cholesky_tag.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2012-2013 Inria
  4. * Copyright (C) 2008-2017 Université de Bordeaux
  5. * Copyright (C) 2010 Mehdi Juhoor
  6. * Copyright (C) 2010-2013,2015,2017 CNRS
  7. *
  8. * StarPU is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU Lesser General Public License as published by
  10. * the Free Software Foundation; either version 2.1 of the License, or (at
  11. * your option) any later version.
  12. *
  13. * StarPU is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  16. *
  17. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  18. */
  19. /*
  20. * This version of the Cholesky factorization uses explicit dependency
  21. * declaration through dependency tags.
  22. * It also uses data partitioning to split the matrix into submatrices
  23. */
  24. #include "cholesky.h"
  25. #include <starpu_perfmodel.h>
  26. #if defined(STARPU_USE_CUDA) && defined(STARPU_HAVE_MAGMA)
  27. #include "magma.h"
  28. #endif
  29. /*
  30. * Some useful functions
  31. */
  32. static struct starpu_task *create_task(starpu_tag_t id)
  33. {
  34. struct starpu_task *task = starpu_task_create();
  35. task->cl_arg = NULL;
  36. task->use_tag = 1;
  37. task->tag_id = id;
  38. return task;
  39. }
  40. /*
  41. * Create the codelets
  42. */
  43. static struct starpu_task * create_task_11(starpu_data_handle_t dataA, unsigned k)
  44. {
  45. /* FPRINTF(stdout, "task 11 k = %d TAG = %llx\n", k, (TAG11(k))); */
  46. struct starpu_task *task = create_task(TAG11(k));
  47. task->cl = &cl11;
  48. /* which sub-data is manipulated ? */
  49. task->handles[0] = starpu_data_get_sub_data(dataA, 2, k, k);
  50. /* this is an important task */
  51. if (!noprio_p)
  52. task->priority = STARPU_MAX_PRIO;
  53. /* enforce dependencies ... */
  54. if (k > 0)
  55. {
  56. starpu_tag_declare_deps(TAG11(k), 1, TAG22(k-1, k, k));
  57. }
  58. int n = starpu_matrix_get_nx(task->handles[0]);
  59. task->flops = FLOPS_SPOTRF(n);
  60. return task;
  61. }
  62. static void create_task_21(starpu_data_handle_t dataA, unsigned k, unsigned j)
  63. {
  64. struct starpu_task *task = create_task(TAG21(k, j));
  65. task->cl = &cl21;
  66. /* which sub-data is manipulated ? */
  67. task->handles[0] = starpu_data_get_sub_data(dataA, 2, k, k);
  68. task->handles[1] = starpu_data_get_sub_data(dataA, 2, k, j);
  69. if (!noprio_p && (j == k+1))
  70. {
  71. task->priority = STARPU_MAX_PRIO;
  72. }
  73. /* enforce dependencies ... */
  74. if (k > 0)
  75. {
  76. starpu_tag_declare_deps(TAG21(k, j), 2, TAG11(k), TAG22(k-1, k, j));
  77. }
  78. else
  79. {
  80. starpu_tag_declare_deps(TAG21(k, j), 1, TAG11(k));
  81. }
  82. int n = starpu_matrix_get_nx(task->handles[0]);
  83. task->flops = FLOPS_STRSM(n, n);
  84. int ret = starpu_task_submit(task);
  85. if (STARPU_UNLIKELY(ret == -ENODEV))
  86. {
  87. FPRINTF(stderr, "No worker may execute this task\n");
  88. exit(0);
  89. }
  90. }
  91. static void create_task_22(starpu_data_handle_t dataA, unsigned k, unsigned i, unsigned j)
  92. {
  93. /* FPRINTF(stdout, "task 22 k,i,j = %d,%d,%d TAG = %llx\n", k,i,j, TAG22(k,i,j)); */
  94. struct starpu_task *task = create_task(TAG22(k, i, j));
  95. task->cl = &cl22;
  96. /* which sub-data is manipulated ? */
  97. task->handles[0] = starpu_data_get_sub_data(dataA, 2, k, i);
  98. task->handles[1] = starpu_data_get_sub_data(dataA, 2, k, j);
  99. task->handles[2] = starpu_data_get_sub_data(dataA, 2, i, j);
  100. if (!noprio_p && (i == k + 1) && (j == k +1) )
  101. {
  102. task->priority = STARPU_MAX_PRIO;
  103. }
  104. /* enforce dependencies ... */
  105. if (k > 0)
  106. {
  107. starpu_tag_declare_deps(TAG22(k, i, j), 3, TAG22(k-1, i, j), TAG21(k, i), TAG21(k, j));
  108. }
  109. else
  110. {
  111. starpu_tag_declare_deps(TAG22(k, i, j), 2, TAG21(k, i), TAG21(k, j));
  112. }
  113. int n = starpu_matrix_get_nx(task->handles[0]);
  114. task->flops = FLOPS_SGEMM(n, n, n);
  115. int ret = starpu_task_submit(task);
  116. if (STARPU_UNLIKELY(ret == -ENODEV))
  117. {
  118. FPRINTF(stderr, "No worker may execute this task\n");
  119. exit(0);
  120. }
  121. }
  122. /*
  123. * code to bootstrap the factorization
  124. * and construct the DAG
  125. */
  126. static void _cholesky(starpu_data_handle_t dataA, unsigned nblocks)
  127. {
  128. double start;
  129. double end;
  130. struct starpu_task *entry_task = NULL;
  131. /* create all the DAG nodes */
  132. unsigned i,j,k;
  133. start = starpu_timing_now();
  134. for (k = 0; k < nblocks; k++)
  135. {
  136. starpu_iteration_push(k);
  137. struct starpu_task *task = create_task_11(dataA, k);
  138. /* we defer the launch of the first task */
  139. if (k == 0)
  140. {
  141. entry_task = task;
  142. }
  143. else
  144. {
  145. int ret = starpu_task_submit(task);
  146. if (STARPU_UNLIKELY(ret == -ENODEV))
  147. {
  148. FPRINTF(stderr, "No worker may execute this task\n");
  149. exit(0);
  150. }
  151. }
  152. for (j = k+1; j<nblocks; j++)
  153. {
  154. create_task_21(dataA, k, j);
  155. for (i = k+1; i<nblocks; i++)
  156. {
  157. if (i <= j)
  158. create_task_22(dataA, k, i, j);
  159. }
  160. }
  161. starpu_iteration_pop();
  162. }
  163. /* schedule the codelet */
  164. int ret = starpu_task_submit(entry_task);
  165. if (STARPU_UNLIKELY(ret == -ENODEV))
  166. {
  167. FPRINTF(stderr, "No worker may execute this task\n");
  168. exit(0);
  169. }
  170. /* stall the application until the end of computations */
  171. starpu_tag_wait(TAG11(nblocks-1));
  172. starpu_data_unpartition(dataA, STARPU_MAIN_RAM);
  173. end = starpu_timing_now();
  174. double timing = end - start;
  175. unsigned n = starpu_matrix_get_nx(dataA);
  176. double flop = (1.0f*n*n*n)/3.0f;
  177. PRINTF("# size\tms\tGFlops\n");
  178. PRINTF("%u\t%.0f\t%.1f\n", n, timing/1000, (flop/timing/1000.0f));
  179. }
  180. static int initialize_system(int argc, char **argv, float **A, unsigned pinned)
  181. {
  182. int ret;
  183. int flags = STARPU_MALLOC_SIMULATION_FOLDED;
  184. #ifdef STARPU_HAVE_MAGMA
  185. magma_init();
  186. #endif
  187. ret = starpu_init(NULL);
  188. if (ret == -ENODEV)
  189. return 77;
  190. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  191. init_sizes();
  192. parse_args(argc, argv);
  193. #ifdef STARPU_USE_CUDA
  194. initialize_chol_model(&chol_model_11,"chol_model_11",cpu_chol_task_11_cost,cuda_chol_task_11_cost);
  195. initialize_chol_model(&chol_model_21,"chol_model_21",cpu_chol_task_21_cost,cuda_chol_task_21_cost);
  196. initialize_chol_model(&chol_model_22,"chol_model_22",cpu_chol_task_22_cost,cuda_chol_task_22_cost);
  197. #else
  198. initialize_chol_model(&chol_model_11,"chol_model_11",cpu_chol_task_11_cost,NULL);
  199. initialize_chol_model(&chol_model_21,"chol_model_21",cpu_chol_task_21_cost,NULL);
  200. initialize_chol_model(&chol_model_22,"chol_model_22",cpu_chol_task_22_cost,NULL);
  201. #endif
  202. starpu_cublas_init();
  203. if (pinned)
  204. flags |= STARPU_MALLOC_PINNED;
  205. starpu_malloc_flags((void **)A, size_p*size_p*sizeof(float), flags);
  206. return 0;
  207. }
  208. static void cholesky(float *matA, unsigned size, unsigned ld, unsigned nblocks)
  209. {
  210. starpu_data_handle_t dataA;
  211. /* monitor and partition the A matrix into blocks :
  212. * one block is now determined by 2 unsigned (i,j) */
  213. starpu_matrix_data_register(&dataA, STARPU_MAIN_RAM, (uintptr_t)matA, ld, size, size, sizeof(float));
  214. starpu_data_set_sequential_consistency_flag(dataA, 0);
  215. struct starpu_data_filter f =
  216. {
  217. .filter_func = starpu_matrix_filter_vertical_block,
  218. .nchildren = nblocks
  219. };
  220. struct starpu_data_filter f2 =
  221. {
  222. .filter_func = starpu_matrix_filter_block,
  223. .nchildren = nblocks
  224. };
  225. starpu_data_map_filters(dataA, 2, &f, &f2);
  226. _cholesky(dataA, nblocks);
  227. starpu_data_unregister(dataA);
  228. }
  229. static void shutdown_system(float **matA, unsigned dim, unsigned pinned)
  230. {
  231. int flags = STARPU_MALLOC_SIMULATION_FOLDED;
  232. if (pinned)
  233. flags |= STARPU_MALLOC_PINNED;
  234. starpu_free_flags(*matA, dim*dim*sizeof(float), flags);
  235. starpu_cublas_shutdown();
  236. starpu_shutdown();
  237. }
  238. int main(int argc, char **argv)
  239. {
  240. /* create a simple definite positive symetric matrix example
  241. *
  242. * Hilbert matrix : h(i,j) = 1/(i+j+1)
  243. * */
  244. float *mat = NULL;
  245. int ret = initialize_system(argc, argv, &mat, pinned_p);
  246. if (ret) return ret;
  247. #ifndef STARPU_SIMGRID
  248. unsigned i,j;
  249. for (i = 0; i < size_p; i++)
  250. {
  251. for (j = 0; j < size_p; j++)
  252. {
  253. mat[j +i*size_p] = (1.0f/(1.0f+i+j)) + ((i == j)?1.0f*size_p:0.0f);
  254. /* mat[j +i*size_p] = ((i == j)?1.0f*size_p:0.0f); */
  255. }
  256. }
  257. #endif
  258. #ifdef CHECK_OUTPUT
  259. FPRINTF(stdout, "Input :\n");
  260. for (j = 0; j < size_p; j++)
  261. {
  262. for (i = 0; i < size_p; i++)
  263. {
  264. if (i <= j)
  265. {
  266. FPRINTF(stdout, "%2.2f\t", mat[j +i*size_p]);
  267. }
  268. else
  269. {
  270. FPRINTF(stdout, ".\t");
  271. }
  272. }
  273. FPRINTF(stdout, "\n");
  274. }
  275. #endif
  276. cholesky(mat, size_p, size_p, nblocks_p);
  277. #ifdef CHECK_OUTPUT
  278. FPRINTF(stdout, "Results :\n");
  279. for (j = 0; j < size_p; j++)
  280. {
  281. for (i = 0; i < size_p; i++)
  282. {
  283. if (i <= j)
  284. {
  285. FPRINTF(stdout, "%2.2f\t", mat[j +i*size_p]);
  286. }
  287. else
  288. {
  289. FPRINTF(stdout, ".\t");
  290. mat[j+i*size_p] = 0.0f; /* debug */
  291. }
  292. }
  293. FPRINTF(stdout, "\n");
  294. }
  295. FPRINTF(stderr, "compute explicit LLt ...\n");
  296. float *test_mat = malloc(size_p*size_p*sizeof(float));
  297. STARPU_ASSERT(test_mat);
  298. STARPU_SSYRK("L", "N", size_p, size_p, 1.0f,
  299. mat, size_p, 0.0f, test_mat, size_p);
  300. FPRINTF(stderr, "comparing results ...\n");
  301. for (j = 0; j < size_p; j++)
  302. {
  303. for (i = 0; i < size_p; i++)
  304. {
  305. if (i <= j)
  306. {
  307. FPRINTF(stdout, "%2.2f\t", test_mat[j +i*size_p]);
  308. }
  309. else
  310. {
  311. FPRINTF(stdout, ".\t");
  312. }
  313. }
  314. FPRINTF(stdout, "\n");
  315. }
  316. free(test_mat);
  317. #endif
  318. shutdown_system(&mat, size_p, pinned_p);
  319. return 0;
  320. }