reclaim.c 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010-2012, 2015 Université de Bordeaux
  4. * Copyright (C) 2012 CNRS
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. /*
  18. * This test stress the memory allocation system and should force StarPU to
  19. * reclaim memory from time to time.
  20. */
  21. #include <assert.h>
  22. #include <starpu.h>
  23. #include <common/config.h>
  24. #ifdef STARPU_HAVE_HWLOC
  25. #include <hwloc.h>
  26. #endif
  27. #include "../helper.h"
  28. #ifdef STARPU_QUICK_CHECK
  29. # define BLOCK_SIZE (64*1024)
  30. static unsigned ntasks = 250;
  31. #else
  32. # define BLOCK_SIZE (64*1024*1024)
  33. static unsigned ntasks = 1000;
  34. #endif
  35. #ifdef STARPU_HAVE_HWLOC
  36. static uint64_t get_total_memory_size(void)
  37. {
  38. uint64_t size;
  39. hwloc_topology_t hwtopology;
  40. hwloc_topology_init(&hwtopology);
  41. hwloc_topology_load(hwtopology);
  42. hwloc_obj_t root = hwloc_get_root_obj(hwtopology);
  43. size = root->memory.total_memory;
  44. hwloc_topology_destroy(hwtopology);
  45. return size;
  46. }
  47. #endif
  48. void dummy_func(void *descr[], STARPU_ATTRIBUTE_UNUSED void *_args)
  49. {
  50. }
  51. static unsigned int i = 0;
  52. void f(void *arg)
  53. {
  54. printf("%d\n", ++i);
  55. }
  56. static struct starpu_codelet dummy_cl =
  57. {
  58. .cpu_funcs = {dummy_func},
  59. .cuda_funcs = {dummy_func},
  60. .opencl_funcs = {dummy_func},
  61. .cpu_funcs_name = {"dummy_func"},
  62. .nbuffers = 3,
  63. .modes = {STARPU_RW, STARPU_R, STARPU_R}
  64. };
  65. /* Number of chunks */
  66. static int mb = 16;
  67. int main(int argc, char **argv)
  68. {
  69. int i, ret;
  70. int taskid;
  71. ret = starpu_initialize(NULL, &argc, &argv);
  72. if (ret == -ENODEV) return STARPU_TEST_SKIPPED;
  73. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  74. #ifdef STARPU_HAVE_HWLOC
  75. /* We allocate 50% of the memory */
  76. uint64_t total_size = get_total_memory_size();
  77. /* On x86_64-freebsd8.2, hwloc 1.3 returns 0 as the total memory
  78. * size, so sanity-check what we have. */
  79. if (total_size > 0)
  80. mb = (int)((0.50 * total_size)/(BLOCK_SIZE));
  81. #endif
  82. /* An optional argument indicates the number of MB to allocate */
  83. if (argc > 1)
  84. mb = atoi(argv[1]);
  85. if (2*mb > ntasks)
  86. ntasks = 2*mb;
  87. #ifdef STARPU_QUICK_CHECK
  88. mb /= 100;
  89. if (mb == 0)
  90. mb = 1;
  91. #endif
  92. FPRINTF(stderr, "Allocate %d buffers and create %u tasks\n", mb, ntasks);
  93. float **host_ptr_array;
  94. starpu_data_handle_t *handle_array;
  95. host_ptr_array = (float **) calloc(mb, sizeof(float *));
  96. handle_array = (starpu_data_handle_t *) calloc(mb, sizeof(starpu_data_handle_t));
  97. /* Register mb buffers of 1MB */
  98. for (i = 0; i < mb; i++)
  99. {
  100. host_ptr_array[i] = (float *) malloc(BLOCK_SIZE);
  101. if (host_ptr_array[i] == NULL)
  102. {
  103. mb = i;
  104. FPRINTF(stderr, "Cannot allocate more than %d buffers\n", mb);
  105. break;
  106. }
  107. starpu_variable_data_register(&handle_array[i], STARPU_MAIN_RAM, (uintptr_t)host_ptr_array[i], BLOCK_SIZE);
  108. STARPU_ASSERT(handle_array[i]);
  109. }
  110. for (taskid = 0; taskid < ntasks; taskid++)
  111. {
  112. struct starpu_task *task = starpu_task_create();
  113. task->cl = &dummy_cl;
  114. task->handles[0] = handle_array[taskid%mb];
  115. task->handles[1] = handle_array[(taskid+1)%mb];
  116. task->handles[2] = handle_array[(taskid+2)%mb];
  117. task->callback_func = f;
  118. task->callback_arg = NULL;
  119. ret = starpu_task_submit(task);
  120. if (ret == -ENODEV) goto enodev;
  121. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  122. }
  123. ret = starpu_task_wait_for_all();
  124. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_wait_for_all");
  125. for (i = 0; i < mb; i++)
  126. {
  127. starpu_data_unregister(handle_array[i]);
  128. free(host_ptr_array[i]);
  129. }
  130. free(host_ptr_array);
  131. free(handle_array);
  132. starpu_shutdown();
  133. return EXIT_SUCCESS;
  134. enodev:
  135. fprintf(stderr, "WARNING: No one can execute this task\n");
  136. /* yes, we do not perform the computation but we did detect that no one
  137. * could perform the kernel, so this is not an error from StarPU */
  138. starpu_shutdown();
  139. return STARPU_TEST_SKIPPED;
  140. }