codelet. This optional field is ignored when set to @code{NULL}. TODO
  2621. @end table
  2622. @end table
  2623. @node struct starpu_task
  2624. @subsection @code{struct starpu_task} -- StarPU task structure
  2625. @table @asis
  2626. @item @emph{Description}:
  2627. The @code{starpu_task} structure describes a task that can be offloaded on the various
  2628. processing units managed by StarPU. It instantiates a codelet. It can either be
  2629. allocated dynamically with the @code{starpu_task_create} method, or declared
  2630. statically. In the latter case, the programmer has to zero the
  2631. @code{starpu_task} structure and to fill the different fields properly. The
  2632. indicated default values correspond to the configuration of a task allocated
  2633. with @code{starpu_task_create}.
  2634. @item @emph{Fields}:
  2635. @table @asis
  2636. @item @code{cl}:
  2637. Is a pointer to the corresponding @code{starpu_codelet} data structure. This
  2638. describes where the kernel should be executed, and supplies the appropriate
  2639. implementations. When set to @code{NULL}, no code is executed during the tasks,
  2640. such empty tasks can be useful for synchronization purposes.
  2641. @item @code{buffers}:
  2642. Is an array of @code{starpu_buffer_descr_t} structures. It describes the
  2643. different pieces of data accessed by the task, and how they should be accessed.
  2644. The @code{starpu_buffer_descr_t} structure is composed of two fields, the
  2645. @code{handle} field specifies the handle of the piece of data, and the
  2646. @code{mode} field is the required access mode (eg @code{STARPU_RW}). The number
  2647. of entries in this array must be specified in the @code{nbuffers} field of the
  2648. @code{starpu_codelet} structure, and should not excede @code{STARPU_NMAXBUFS}.
  2649. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  2650. option when configuring StarPU.
  2651. @item @code{cl_arg} (optional) (default = NULL):
  2652. This pointer is passed to the codelet through the second argument
  2653. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  2654. In the specific case of the Cell processor, see the @code{cl_arg_size}
  2655. argument.
  2656. @item @code{cl_arg_size} (optional, Cell specific):
  2657. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  2658. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  2659. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  2660. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  2661. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  2662. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  2663. codelets.
  2664. @item @code{callback_func} (optional) (default = @code{NULL}):
  2665. This is a function pointer of prototype @code{void (*f)(void *)} which
  2666. specifies a possible callback. If this pointer is non-null, the callback
  2667. function is executed @emph{on the host} after the execution of the task. The
  2668. callback is passed the value contained in the @code{callback_arg} field. No
  2669. callback is executed if the field is set to @code{NULL}.
  2670. @item @code{callback_arg} (optional) (default = @code{NULL}):
  2671. This is the pointer passed to the callback function. This field is ignored if
  2672. the @code{callback_func} is set to @code{NULL}.
  2673. @item @code{use_tag} (optional) (default = 0):
  2674. If set, this flag indicates that the task should be associated with the tag
  2675. contained in the @code{tag_id} field. Tag allow the application to synchronize
  2676. with the task and to express task dependencies easily.
  2677. @item @code{tag_id}:
  2678. This fields contains the tag associated to the task if the @code{use_tag} field
  2679. was set, it is ignored otherwise.
  2680. @item @code{synchronous}:
  2681. If this flag is set, the @code{starpu_task_submit} function is blocking and
  2682. returns only when the task has been executed (or if no worker is able to
  2683. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  2684. @item @code{priority} (optional) (default = @code{STARPU_DEFAULT_PRIO}):
  2685. This field indicates a level of priority for the task. This is an integer value
  2686. that must be set between the return values of the
  2687. @code{starpu_sched_get_min_priority} function for the least important tasks,
  2688. and that of the @code{starpu_sched_get_max_priority} for the most important
  2689. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  2690. are provided for convenience and respectively returns value of
  2691. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  2692. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  2693. order to allow static task initialization. Scheduling strategies that take
  2694. priorities into account can use this parameter to take better scheduling
  2695. decisions, but the scheduling policy may also ignore it.
  2696. @item @code{execute_on_a_specific_worker} (default = 0):
  2697. If this flag is set, StarPU will bypass the scheduler and directly affect this
  2698. task to the worker specified by the @code{workerid} field.
  2699. @item @code{workerid} (optional):
  2700. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  2701. which is the identifier of the worker that should process this task (as
  2702. returned by @code{starpu_worker_get_id}). This field is ignored if
  2703. @code{execute_on_a_specific_worker} field is set to 0.
  2704. @item @code{detach} (optional) (default = 1):
  2705. If this flag is set, it is not possible to synchronize with the task
  2706. by the means of @code{starpu_task_wait} later on. Internal data structures
  2707. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  2708. flag is not set.
  2709. @item @code{destroy} (optional) (default = 1):
  2710. If this flag is set, the task structure will automatically be freed, either
  2711. after the execution of the callback if the task is detached, or during
  2712. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  2713. allocated data structures will not be freed until @code{starpu_task_destroy} is
  2714. called explicitly. Setting this flag for a statically allocated task structure
  2715. will result in undefined behaviour.
  2716. @item @code{predicted} (output field):
  2717. Predicted duration of the task. This field is only set if the scheduling
  2718. strategy used performance models.
  2719. @end table
  2720. @end table
  2721. @node starpu_task_init
  2722. @subsection @code{starpu_task_init} -- Initialize a Task
  2723. @table @asis
  2724. @item @emph{Description}:
  2725. Initialize a task structure with default values. This function is implicitly
  2726. called by @code{starpu_task_create}. By default, tasks initialized with
  2727. @code{starpu_task_init} must be deinitialized explicitly with
  2728. @code{starpu_task_deinit}. Tasks can also be initialized statically, using the
  2729. constant @code{STARPU_TASK_INITIALIZER}.
  2730. @item @emph{Prototype}:
  2731. @code{void starpu_task_init(struct starpu_task *task);}
  2732. @end table
  2733. @node starpu_task_create
  2734. @subsection @code{starpu_task_create} -- Allocate and Initialize a Task
  2735. @table @asis
  2736. @item @emph{Description}:
  2737. Allocate a task structure and initialize it with default values. Tasks
  2738. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  2739. task is terminated. If the destroy flag is explicitly unset, the resources used
  2740. by the task are freed by calling
  2741. @code{starpu_task_destroy}.
  2742. @item @emph{Prototype}:
  2743. @code{struct starpu_task *starpu_task_create(void);}
  2744. @end table
  2745. @node starpu_task_deinit
  2746. @subsection @code{starpu_task_deinit} -- Release all the resources used by a Task
  2747. @table @asis
  2748. @item @emph{Description}:
  2749. Release all the structures automatically allocated to execute the task. This is
  2750. called automatically by @code{starpu_task_destroy}, but the task structure itself is not
  2751. freed. This should be used for statically allocated tasks for instance.
  2752. @item @emph{Prototype}:
  2753. @code{void starpu_task_deinit(struct starpu_task *task);}
  2754. @end table
  2755. @node starpu_task_destroy
  2756. @subsection @code{starpu_task_destroy} -- Destroy a dynamically allocated Task
  2757. @table @asis
  2758. @item @emph{Description}:
  2759. Free the resource allocated during @code{starpu_task_create}. This function can be
  2760. called automatically after the execution of a task by setting the
  2761. @code{destroy} flag of the @code{starpu_task} structure (default behaviour).
  2762. Calling this function on a statically allocated task results in an undefined
  2763. behaviour.
  2764. @item @emph{Prototype}:
  2765. @code{void starpu_task_destroy(struct starpu_task *task);}
  2766. @end table
  2767. @node starpu_task_wait
  2768. @subsection @code{starpu_task_wait} -- Wait for the termination of a Task
  2769. @table @asis
  2770. @item @emph{Description}:
  2771. This function blocks until the task has been executed. It is not possible to
  2772. synchronize with a task more than once. It is not possible to wait for
  2773. synchronous or detached tasks.
  2774. @item @emph{Return value}:
  2775. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  2776. indicates that the specified task was either synchronous or detached.
  2777. @item @emph{Prototype}:
  2778. @code{int starpu_task_wait(struct starpu_task *task);}
  2779. @end table
  2780. @node starpu_task_submit
  2781. @subsection @code{starpu_task_submit} -- Submit a Task
  2782. @table @asis
  2783. @item @emph{Description}:
  2784. This function submits a task to StarPU. Calling this function does
  2785. not mean that the task will be executed immediately as there can be data or task
  2786. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  2787. scheduling this task with respect to such dependencies.
  2788. This function returns immediately if the @code{synchronous} field of the
  2789. @code{starpu_task} structure was set to 0, and block until the termination of
  2790. the task otherwise. It is also possible to synchronize the application with
  2791. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  2792. function for instance.
  2793. @item @emph{Return value}:
  2794. In case of success, this function returns 0, a return value of @code{-ENODEV}
  2795. means that there is no worker able to process this task (e.g. there is no GPU
  2796. available and this task is only implemented for CUDA devices).
  2797. @item @emph{Prototype}:
  2798. @code{int starpu_task_submit(struct starpu_task *task);}
  2799. @end table
  2800. @node starpu_task_wait_for_all
  2801. @subsection @code{starpu_task_wait_for_all} -- Wait for the termination of all Tasks
  2802. @table @asis
  2803. @item @emph{Description}:
  2804. This function blocks until all the tasks that were submitted are terminated.
  2805. @item @emph{Prototype}:
  2806. @code{void starpu_task_wait_for_all(void);}
  2807. @end table
  2808. @node starpu_get_current_task
  2809. @subsection @code{starpu_get_current_task} -- Return the task currently executed by the worker
  2810. @table @asis
  2811. @item @emph{Description}:
  2812. This function returns the task currently executed by the worker, or
  2813. NULL if it is called either from a thread that is not a task or simply
  2814. because there is no task being executed at the moment.
  2815. @item @emph{Prototype}:
  2816. @code{struct starpu_task *starpu_get_current_task(void);}
  2817. @end table
  2818. @node starpu_display_codelet_stats
  2819. @subsection @code{starpu_display_codelet_stats} -- Display statistics
  2820. @table @asis
  2821. @item @emph{Description}:
  2822. Output on @code{stderr} some statistics on the codelet @code{cl}.
  2823. @item @emph{Prototype}:
  2824. @code{void starpu_display_codelet_stats(struct starpu_codelet_t *cl);}
  2825. @end table
  2826. @c Callbacks : what can we put in callbacks ?
  2827. @node Explicit Dependencies
  2828. @section Explicit Dependencies
  2829. @menu
  2830. * starpu_task_declare_deps_array:: starpu_task_declare_deps_array
  2831. * starpu_tag_t:: Task logical identifier
  2832. * starpu_tag_declare_deps:: Declare the Dependencies of a Tag
  2833. * starpu_tag_declare_deps_array:: Declare the Dependencies of a Tag
  2834. * starpu_tag_wait:: Block until a Tag is terminated
  2835. * starpu_tag_wait_array:: Block until a set of Tags is terminated
  2836. * starpu_tag_remove:: Destroy a Tag
  2837. * starpu_tag_notify_from_apps:: Feed a tag explicitly
  2838. @end menu
  2839. @node starpu_task_declare_deps_array
  2840. @subsection @code{starpu_task_declare_deps_array} -- Declare task dependencies
  2841. @table @asis
  2842. @item @emph{Description}:
  2843. Declare task dependencies between a @code{task} and an array of tasks of length
  2844. @code{ndeps}. This function must be called prior to the submission of the task,
  2845. but it may called after the submission or the execution of the tasks in the
  2846. array provided the tasks are still valid (ie. they were not automatically
  2847. destroyed). Calling this function on a task that was already submitted or with
  2848. an entry of @code{task_array} that is not a valid task anymore results in an
  2849. undefined behaviour. If @code{ndeps} is null, no dependency is added. It is
  2850. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  2851. same task, in this case, the dependencies are added. It is possible to have
  2852. redundancy in the task dependencies.
  2853. @item @emph{Prototype}:
  2854. @code{void starpu_task_declare_deps_array(struct starpu_task *task, unsigned ndeps, struct starpu_task *task_array[]);}
  2855. @end table
  2856. @node starpu_tag_t
  2857. @subsection @code{starpu_tag_t} -- Task logical identifier
  2858. @table @asis
  2859. @item @emph{Description}:
  2860. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  2861. dependencies between tasks by the means of those tags. To do so, fill the
  2862. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  2863. be arbitrary) and set the @code{use_tag} field to 1.
  2864. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  2865. not be started until the tasks which holds the declared dependency tags are
  2866. completed.
  2867. @end table
  2868. @node starpu_tag_declare_deps
  2869. @subsection @code{starpu_tag_declare_deps} -- Declare the Dependencies of a Tag
  2870. @table @asis
  2871. @item @emph{Description}:
  2872. Specify the dependencies of the task identified by tag @code{id}. The first
  2873. argument specifies the tag which is configured, the second argument gives the
  2874. number of tag(s) on which @code{id} depends. The following arguments are the
  2875. tags which have to be terminated to unlock the task.
  2876. This function must be called before the associated task is submitted to StarPU
  2877. with @code{starpu_task_submit}.
  2878. @item @emph{Remark}
  2879. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  2880. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  2881. typically need to be explicitly casted. Using the
  2882. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  2883. @item @emph{Prototype}:
  2884. @code{void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);}
  2885. @item @emph{Example}:
  2886. @cartouche
  2887. @example
  2888. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2889. starpu_tag_declare_deps((starpu_tag_t)0x1,
  2890. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  2891. @end example
  2892. @end cartouche
  2893. @end table
  2894. @node starpu_tag_declare_deps_array
  2895. @subsection @code{starpu_tag_declare_deps_array} -- Declare the Dependencies of a Tag
  2896. @table @asis
  2897. @item @emph{Description}:
  2898. This function is similar to @code{starpu_tag_declare_deps}, except that its
  2899. does not take a variable number of arguments but an array of tags of size
  2900. @code{ndeps}.
  2901. @item @emph{Prototype}:
  2902. @code{void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned ndeps, starpu_tag_t *array);}
  2903. @item @emph{Example}:
  2904. @cartouche
  2905. @example
  2906. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  2907. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  2908. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  2909. @end example
  2910. @end cartouche
  2911. @end table
  2912. @node starpu_tag_wait
  2913. @subsection @code{starpu_tag_wait} -- Block until a Tag is terminated
  2914. @table @asis
  2915. @item @emph{Description}:
  2916. This function blocks until the task associated to tag @code{id} has been
  2917. executed. This is a blocking call which must therefore not be called within
  2918. tasks or callbacks, but only from the application directly. It is possible to
  2919. synchronize with the same tag multiple times, as long as the
  2920. @code{starpu_tag_remove} function is not called. Note that it is still
  2921. possible to synchronize with a tag associated to a task which @code{starpu_task}
  2922. data structure was freed (e.g. if the @code{destroy} flag of the
  2923. @code{starpu_task} was enabled).
  2924. @item @emph{Prototype}:
  2925. @code{void starpu_tag_wait(starpu_tag_t id);}
  2926. @end table
  2927. @node starpu_tag_wait_array
  2928. @subsection @code{starpu_tag_wait_array} -- Block until a set of Tags is terminated
  2929. @table @asis
  2930. @item @emph{Description}:
  2931. This function is similar to @code{starpu_tag_wait} except that it blocks until
  2932. @emph{all} the @code{ntags} tags contained in the @code{id} array are
  2933. terminated.
  2934. @item @emph{Prototype}:
  2935. @code{void starpu_tag_wait_array(unsigned ntags, starpu_tag_t *id);}
  2936. @end table
  2937. @node starpu_tag_remove
  2938. @subsection @code{starpu_tag_remove} -- Destroy a Tag
  2939. @table @asis
  2940. @item @emph{Description}:
  2941. This function releases the resources associated to tag @code{id}. It can be
  2942. called once the corresponding task has been executed and when there is
  2943. no other tag that depend on this tag anymore.
  2944. @item @emph{Prototype}:
  2945. @code{void starpu_tag_remove(starpu_tag_t id);}
  2946. @end table
  2947. @node starpu_tag_notify_from_apps
  2948. @subsection @code{starpu_tag_notify_from_apps} -- Feed a Tag explicitly
  2949. @table @asis
  2950. @item @emph{Description}:
  2951. This function explicitly unlocks tag @code{id}. It may be useful in the
  2952. case of applications which execute part of their computation outside StarPU
  2953. tasks (e.g. third-party libraries). It is also provided as a
  2954. convenient tool for the programmer, for instance to entirely construct the task
  2955. DAG before actually giving StarPU the opportunity to execute the tasks.
  2956. @item @emph{Prototype}:
  2957. @code{void starpu_tag_notify_from_apps(starpu_tag_t id);}
  2958. @end table
  2959. @node Implicit Data Dependencies
  2960. @section Implicit Data Dependencies
  2961. @menu
  2962. * starpu_data_set_default_sequential_consistency_flag:: starpu_data_set_default_sequential_consistency_flag
  2963. * starpu_data_get_default_sequential_consistency_flag:: starpu_data_get_default_sequential_consistency_flag
  2964. * starpu_data_set_sequential_consistency_flag:: starpu_data_set_sequential_consistency_flag
  2965. @end menu
  2966. In this section, we describe how StarPU makes it possible to insert implicit
  2967. task dependencies in order to enforce sequential data consistency. When this
  2968. data consistency is enabled on a specific data handle, any data access will
  2969. appear as sequentially consistent from the application. For instance, if the
  2970. application submits two tasks that access the same piece of data in read-only
  2971. mode, and then a third task that access it in write mode, dependencies will be
  2972. added between the two first tasks and the third one. Implicit data dependencies
  2973. are also inserted in the case of data accesses from the application.
  2974. @node starpu_data_set_default_sequential_consistency_flag
  2975. @subsection @code{starpu_data_set_default_sequential_consistency_flag} -- Set default sequential consistency flag
  2976. @table @asis
  2977. @item @emph{Description}:
  2978. Set the default sequential consistency flag. If a non-zero value is passed, a
  2979. sequential data consistency will be enforced for all handles registered after
  2980. this function call, otherwise it is disabled. By default, StarPU enables
  2981. sequential data consistency. It is also possible to select the data consistency
  2982. mode of a specific data handle with the
  2983. @code{starpu_data_set_sequential_consistency_flag} function.
  2984. @item @emph{Prototype}:
  2985. @code{void starpu_data_set_default_sequential_consistency_flag(unsigned flag);}
  2986. @end table
  2987. @node starpu_data_get_default_sequential_consistency_flag
  2988. @subsection @code{starpu_data_get_default_sequential_consistency_flag} -- Get current default sequential consistency flag
  2989. @table @asis
  2990. @item @emph{Description}:
  2991. This function returns the current default sequential consistency flag.
  2992. @item @emph{Prototype}:
  2993. @code{unsigned starpu_data_set_default_sequential_consistency_flag(void);}
  2994. @end table
  2995. @node starpu_data_set_sequential_consistency_flag
  2996. @subsection @code{starpu_data_set_sequential_consistency_flag} -- Set data sequential consistency mode
  2997. @table @asis
  2998. @item @emph{Description}:
  2999. Select the data consistency mode associated to a data handle. The consistency
  3000. mode set using this function has the priority over the default mode which can
  3001. be set with @code{starpu_data_set_sequential_consistency_flag}.
  3002. @item @emph{Prototype}:
  3003. @code{void starpu_data_set_sequential_consistency_flag(starpu_data_handle handle, unsigned flag);}
  3004. @end table
  3005. @node Performance Model API
  3006. @section Performance Model API
  3007. @menu
  3008. * starpu_load_history_debug::
  3009. * starpu_perfmodel_debugfilepath::
  3010. * starpu_perfmodel_get_arch_name::
  3011. * starpu_force_bus_sampling::
  3012. @end menu
  3013. @node starpu_load_history_debug
  3014. @subsection @code{starpu_load_history_debug}
  3015. @table @asis
  3016. @item @emph{Description}:
  3017. TODO
  3018. @item @emph{Prototype}:
  3019. @code{int starpu_load_history_debug(const char *symbol, struct starpu_perfmodel_t *model);}
  3020. @end table
  3021. @node starpu_perfmodel_debugfilepath
  3022. @subsection @code{starpu_perfmodel_debugfilepath}
  3023. @table @asis
  3024. @item @emph{Description}:
  3025. TODO
  3026. @item @emph{Prototype}:
  3027. @code{void starpu_perfmodel_debugfilepath(struct starpu_perfmodel_t *model, enum starpu_perf_archtype arch, char *path, size_t maxlen);}
  3028. @end table
  3029. @node starpu_perfmodel_get_arch_name
  3030. @subsection @code{starpu_perfmodel_get_arch_name}
  3031. @table @asis
  3032. @item @emph{Description}:
  3033. TODO
  3034. @item @emph{Prototype}:
  3035. @code{void starpu_perfmodel_get_arch_name(enum starpu_perf_archtype arch, char *archname, size_t maxlen);}
  3036. @end table
  3037. @node starpu_force_bus_sampling
  3038. @subsection @code{starpu_force_bus_sampling}
  3039. @table @asis
  3040. @item @emph{Description}:
  3041. This forces sampling the bus performance model again.
  3042. @item @emph{Prototype}:
  3043. @code{void starpu_force_bus_sampling(void);}
  3044. @end table
  3045. @node Profiling API
  3046. @section Profiling API
  3047. @menu
  3048. * starpu_profiling_status_set:: starpu_profiling_status_set
  3049. * starpu_profiling_status_get:: starpu_profiling_status_get
  3050. * struct starpu_task_profiling_info:: task profiling information
  3051. * struct starpu_worker_profiling_info:: worker profiling information
  3052. * starpu_worker_get_profiling_info:: starpu_worker_get_profiling_info
  3053. * struct starpu_bus_profiling_info:: bus profiling information
  3054. * starpu_bus_get_count::
  3055. * starpu_bus_get_id::
  3056. * starpu_bus_get_src::
  3057. * starpu_bus_get_dst::
  3058. * starpu_timing_timespec_delay_us::
  3059. * starpu_timing_timespec_to_us::
  3060. * starpu_bus_profiling_helper_display_summary::
  3061. * starpu_worker_profiling_helper_display_summary::
  3062. @end menu
  3063. @node starpu_profiling_status_set
  3064. @subsection @code{starpu_profiling_status_set} -- Set current profiling status
  3065. @table @asis
  3066. @item @emph{Description}:
  3067. Thie function sets the profiling status. Profiling is activated by passing
  3068. @code{STARPU_PROFILING_ENABLE} in @code{status}. Passing
  3069. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  3070. resets all profiling measurements. When profiling is enabled, the
  3071. @code{profiling_info} field of the @code{struct starpu_task} structure points
  3072. to a valid @code{struct starpu_task_profiling_info} structure containing
  3073. information about the execution of the task.
  3074. @item @emph{Return value}:
  3075. Negative return values indicate an error, otherwise the previous status is
  3076. returned.
  3077. @item @emph{Prototype}:
  3078. @code{int starpu_profiling_status_set(int status);}
  3079. @end table
  3080. @node starpu_profiling_status_get
  3081. @subsection @code{starpu_profiling_status_get} -- Get current profiling status
  3082. @table @asis
  3083. @item @emph{Description}:
  3084. Return the current profiling status or a negative value in case there was an error.
  3085. @item @emph{Prototype}:
  3086. @code{int starpu_profiling_status_get(void);}
  3087. @end table
  3088. @node struct starpu_task_profiling_info
  3089. @subsection @code{struct starpu_task_profiling_info} -- Task profiling information
  3090. @table @asis
  3091. @item @emph{Description}:
  3092. This structure contains information about the execution of a task. It is
  3093. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  3094. structure if profiling was enabled.
  3095. @item @emph{Fields}:
  3096. @table @asis
  3097. @item @code{submit_time}:
  3098. Date of task submission (relative to the initialization of StarPU).
  3099. @item @code{start_time}:
  3100. Date of task execution beginning (relative to the initialization of StarPU).
  3101. @item @code{end_time}:
  3102. Date of task execution termination (relative to the initialization of StarPU).
  3103. @item @code{workerid}:
  3104. Identifier of the worker which has executed the task.
  3105. @end table
  3106. @end table
  3107. @node struct starpu_worker_profiling_info
  3108. @subsection @code{struct starpu_worker_profiling_info} -- Worker profiling information
  3109. @table @asis
  3110. @item @emph{Description}:
  3111. This structure contains the profiling information associated to a worker.
  3112. @item @emph{Fields}:
  3113. @table @asis
  3114. @item @code{start_time}:
  3115. Starting date for the reported profiling measurements.
  3116. @item @code{total_time}:
  3117. Duration of the profiling measurement interval.
  3118. @item @code{executing_time}:
  3119. Time spent by the worker to execute tasks during the profiling measurement interval.
  3120. @item @code{sleeping_time}:
  3121. Time spent idling by the worker during the profiling measurement interval.
  3122. @item @code{executed_tasks}:
  3123. Number of tasks executed by the worker during the profiling measurement interval.
  3124. @end table
  3125. @end table
  3126. @node starpu_worker_get_profiling_info
  3127. @subsection @code{starpu_worker_get_profiling_info} -- Get worker profiling info
  3128. @table @asis
  3129. @item @emph{Description}:
  3130. Get the profiling info associated to the worker identified by @code{workerid},
  3131. and reset the profiling measurements. If the @code{worker_info} argument is
  3132. NULL, only reset the counters associated to worker @code{workerid}.
  3133. @item @emph{Return value}:
  3134. Upon successful completion, this function returns 0. Otherwise, a negative
  3135. value is returned.
  3136. @item @emph{Prototype}:
  3137. @code{int starpu_worker_get_profiling_info(int workerid, struct starpu_worker_profiling_info *worker_info);}
  3138. @end table
  3139. @node struct starpu_bus_profiling_info
  3140. @subsection @code{struct starpu_bus_profiling_info} -- Bus profiling information
  3141. @table @asis
  3142. @item @emph{Description}:
  3143. TODO
  3144. @item @emph{Fields}:
  3145. @table @asis
  3146. @item @code{start_time}:
  3147. TODO
  3148. @item @code{total_time}:
  3149. TODO
  3150. @item @code{transferred_bytes}:
  3151. TODO
  3152. @item @code{transfer_count}:
  3153. TODO
  3154. @end table
  3155. @end table
  3156. @node starpu_bus_get_count
  3157. @subsection @code{starpu_bus_get_count}
  3158. @table @asis
  3159. @item @emph{Description}:
  3160. TODO
  3161. @item @emph{Prototype}:
  3162. @code{int starpu_bus_get_count(void);}
  3163. @end table
  3164. @node starpu_bus_get_id
  3165. @subsection @code{starpu_bus_get_id}
  3166. @table @asis
  3167. @item @emph{Description}:
  3168. TODO
  3169. @item @emph{Prototype}:
  3170. @code{int starpu_bus_get_id(int src, int dst);}
  3171. @end table
  3172. @node starpu_bus_get_src
  3173. @subsection @code{starpu_bus_get_src}
  3174. @table @asis
  3175. @item @emph{Description}:
  3176. TODO
  3177. @item @emph{Prototype}:
  3178. @code{int starpu_bus_get_src(int busid);}
  3179. @end table
  3180. @node starpu_bus_get_dst
  3181. @subsection @code{starpu_bus_get_dst}
  3182. @table @asis
  3183. @item @emph{Description}:
  3184. TODO
  3185. @item @emph{Prototype}:
  3186. @code{int starpu_bus_get_dst(int busid);}
  3187. @end table
  3188. @node starpu_timing_timespec_delay_us
  3189. @subsection @code{starpu_timing_timespec_delay_us}
  3190. @table @asis
  3191. @item @emph{Description}:
  3192. TODO
  3193. @item @emph{Prototype}:
  3194. @code{double starpu_timing_timespec_delay_us(struct timespec *start, struct timespec *end);}
  3195. @end table
  3196. @node starpu_timing_timespec_to_us
  3197. @subsection @code{starpu_timing_timespec_to_us}
  3198. @table @asis
  3199. @item @emph{Description}:
  3200. TODO
  3201. @item @emph{Prototype}:
  3202. @code{double starpu_timing_timespec_to_us(struct timespec *ts);}
  3203. @end table
  3204. @node starpu_bus_profiling_helper_display_summary
  3205. @subsection @code{starpu_bus_profiling_helper_display_summary}
  3206. @table @asis
  3207. @item @emph{Description}:
  3208. TODO
  3209. @item @emph{Prototype}:
  3210. @code{void starpu_bus_profiling_helper_display_summary(void);}
  3211. @end table
  3212. @node starpu_worker_profiling_helper_display_summary
  3213. @subsection @code{starpu_worker_profiling_helper_display_summary}
  3214. @table @asis
  3215. @item @emph{Description}:
  3216. TODO
  3217. @item @emph{Prototype}:
  3218. @code{void starpu_worker_profiling_helper_display_summary(void);}
  3219. @end table
  3220. @node CUDA extensions
  3221. @section CUDA extensions
  3222. @c void starpu_data_malloc_pinned_if_possible(float **A, size_t dim);
  3223. @menu
  3224. * starpu_cuda_get_local_stream:: Get current worker's CUDA stream
  3225. * starpu_helper_cublas_init:: Initialize CUBLAS on every CUDA device
  3226. * starpu_helper_cublas_shutdown:: Deinitialize CUBLAS on every CUDA device
  3227. @end menu
  3228. @node starpu_cuda_get_local_stream
  3229. @subsection @code{starpu_cuda_get_local_stream} -- Get current worker's CUDA stream
  3230. @table @asis
  3231. @item @emph{Description}:
  3232. StarPU provides a stream for every CUDA device controlled by StarPU. This
  3233. function is only provided for convenience so that programmers can easily use
  3234. asynchronous operations within codelets without having to create a stream by
  3235. hand. Note that the application is not forced to use the stream provided by
  3236. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  3237. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  3238. the likelihood of having all transfers overlapped.
  3239. @item @emph{Prototype}:
  3240. @code{cudaStream_t *starpu_cuda_get_local_stream(void);}
  3241. @end table
  3242. @node starpu_helper_cublas_init
  3243. @subsection @code{starpu_helper_cublas_init} -- Initialize CUBLAS on every CUDA device
  3244. @table @asis
  3245. @item @emph{Description}:
  3246. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  3247. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  3248. controlled by StarPU. This call blocks until CUBLAS has been properly
  3249. initialized on every device.
  3250. @item @emph{Prototype}:
  3251. @code{void starpu_helper_cublas_init(void);}
  3252. @end table
  3253. @node starpu_helper_cublas_shutdown
  3254. @subsection @code{starpu_helper_cublas_shutdown} -- Deinitialize CUBLAS on every CUDA device
  3255. @table @asis
  3256. @item @emph{Description}:
  3257. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  3258. @item @emph{Prototype}:
  3259. @code{void starpu_helper_cublas_shutdown(void);}
  3260. @end table
  3261. @node OpenCL extensions
  3262. @section OpenCL extensions
  3263. @menu
  3264. * Enabling OpenCL:: Enabling OpenCL
  3265. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  3266. * Loading OpenCL kernels:: Loading OpenCL kernels
  3267. * OpenCL statistics:: Collecting statistics from OpenCL
  3268. @end menu
  3269. @node Enabling OpenCL
  3270. @subsection Enabling OpenCL
  3271. On GPU devices which can run both CUDA and OpenCL, CUDA will be
  3272. enabled by default. To enable OpenCL, you need either to disable CUDA
  3273. when configuring StarPU:
  3274. @example
  3275. % ./configure --disable-cuda
  3276. @end example
  3277. or when running applications:
  3278. @example
  3279. % STARPU_NCUDA=0 ./application
  3280. @end example
  3281. OpenCL will automatically be started on any device not yet used by
  3282. CUDA. So on a machine running 4 GPUS, it is therefore possible to
  3283. enable CUDA on 2 devices, and OpenCL on the 2 other devices by doing
  3284. so:
  3285. @example
  3286. % STARPU_NCUDA=2 ./application
  3287. @end example
  3288. @node Compiling OpenCL kernels
  3289. @subsection Compiling OpenCL kernels
  3290. Source codes for OpenCL kernels can be stored in a file or in a
  3291. string. StarPU provides functions to build the program executable for
  3292. each available OpenCL device as a @code{cl_program} object. This
  3293. program executable can then be loaded within a specific queue as
  3294. explained in the next section. These are only helpers, Applications
  3295. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  3296. use (e.g. different programs on the different OpenCL devices, for
  3297. relocation purpose for instance).
  3298. @menu
  3299. * starpu_opencl_load_opencl_from_file:: Compiling OpenCL source code
  3300. * starpu_opencl_load_opencl_from_string:: Compiling OpenCL source code
  3301. * starpu_opencl_unload_opencl:: Releasing OpenCL code
  3302. @end menu
  3303. @node starpu_opencl_load_opencl_from_file
  3304. @subsubsection @code{starpu_opencl_load_opencl_from_file} -- Compiling OpenCL source code
  3305. @table @asis
  3306. @item @emph{Description}:
  3307. TODO
  3308. @item @emph{Prototype}:
  3309. @code{int starpu_opencl_load_opencl_from_file(char *source_file_name, struct starpu_opencl_program *opencl_programs);}
  3310. @end table
  3311. @node starpu_opencl_load_opencl_from_string
  3312. @subsubsection @code{starpu_opencl_load_opencl_from_string} -- Compiling OpenCL source code
  3313. @table @asis
  3314. @item @emph{Description}:
  3315. TODO
  3316. @item @emph{Prototype}:
  3317. @code{int starpu_opencl_load_opencl_from_string(char *opencl_program_source, struct starpu_opencl_program *opencl_programs);}
  3318. @end table
  3319. @node starpu_opencl_unload_opencl
  3320. @subsubsection @code{starpu_opencl_unload_opencl} -- Releasing OpenCL code
  3321. @table @asis
  3322. @item @emph{Description}:
  3323. TODO
  3324. @item @emph{Prototype}:
  3325. @code{int starpu_opencl_unload_opencl(struct starpu_opencl_program *opencl_programs);}
  3326. @end table
  3327. @node Loading OpenCL kernels
  3328. @subsection Loading OpenCL kernels
  3329. @menu
  3330. * starpu_opencl_load_kernel:: Loading a kernel
  3331. * starpu_opencl_relase_kernel:: Releasing a kernel
  3332. @end menu
  3333. @node starpu_opencl_load_kernel
  3334. @subsubsection @code{starpu_opencl_load_kernel} -- Loading a kernel
  3335. @table @asis
  3336. @item @emph{Description}:
  3337. TODO
  3338. @item @emph{Prototype}:
  3339. @code{int starpu_opencl_load_kernel(cl_kernel *kernel, cl_command_queue *queue, struct starpu_opencl_program *opencl_programs, char *kernel_name, int devid)
  3340. }
  3341. @end table
  3342. @node starpu_opencl_relase_kernel
  3343. @subsubsection @code{starpu_opencl_release_kernel} -- Releasing a kernel
  3344. @table @asis
  3345. @item @emph{Description}:
  3346. TODO
  3347. @item @emph{Prototype}:
  3348. @code{int starpu_opencl_release_kernel(cl_kernel kernel);}
  3349. @end table
  3350. @node OpenCL statistics
  3351. @subsection OpenCL statistics
  3352. @menu
  3353. * starpu_opencl_collect_stats:: Collect statistics on a kernel execution
  3354. @end menu
  3355. @node starpu_opencl_collect_stats
  3356. @subsubsection @code{starpu_opencl_collect_stats} -- Collect statistics on a kernel execution
  3357. @table @asis
  3358. @item @emph{Description}:
  3359. After termination of the kernels, the OpenCL codelet should call this function
  3360. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  3361. collect statistics about the kernel execution (used cycles, consumed power).
  3362. @item @emph{Prototype}:
  3363. @code{int starpu_opencl_collect_stats(cl_event event);}
  3364. @end table
  3365. @node Cell extensions
  3366. @section Cell extensions
  3367. nothing yet.
  3368. @node Miscellaneous helpers
  3369. @section Miscellaneous helpers
  3370. @menu
  3371. * starpu_data_cpy:: Copy a data handle into another data handle
  3372. * starpu_execute_on_each_worker:: Execute a function on a subset of workers
  3373. @end menu
  3374. @node starpu_data_cpy
  3375. @subsection @code{starpu_data_cpy} -- Copy a data handle into another data handle
  3376. @table @asis
  3377. @item @emph{Description}:
  3378. Copy the content of the @code{src_handle} into the @code{dst_handle} handle.
  3379. The @code{asynchronous} parameter indicates whether the function should
  3380. block or not. In the case of an asynchronous call, it is possible to
  3381. synchronize with the termination of this operation either by the means of
  3382. implicit dependencies (if enabled) or by calling
  3383. @code{starpu_task_wait_for_all()}. If @code{callback_func} is not @code{NULL},
  3384. this callback function is executed after the handle has been copied, and it is
  3385. given the @code{callback_arg} pointer as argument.
  3386. @item @emph{Prototype}:
  3387. @code{int starpu_data_cpy(starpu_data_handle dst_handle, starpu_data_handle src_handle, int asynchronous, void (*callback_func)(void*), void *callback_arg);}
  3388. @end table
  3389. @node starpu_execute_on_each_worker
  3390. @subsection @code{starpu_execute_on_each_worker} -- Execute a function on a subset of workers
  3391. @table @asis
  3392. @item @emph{Description}:
  3393. When calling this method, the offloaded function specified by the first argument is
  3394. executed by every StarPU worker that may execute the function.
  3395. The second argument is passed to the offloaded function.
  3396. The last argument specifies on which types of processing units the function
  3397. should be executed. Similarly to the @code{where} field of the
  3398. @code{starpu_codelet} structure, it is possible to specify that the function
  3399. should be executed on every CUDA device and every CPU by passing
  3400. @code{STARPU_CPU|STARPU_CUDA}.
  3401. This function blocks until the function has been executed on every appropriate
  3402. processing units, so that it may not be called from a callback function for
  3403. instance.
  3404. @item @emph{Prototype}:
  3405. @code{void starpu_execute_on_each_worker(void (*func)(void *), void *arg, uint32_t where);}
  3406. @end table
  3407. @c ---------------------------------------------------------------------
  3408. @c Advanced Topics
  3409. @c ---------------------------------------------------------------------
  3410. @node Advanced Topics
  3411. @chapter Advanced Topics
  3412. @menu
  3413. * Defining a new data interface::
  3414. * Defining a new scheduling policy::
  3415. @end menu
  3416. @node Defining a new data interface
  3417. @section Defining a new data interface
  3418. @menu
  3419. * struct starpu_data_interface_ops_t:: Per-interface methods
  3420. * struct starpu_data_copy_methods:: Per-interface data transfer methods
  3421. * An example of data interface:: An example of data interface
  3422. @end menu
  3423. @c void *starpu_data_get_interface_on_node(starpu_data_handle handle, unsigned memory_node); TODO
  3424. @node struct starpu_data_interface_ops_t
  3425. @subsection @code{struct starpu_data_interface_ops_t} -- Per-interface methods
  3426. @table @asis
  3427. @item @emph{Description}:
  3428. TODO describe all the different fields
  3429. @end table
  3430. @node struct starpu_data_copy_methods
  3431. @subsection @code{struct starpu_data_copy_methods} -- Per-interface data transfer methods
  3432. @table @asis
  3433. @item @emph{Description}:
  3434. TODO describe all the different fields
  3435. @end table
  3436. @node An example of data interface
  3437. @subsection An example of data interface
  3438. @table @asis
  3439. TODO
  3440. @end table
  3441. @node Defining a new scheduling policy
  3442. @section Defining a new scheduling policy
  3443. TODO
  3444. A full example showing how to define a new scheduling policy is available in
  3445. the StarPU sources in the directory @code{examples/scheduler/}.
  3446. @menu
  3447. * struct starpu_sched_policy_s::
  3448. * starpu_worker_set_sched_condition::
  3449. * starpu_sched_set_min_priority:: Set the minimum priority level
  3450. * starpu_sched_set_max_priority:: Set the maximum priority level
  3451. * Source code::
  3452. @end menu
  3453. @node struct starpu_sched_policy_s
  3454. @subsection @code{struct starpu_sched_policy_s} -- Scheduler methods
  3455. @table @asis
  3456. @item @emph{Description}:
  3457. This structure contains all the methods that implement a scheduling policy. An
  3458. application may specify which scheduling strategy in the @code{sched_policy}
  3459. field of the @code{starpu_conf} structure passed to the @code{starpu_init}
  3460. function.
  3461. @item @emph{Fields}:
  3462. @table @asis
  3463. @item @code{init_sched}:
  3464. Initialize the scheduling policy.
  3465. @item @code{deinit_sched}:
  3466. Cleanup the scheduling policy.
  3467. @item @code{push_task}:
  3468. Insert a task into the scheduler.
  3469. @item @code{push_prio_task}:
  3470. Insert a priority task into the scheduler.
  3471. @item @code{pop_task}:
  3472. Get a task from the scheduler. The mutex associated to the worker is already
  3473. taken when this method is called.
  3474. @item @code{pop_every_task}:
  3475. Remove all available tasks from the scheduler (tasks are chained by the means
  3476. of the prev and next fields of the starpu_task structure). The mutex associated
  3477. to the worker is already taken when this method is called.
  3478. @item @code{post_exec_hook} (optionnal):
  3479. This method is called every time a task has been executed.
  3480. @item @code{policy_name}:
  3481. Name of the policy (optionnal).
  3482. @item @code{policy_description}:
  3483. Description of the policy (optionnal).
  3484. @end table
  3485. @end table
  3486. @node starpu_worker_set_sched_condition
  3487. @subsection @code{starpu_worker_set_sched_condition} -- Specify the condition variable associated to a worker
  3488. @table @asis
  3489. @item @emph{Description}:
  3490. When there is no available task for a worker, StarPU blocks this worker on a
  3491. condition variable. This function specifies which condition variable (and the
  3492. associated mutex) should be used to block (and to wake up) a worker. Note that
  3493. multiple workers may use the same condition variable. For instance, in the case
  3494. of a scheduling strategy with a single task queue, the same condition variable
  3495. would be used to block and wake up all workers.
  3496. The initialization method of a scheduling strategy (@code{init_sched}) must
  3497. call this function once per worker.
  3498. @item @emph{Prototype}:
  3499. @code{void starpu_worker_set_sched_condition(int workerid, pthread_cond_t *sched_cond, pthread_mutex_t *sched_mutex);}
  3500. @end table
  3501. @node starpu_sched_set_min_priority
  3502. @subsection @code{starpu_sched_set_min_priority}
  3503. @table @asis
  3504. @item @emph{Description}:
  3505. Defines the minimum priority level supported by the scheduling policy. The
  3506. default minimum priority level is the same as the default priority level which
  3507. is 0 by convention. The application may access that value by calling the
  3508. @code{starpu_sched_get_min_priority} function. This function should only be
  3509. called from the initialization method of the scheduling policy, and should not
  3510. be used directly from the application.
  3511. @item @emph{Prototype}:
  3512. @code{void starpu_sched_set_min_priority(int min_prio)}
  3513. @end table
  3514. @node starpu_sched_set_max_priority
  3515. @subsection @code{starpu_sched_set_max_priority}
  3516. @table @asis
  3517. @item @emph{Description}:
  3518. Defines the maximum priority level supported by the scheduling policy. The
  3519. default maximum priority level is 1. The application may access that value by
  3520. calling the @code{starpu_sched_get_max_priority} function. This function should
  3521. only be called from the initialization method of the scheduling policy, and
  3522. should not be used directly from the application.
  3523. @item @emph{Prototype}:
  3524. @code{void starpu_sched_set_min_priority(int max_prio)}
  3525. @end table
  3526. @node Source code
  3527. @subsection Source code
  3528. @cartouche
  3529. @smallexample
  3530. static struct starpu_sched_policy_s dummy_sched_policy = @{
  3531. .init_sched = init_dummy_sched,
  3532. .deinit_sched = deinit_dummy_sched,
  3533. .push_task = push_task_dummy,
  3534. .push_prio_task = NULL,
  3535. .pop_task = pop_task_dummy,
  3536. .post_exec_hook = NULL,
  3537. .pop_every_task = NULL,
  3538. .policy_name = "dummy",
  3539. .policy_description = "dummy scheduling strategy"
  3540. @};
  3541. @end smallexample
  3542. @end cartouche
  3543. @c ---------------------------------------------------------------------
  3544. @c Appendices
  3545. @c ---------------------------------------------------------------------
  3546. @c ---------------------------------------------------------------------
  3547. @c Full source code for the 'Scaling a Vector' example
  3548. @c ---------------------------------------------------------------------
  3549. @node Full source code for the 'Scaling a Vector' example
  3550. @appendix Full source code for the 'Scaling a Vector' example
  3551. @menu
  3552. * Main application::
  3553. * CPU Kernel::
  3554. * CUDA Kernel::
  3555. * OpenCL Kernel::
  3556. @end menu
  3557. @node Main application
  3558. @section Main application
  3559. @smallexample
  3560. @include vector_scal_c.texi
  3561. @end smallexample
  3562. @node CPU Kernel
  3563. @section CPU Kernel
  3564. @smallexample
  3565. @include vector_scal_cpu.texi
  3566. @end smallexample
  3567. @node CUDA Kernel
  3568. @section CUDA Kernel
  3569. @smallexample
  3570. @include vector_scal_cuda.texi
  3571. @end smallexample
  3572. @node OpenCL Kernel
  3573. @section OpenCL Kernel
  3574. @menu
  3575. * Invoking the kernel::
  3576. * Source of the kernel::
  3577. @end menu
  3578. @node Invoking the kernel
  3579. @subsection Invoking the kernel
  3580. @smallexample
  3581. @include vector_scal_opencl.texi
  3582. @end smallexample
  3583. @node Source of the kernel
  3584. @subsection Source of the kernel
  3585. @smallexample
  3586. @include vector_scal_opencl_codelet.texi
  3587. @end smallexample
  3588. @bye