basic-api.texi 104 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Initialization and Termination:: Initialization and Termination methods
  9. * Workers' Properties:: Methods to enumerate workers' properties
  10. * Data Library:: Methods to manipulate data
  11. * Data Interfaces::
  12. * Data Partition::
  13. * Codelets and Tasks:: Methods to construct tasks
  14. * Explicit Dependencies:: Explicit Dependencies
  15. * Implicit Data Dependencies:: Implicit Data Dependencies
  16. * Performance Model API::
  17. * Profiling API:: Profiling API
  18. * CUDA extensions:: CUDA extensions
  19. * OpenCL extensions:: OpenCL extensions
  20. * Cell extensions:: Cell extensions
  21. * Miscellaneous helpers::
  22. @end menu
  23. @node Initialization and Termination
  24. @section Initialization and Termination
  25. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  26. This is StarPU initialization method, which must be called prior to any other
  27. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  28. policy, number of cores, ...) by passing a non-null argument. Default
  29. configuration is used if the passed argument is @code{NULL}.
  30. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  31. indicates that no worker was available (so that StarPU was not initialized).
  32. @end deftypefun
  33. @deftp {Data Type} {struct starpu_conf}
  34. This structure is passed to the @code{starpu_init} function in order
  35. to configure StarPU.
  36. When the default value is used, StarPU automatically selects the number of
  37. processing units and takes the default scheduling policy. The environment
  38. variables overwrite the equivalent parameters.
  39. @table @asis
  40. @item @code{const char *sched_policy_name} (default = NULL)
  41. This is the name of the scheduling policy. This can also be specified
  42. with the @code{STARPU_SCHED} environment variable.
  43. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  44. This is the definition of the scheduling policy. This field is ignored
  45. if @code{sched_policy_name} is set.
  46. @item @code{int ncpus} (default = -1)
  47. This is the number of CPU cores that StarPU can use. This can also be
  48. specified with the @code{STARPU_NCPUS} environment variable.
  49. @item @code{int ncuda} (default = -1)
  50. This is the number of CUDA devices that StarPU can use. This can also
  51. be specified with the @code{STARPU_NCUDA} environment variable.
  52. @item @code{int nopencl} (default = -1)
  53. This is the number of OpenCL devices that StarPU can use. This can
  54. also be specified with the @code{STARPU_NOPENCL} environment variable.
  55. @item @code{int nspus} (default = -1)
  56. This is the number of Cell SPUs that StarPU can use. This can also be
  57. specified with the @code{STARPU_NGORDON} environment variable.
  58. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  59. If this flag is set, the @code{workers_bindid} array indicates where the
  60. different workers are bound, otherwise StarPU automatically selects where to
  61. bind the different workers. This can also be specified with the
  62. @code{STARPU_WORKERS_CPUID} environment variable.
  63. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  64. If the @code{use_explicit_workers_bindid} flag is set, this array
  65. indicates where to bind the different workers. The i-th entry of the
  66. @code{workers_bindid} indicates the logical identifier of the
  67. processor which should execute the i-th worker. Note that the logical
  68. ordering of the CPUs is either determined by the OS, or provided by
  69. the @code{hwloc} library in case it is available.
  70. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  71. If this flag is set, the CUDA workers will be attached to the CUDA devices
  72. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  73. CUDA devices in a round-robin fashion. This can also be specified with the
  74. @code{STARPU_WORKERS_CUDAID} environment variable.
  75. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  76. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  77. contains the logical identifiers of the CUDA devices (as used by
  78. @code{cudaGetDevice}).
  79. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  80. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  81. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects
  82. the OpenCL devices in a round-robin fashion. This can also be specified with
  83. the @code{STARPU_WORKERS_OPENCLID} environment variable.
  84. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  85. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  86. contains the logical identifiers of the OpenCL devices to be used.
  87. @item @code{int calibrate} (default = 0)
  88. If this flag is set, StarPU will calibrate the performance models when
  89. executing tasks. If this value is equal to -1, the default value is used. This
  90. can also be specified with the @code{STARPU_CALIBRATE} environment variable.
  91. @item @code{int single_combined_worker} (default = 0)
  92. By default, StarPU parallel tasks concurrently.
  93. Some parallel libraries (e.g. most OpenMP implementations) however do
  94. not support concurrent calls to parallel code. In such case, setting this flag
  95. makes StarPU only start one parallel task at a time.
  96. This can also be specified with the @code{STARPU_SINGLE_COMBINED_WORKER} environment variable.
  97. @item @code{int disable_asynchronous_copy} (default = 0)
  98. This flag should be set to 1 to disable asynchronous copies between
  99. CPUs and accelerators. This can also be specified with the
  100. @code{DISABLE_STARPU_ASYNCHRONOUS_COPY} environment variable.
  101. The AMD implementation of OpenCL is known to
  102. fail when copying data asynchronously. When using this implementation,
  103. it is therefore necessary to disable asynchronous data transfers.
  104. @end table
  105. @end deftp
  106. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  107. This function initializes the @var{conf} structure passed as argument
  108. with the default values. In case some configuration parameters are already
  109. specified through environment variables, @code{starpu_conf_init} initializes
  110. the fields of the structure according to the environment variables. For
  111. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  112. @code{.ncuda} field of the structure passed as argument.
  113. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  114. indicates that the argument was NULL.
  115. @end deftypefun
  116. @deftypefun void starpu_shutdown (void)
  117. This is StarPU termination method. It must be called at the end of the
  118. application: statistics and other post-mortem debugging information are not
  119. guaranteed to be available until this method has been called.
  120. @end deftypefun
  121. @deftypefun int starpu_asynchronous_copy_disabled ()
  122. Return 1 if asynchronous data transfers between CPU and accelerators
  123. are disabled.
  124. @end deftypefun
  125. @node Workers' Properties
  126. @section Workers' Properties
  127. @deftp {Data Type} {enum starpu_archtype}
  128. The different values are:
  129. @table @asis
  130. @item @code{STARPU_CPU_WORKER}
  131. @item @code{STARPU_CUDA_WORKER}
  132. @item @code{STARPU_OPENCL_WORKER}
  133. @item @code{STARPU_GORDON_WORKER}
  134. @end table
  135. @end deftp
  136. @deftypefun unsigned starpu_worker_get_count (void)
  137. This function returns the number of workers (i.e. processing units executing
  138. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  139. @end deftypefun
  140. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  141. Returns the number of workers of the given type indicated by the argument. A positive
  142. (or null) value is returned in case of success, @code{-EINVAL} indicates that
  143. the type is not valid otherwise.
  144. @end deftypefun
  145. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  146. This function returns the number of CPUs controlled by StarPU. The returned
  147. value should be at most @code{STARPU_MAXCPUS}.
  148. @end deftypefun
  149. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  150. This function returns the number of CUDA devices controlled by StarPU. The returned
  151. value should be at most @code{STARPU_MAXCUDADEVS}.
  152. @end deftypefun
  153. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  154. This function returns the number of OpenCL devices controlled by StarPU. The returned
  155. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  156. @end deftypefun
  157. @deftypefun unsigned starpu_spu_worker_get_count (void)
  158. This function returns the number of Cell SPUs controlled by StarPU.
  159. @end deftypefun
  160. @deftypefun int starpu_worker_get_id (void)
  161. This function returns the identifier of the current worker, i.e the one associated to the calling
  162. thread. The returned value is either -1 if the current context is not a StarPU
  163. worker (i.e. when called from the application outside a task or a callback), or
  164. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  165. @end deftypefun
  166. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  167. This function gets the list of identifiers of workers with the given
  168. type. It fills the workerids array with the identifiers of the workers that have the type
  169. indicated in the first argument. The maxsize argument indicates the size of the
  170. workids array. The returned value gives the number of identifiers that were put
  171. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  172. workers with the appropriate type: in that case, the array is filled with the
  173. maxsize first elements. To avoid such overflows, the value of maxsize can be
  174. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  175. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  176. @end deftypefun
  177. @deftypefun int starpu_worker_get_devid (int @var{id})
  178. This functions returns the device id of the given worker. The worker
  179. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  180. CUDA worker, this device identifier is the logical device identifier exposed by
  181. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  182. identifier of a CPU worker is the logical identifier of the core on which the
  183. worker was bound; this identifier is either provided by the OS or by the
  184. @code{hwloc} library in case it is available.
  185. @end deftypefun
  186. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  187. This function returns the type of processing unit associated to a
  188. worker. The worker identifier is a value returned by the
  189. @code{starpu_worker_get_id} function). The returned value
  190. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  191. core, @code{STARPU_CUDA_WORKER} for a CUDA device,
  192. @code{STARPU_OPENCL_WORKER} for a OpenCL device, and
  193. @code{STARPU_GORDON_WORKER} for a Cell SPU. The value returned for an invalid
  194. identifier is unspecified.
  195. @end deftypefun
  196. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  197. This function allows to get the name of a given worker.
  198. StarPU associates a unique human readable string to each processing unit. This
  199. function copies at most the @var{maxlen} first bytes of the unique string
  200. associated to a worker identified by its identifier @var{id} into the
  201. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  202. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  203. function on an invalid identifier results in an unspecified behaviour.
  204. @end deftypefun
  205. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  206. This function returns the identifier of the memory node associated to the
  207. worker identified by @var{workerid}.
  208. @end deftypefun
  209. @deftp {Data Type} {enum starpu_node_kind}
  210. todo
  211. @table @asis
  212. @item @code{STARPU_UNUSED}
  213. @item @code{STARPU_CPU_RAM}
  214. @item @code{STARPU_CUDA_RAM}
  215. @item @code{STARPU_OPENCL_RAM}
  216. @item @code{STARPU_SPU_LS}
  217. @end table
  218. @end deftp
  219. @deftypefun {enum starpu_node_kind} starpu_node_get_kind (uint32_t @var{node})
  220. Returns the type of the given node as defined by @code{enum
  221. starpu_node_kind}. For example, when defining a new data interface,
  222. this function should be used in the allocation function to determine
  223. on which device the memory needs to be allocated.
  224. @end deftypefun
  225. @node Data Library
  226. @section Data Library
  227. @menu
  228. * Introduction to Data Library::
  229. * Basic Data Library API::
  230. * Access registered data from the application::
  231. @end menu
  232. This section describes the data management facilities provided by StarPU.
  233. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  234. design their own data interfaces if required.
  235. @node Introduction to Data Library
  236. @subsection Introduction
  237. Data management is done at a high-level in StarPU: rather than accessing a mere
  238. list of contiguous buffers, the tasks may manipulate data that are described by
  239. a high-level construct which we call data interface.
  240. An example of data interface is the "vector" interface which describes a
  241. contiguous data array on a spefic memory node. This interface is a simple
  242. structure containing the number of elements in the array, the size of the
  243. elements, and the address of the array in the appropriate address space (this
  244. address may be invalid if there is no valid copy of the array in the memory
  245. node). More informations on the data interfaces provided by StarPU are
  246. given in @ref{Data Interfaces}.
  247. When a piece of data managed by StarPU is used by a task, the task
  248. implementation is given a pointer to an interface describing a valid copy of
  249. the data that is accessible from the current processing unit.
  250. Every worker is associated to a memory node which is a logical abstraction of
  251. the address space from which the processing unit gets its data. For instance,
  252. the memory node associated to the different CPU workers represents main memory
  253. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  254. Every memory node is identified by a logical index which is accessible from the
  255. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  256. to StarPU, the specified memory node indicates where the piece of data
  257. initially resides (we also call this memory node the home node of a piece of
  258. data).
  259. @node Basic Data Library API
  260. @subsection Basic Data Library API
  261. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  262. This function allocates data of the given size in main memory. It will also try to pin it in
  263. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  264. thus permit data transfer and computation overlapping. The allocated buffer must
  265. be freed thanks to the @code{starpu_free} function.
  266. @end deftypefun
  267. @deftypefun int starpu_free (void *@var{A})
  268. This function frees memory which has previously allocated with
  269. @code{starpu_malloc}.
  270. @end deftypefun
  271. @deftp {Data Type} {enum starpu_access_mode}
  272. This datatype describes a data access mode. The different available modes are:
  273. @table @asis
  274. @item @code{STARPU_R}: read-only mode.
  275. @item @code{STARPU_W}: write-only mode.
  276. @item @code{STARPU_RW}: read-write mode. This is equivalent to @code{STARPU_R|STARPU_W}.
  277. @item @code{STARPU_SCRATCH}: scratch memory. A temporary buffer is allocated for the task, but StarPU does not enforce data consistency, i.e. each device has its own buffer, independently from each other (even for CPUs), and no data transfer is ever performed. This is useful for temporary variables to avoid allocating/freeing buffers inside each task. For now, no behaviour is defined concerning the relation with STARPU_R/W modes and the value provided at registration, i.e. the value of the scratch buffer is undefined at entry of the codelet function. It is being considered for future extensions at least to define the initial value. For now, data to be used in SCRATCH mode should be registered with node -1 and a NULL pointer, since the value of the provided buffer is simply ignored for now.
  278. @item @code{STARPU_REDUX} reduction mode. TODO: add an example in the advanced examples section.
  279. @end table
  280. @end deftp
  281. @deftp {Data Type} {starpu_data_handle_t}
  282. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  283. data. Once a piece of data has been registered to StarPU, it is associated to a
  284. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  285. over the entire machine, so that we can maintain data consistency and locate
  286. data replicates for instance.
  287. @end deftp
  288. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, uint32_t @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  289. Register a piece of data into the handle located at the @var{handleptr}
  290. address. The @var{data_interface} buffer contains the initial description of the
  291. data in the home node. The @var{ops} argument is a pointer to a structure
  292. describing the different methods used to manipulate this type of interface. See
  293. @ref{struct starpu_data_interface_ops} for more details on this structure.
  294. If @code{home_node} is -1, StarPU will automatically
  295. allocate the memory when it is used for the
  296. first time in write-only mode. Once such data handle has been automatically
  297. allocated, it is possible to access it using any access mode.
  298. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  299. matrix) which can be registered by the means of helper functions (e.g.
  300. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  301. @end deftypefun
  302. @deftypefun void starpu_data_register_same ({starpu_data_handle_t *}@var{handledst}, starpu_data_handle_t @var{handlesrc})
  303. Register a new piece of data into the handle @var{handledst} with the
  304. same interface as the handle @var{handlesrc}.
  305. @end deftypefun
  306. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  307. This function unregisters a data handle from StarPU. If the data was
  308. automatically allocated by StarPU because the home node was -1, all
  309. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  310. is put back into the home node in the buffer that was initially registered.
  311. Using a data handle that has been unregistered from StarPU results in an
  312. undefined behaviour.
  313. @end deftypefun
  314. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  315. This is the same as starpu_data_unregister, except that StarPU does not put back
  316. a valid copy into the home node, in the buffer that was initially registered.
  317. @end deftypefun
  318. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  319. Destroy all replicates of the data handle. After data invalidation, the first
  320. access to the handle must be performed in write-only mode. Accessing an
  321. invalidated data in read-mode results in undefined behaviour.
  322. @end deftypefun
  323. @c TODO create a specific sections about user interaction with the DSM ?
  324. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  325. This function sets the write-through mask of a given data, i.e. a bitmask of
  326. nodes where the data should be always replicated after modification. It also
  327. prevents the data from being evicted from these nodes when memory gets scarse.
  328. @end deftypefun
  329. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  330. Issue a prefetch request for a given data to a given node, i.e.
  331. requests that the data be replicated to the given node, so that it is available
  332. there for tasks. If the @var{async} parameter is 0, the call will block until
  333. the transfer is achieved, else the call will return as soon as the request is
  334. scheduled (which may however have to wait for a task completion).
  335. @end deftypefun
  336. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  337. Return the handle associated to ptr @var{ptr}.
  338. @end deftypefun
  339. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  340. Explicitly ask StarPU to allocate room for a piece of data on the specified
  341. memory node.
  342. @end deftypefun
  343. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  344. Query the status of the handle on the specified memory node.
  345. @end deftypefun
  346. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  347. This function allows to specify that a piece of data can be discarded
  348. without impacting the application.
  349. @end deftypefun
  350. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  351. This sets the codelets to be used for the @var{handle} when it is accessed in
  352. REDUX mode. Per-worker buffers will be initialized with the @var{init_cl}
  353. codelet, and reduction between per-worker buffers will be done with the
  354. @var{redux_cl} codelet.
  355. @end deftypefun
  356. @node Access registered data from the application
  357. @subsection Access registered data from the application
  358. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode})
  359. The application must call this function prior to accessing registered data from
  360. main memory outside tasks. StarPU ensures that the application will get an
  361. up-to-date copy of the data in main memory located where the data was
  362. originally registered, and that all concurrent accesses (e.g. from tasks) will
  363. be consistent with the access mode specified in the @var{mode} argument.
  364. @code{starpu_data_release} must be called once the application does not need to
  365. access the piece of data anymore. Note that implicit data
  366. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  367. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  368. the data, unless that they have not been disabled explictly by calling
  369. @code{starpu_data_set_default_sequential_consistency_flag} or
  370. @code{starpu_data_set_sequential_consistency_flag}.
  371. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  372. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  373. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  374. @end deftypefun
  375. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  376. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  377. @code{starpu_data_release}. When the data specified in the first argument is
  378. available in the appropriate access mode, the callback function is executed.
  379. The application may access the requested data during the execution of this
  380. callback. The callback function must call @code{starpu_data_release} once the
  381. application does not need to access the piece of data anymore.
  382. Note that implicit data dependencies are also enforced by
  383. @code{starpu_data_acquire_cb} in case they are enabled.
  384. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  385. be called from task callbacks. Upon successful completion, this function
  386. returns 0.
  387. @end deftypefun
  388. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, code)
  389. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  390. except that the code to be executed in a callback is directly provided as a
  391. macro parameter, and the data handle is automatically released after it. This
  392. permits to easily execute code which depends on the value of some registered
  393. data. This is non-blocking too and may be called from task callbacks.
  394. @end defmac
  395. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  396. This function releases the piece of data acquired by the application either by
  397. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  398. @end deftypefun
  399. @node Data Interfaces
  400. @section Data Interfaces
  401. @menu
  402. * Registering Data::
  403. * Accessing Data Interfaces::
  404. @end menu
  405. @node Registering Data
  406. @subsection Registering Data
  407. There are several ways to register a memory region so that it can be managed by
  408. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  409. matrices as well as BCSR and CSR sparse matrices.
  410. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  411. Register a void interface. There is no data really associated to that
  412. interface, but it may be used as a synchronization mechanism. It also
  413. permits to express an abstract piece of data that is managed by the
  414. application internally: this makes it possible to forbid the
  415. concurrent execution of different tasks accessing the same "void" data
  416. in read-write concurrently.
  417. @end deftypefun
  418. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  419. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  420. typically a scalar, and initialize @var{handle} to represent this data
  421. item.
  422. @cartouche
  423. @smallexample
  424. float var;
  425. starpu_data_handle_t var_handle;
  426. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  427. @end smallexample
  428. @end cartouche
  429. @end deftypefun
  430. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  431. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  432. @var{ptr} and initialize @var{handle} to represent it.
  433. @cartouche
  434. @smallexample
  435. float vector[NX];
  436. starpu_data_handle_t vector_handle;
  437. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  438. sizeof(vector[0]));
  439. @end smallexample
  440. @end cartouche
  441. @end deftypefun
  442. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  443. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  444. pointed by @var{ptr} and initialize @var{handle} to represent it.
  445. @var{ld} specifies the number of elements between rows.
  446. a value greater than @var{nx} adds padding, which can be useful for
  447. alignment purposes.
  448. @cartouche
  449. @smallexample
  450. float *matrix;
  451. starpu_data_handle_t matrix_handle;
  452. matrix = (float*)malloc(width * height * sizeof(float));
  453. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  454. width, width, height, sizeof(float));
  455. @end smallexample
  456. @end cartouche
  457. @end deftypefun
  458. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, uint32_t @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  459. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  460. elements pointed by @var{ptr} and initialize @var{handle} to represent
  461. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  462. between rows and between z planes.
  463. @cartouche
  464. @smallexample
  465. float *block;
  466. starpu_data_handle_t block_handle;
  467. block = (float*)malloc(nx*ny*nz*sizeof(float));
  468. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  469. nx, nx*ny, nx, ny, nz, sizeof(float));
  470. @end smallexample
  471. @end cartouche
  472. @end deftypefun
  473. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  474. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  475. Compressed Sparse Row Representation) sparse matrix interface.
  476. Register the sparse matrix made of @var{nnz} non-zero values of size
  477. @var{elemsize} stored in @var{nzval} and initializes @var{handle} to represent
  478. it. Blocks have size @var{r} * @var{c}. @var{nrow} is the number of rows (in
  479. terms of blocks), @var{colind} is the list of positions of the non-zero entries
  480. on the row, @var{rowptr} is the index (in nzval) of the first entry of the row.
  481. @var{fristentry} is the index of the first entry of the given arrays (usually 0
  482. or 1).
  483. @end deftypefun
  484. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, uint32_t @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  485. This variant of @code{starpu_data_register} uses the CSR (Compressed
  486. Sparse Row Representation) sparse matrix interface.
  487. TODO
  488. @end deftypefun
  489. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  490. Return the interface associated with @var{handle} on @var{memory_node}.
  491. @end deftypefun
  492. @node Accessing Data Interfaces
  493. @subsection Accessing Data Interfaces
  494. Each data interface is provided with a set of field access functions.
  495. The ones using a @code{void *} parameter aimed to be used in codelet
  496. implementations (see for example the code in @ref{Vector Scaling Using StarPu's API}).
  497. @deftp {Data Type} {enum starpu_data_interface_id}
  498. The different values are:
  499. @table @asis
  500. @item @code{STARPU_MATRIX_INTERFACE_ID}
  501. @item @code{STARPU_BLOCK_INTERFACE_ID}
  502. @item @code{STARPU_VECTOR_INTERFACE_ID}
  503. @item @code{STARPU_CSR_INTERFACE_ID}
  504. @item @code{STARPU_BCSR_INTERFACE_ID}
  505. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  506. @item @code{STARPU_VOID_INTERFACE_ID}
  507. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  508. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  509. @end table
  510. @end deftp
  511. @menu
  512. * Accessing Handle::
  513. * Accessing Variable Data Interfaces::
  514. * Accessing Vector Data Interfaces::
  515. * Accessing Matrix Data Interfaces::
  516. * Accessing Block Data Interfaces::
  517. * Accessing BCSR Data Interfaces::
  518. * Accessing CSR Data Interfaces::
  519. @end menu
  520. @node Accessing Handle
  521. @subsubsection Handle
  522. @deftypefun {void *} starpu_handle_to_pointer (starpu_data_handle_t @var{handle}, uint32_t @var{node})
  523. Return the pointer associated with @var{handle} on node @var{node} or
  524. @code{NULL} if @var{handle}'s interface does not support this
  525. operation or data for this handle is not allocated on that node.
  526. @end deftypefun
  527. @deftypefun {void *} starpu_handle_get_local_ptr (starpu_data_handle_t @var{handle})
  528. Return the local pointer associated with @var{handle} or @code{NULL}
  529. if @var{handle}'s interface does not have data allocated locally
  530. @end deftypefun
  531. @deftypefun {enum starpu_data_interface_id} starpu_handle_get_interface_id (starpu_data_handle_t @var{handle})
  532. Return the unique identifier of the interface associated with the given @var{handle}.
  533. @end deftypefun
  534. @node Accessing Variable Data Interfaces
  535. @subsubsection Variable Data Interfaces
  536. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  537. Return the size of the variable designated by @var{handle}.
  538. @end deftypefun
  539. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  540. Return a pointer to the variable designated by @var{handle}.
  541. @end deftypefun
  542. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  543. Return a pointer to the variable designated by @var{interface}.
  544. @end defmac
  545. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  546. Return the size of the variable designated by @var{interface}.
  547. @end defmac
  548. @node Accessing Vector Data Interfaces
  549. @subsubsection Vector Data Interfaces
  550. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  551. Return the number of elements registered into the array designated by @var{handle}.
  552. @end deftypefun
  553. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  554. Return the size of each element of the array designated by @var{handle}.
  555. @end deftypefun
  556. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  557. Return the local pointer associated with @var{handle}.
  558. @end deftypefun
  559. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  560. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  561. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  562. @end defmac
  563. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  564. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  565. documented below has to be used in addition to this.
  566. @end defmac
  567. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  568. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  569. @end defmac
  570. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  571. Return the number of elements registered into the array designated by @var{interface}.
  572. @end defmac
  573. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  574. Return the size of each element of the array designated by @var{interface}.
  575. @end defmac
  576. @node Accessing Matrix Data Interfaces
  577. @subsubsection Matrix Data Interfaces
  578. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  579. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  580. @end deftypefun
  581. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  582. Return the number of elements on the y-axis of the matrix designated by
  583. @var{handle}.
  584. @end deftypefun
  585. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  586. Return the number of elements between each row of the matrix designated by
  587. @var{handle}. Maybe be equal to nx when there is no padding.
  588. @end deftypefun
  589. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  590. Return the local pointer associated with @var{handle}.
  591. @end deftypefun
  592. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  593. Return the size of the elements registered into the matrix designated by
  594. @var{handle}.
  595. @end deftypefun
  596. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  597. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  598. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  599. used instead.
  600. @end defmac
  601. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  602. Return a device handle for the matrix designated by @var{interface}, to be used
  603. on OpenCL. The offset documented below has to be used in addition to this.
  604. @end defmac
  605. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  606. Return the offset in the matrix designated by @var{interface}, to be used with
  607. the device handle.
  608. @end defmac
  609. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  610. Return the number of elements on the x-axis of the matrix designated by
  611. @var{interface}.
  612. @end defmac
  613. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  614. Return the number of elements on the y-axis of the matrix designated by
  615. @var{interface}.
  616. @end defmac
  617. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  618. Return the number of elements between each row of the matrix designated by
  619. @var{interface}. May be equal to nx when there is no padding.
  620. @end defmac
  621. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  622. Return the size of the elements registered into the matrix designated by
  623. @var{interface}.
  624. @end defmac
  625. @node Accessing Block Data Interfaces
  626. @subsubsection Block Data Interfaces
  627. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  628. Return the number of elements on the x-axis of the block designated by @var{handle}.
  629. @end deftypefun
  630. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  631. Return the number of elements on the y-axis of the block designated by @var{handle}.
  632. @end deftypefun
  633. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  634. Return the number of elements on the z-axis of the block designated by @var{handle}.
  635. @end deftypefun
  636. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  637. Return the number of elements between each row of the block designated by
  638. @var{handle}, in the format of the current memory node.
  639. @end deftypefun
  640. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  641. Return the number of elements between each z plane of the block designated by
  642. @var{handle}, in the format of the current memory node.
  643. @end deftypefun
  644. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  645. Return the local pointer associated with @var{handle}.
  646. @end deftypefun
  647. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  648. Return the size of the elements of the block designated by @var{handle}.
  649. @end deftypefun
  650. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  651. Return a pointer to the block designated by @var{interface}.
  652. @end defmac
  653. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  654. Return a device handle for the block designated by @var{interface}, to be used
  655. on OpenCL. The offset document below has to be used in addition to this.
  656. @end defmac
  657. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  658. Return the offset in the block designated by @var{interface}, to be used with
  659. the device handle.
  660. @end defmac
  661. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  662. Return the number of elements on the x-axis of the block designated by @var{handle}.
  663. @end defmac
  664. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  665. Return the number of elements on the y-axis of the block designated by @var{handle}.
  666. @end defmac
  667. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  668. Return the number of elements on the z-axis of the block designated by @var{handle}.
  669. @end defmac
  670. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  671. Return the number of elements between each row of the block designated by
  672. @var{interface}. May be equal to nx when there is no padding.
  673. @end defmac
  674. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  675. Return the number of elements between each z plane of the block designated by
  676. @var{interface}. May be equal to nx*ny when there is no padding.
  677. @end defmac
  678. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  679. Return the size of the elements of the matrix designated by @var{interface}.
  680. @end defmac
  681. @node Accessing BCSR Data Interfaces
  682. @subsubsection BCSR Data Interfaces
  683. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  684. Return the number of non-zero elements in the matrix designated by @var{handle}.
  685. @end deftypefun
  686. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  687. Return the number of rows (in terms of blocks of size r*c) in the matrix
  688. designated by @var{handle}.
  689. @end deftypefun
  690. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  691. Return the index at which all arrays (the column indexes, the row pointers...)
  692. of the matrix desginated by @var{handle} start.
  693. @end deftypefun
  694. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  695. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  696. @end deftypefun
  697. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  698. Return a pointer to the column index, which holds the positions of the non-zero
  699. entries in the matrix designated by @var{handle}.
  700. @end deftypefun
  701. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  702. Return the row pointer array of the matrix designated by @var{handle}.
  703. @end deftypefun
  704. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  705. Return the number of rows in a block.
  706. @end deftypefun
  707. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  708. Return the numberof columns in a block.
  709. @end deftypefun
  710. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  711. Return the size of the elements in the matrix designated by @var{handle}.
  712. @end deftypefun
  713. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  714. Return the number of non-zero values in the matrix designated by @var{interface}.
  715. @end defmac
  716. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  717. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  718. @end defmac
  719. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  720. Return a pointer to the column index of the matrix designated by @var{interface}.
  721. @end defmac
  722. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  723. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  724. @end defmac
  725. @node Accessing CSR Data Interfaces
  726. @subsubsection CSR Data Interfaces
  727. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  728. Return the number of non-zero values in the matrix designated by @var{handle}.
  729. @end deftypefun
  730. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  731. Return the size of the row pointer array of the matrix designated by @var{handle}.
  732. @end deftypefun
  733. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  734. Return the index at which all arrays (the column indexes, the row pointers...)
  735. of the matrix designated by @var{handle} start.
  736. @end deftypefun
  737. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  738. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  739. @end deftypefun
  740. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  741. Return a local pointer to the column index of the matrix designated by @var{handle}.
  742. @end deftypefun
  743. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  744. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  745. @end deftypefun
  746. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  747. Return the size of the elements registered into the matrix designated by @var{handle}.
  748. @end deftypefun
  749. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  750. Return the number of non-zero values in the matrix designated by @var{interface}.
  751. @end defmac
  752. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  753. Return the size of the row pointer array of the matrix designated by @var{interface}.
  754. @end defmac
  755. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  756. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  757. @end defmac
  758. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  759. Return a pointer to the column index of the matrix designated by @var{interface}.
  760. @end defmac
  761. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  762. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  763. @end defmac
  764. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  765. Return the index at which all arrays (the column indexes, the row pointers...)
  766. of the @var{interface} start.
  767. @end defmac
  768. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  769. Return the size of the elements registered into the matrix designated by @var{interface}.
  770. @end defmac
  771. @node Data Partition
  772. @section Data Partition
  773. @menu
  774. * Basic API::
  775. * Predefined filter functions::
  776. @end menu
  777. @node Basic API
  778. @subsection Basic API
  779. @deftp {Data Type} {struct starpu_data_filter}
  780. The filter structure describes a data partitioning operation, to be given to the
  781. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  782. for an example. The different fields are:
  783. @table @asis
  784. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  785. This function fills the @code{child_interface} structure with interface
  786. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  787. @item @code{unsigned nchildren}
  788. This is the number of parts to partition the data into.
  789. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  790. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  791. children depends on the actual data (e.g. the number of blocks in a sparse
  792. matrix).
  793. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  794. In case the resulting children use a different data interface, this function
  795. returns which interface is used by child number @code{id}.
  796. @item @code{unsigned filter_arg}
  797. Allow to define an additional parameter for the filter function.
  798. @item @code{void *filter_arg_ptr}
  799. Allow to define an additional pointer parameter for the filter
  800. function, such as the sizes of the different parts.
  801. @end table
  802. @end deftp
  803. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  804. @anchor{starpu_data_partition}
  805. This requests partitioning one StarPU data @var{initial_handle} into several
  806. subdata according to the filter @var{f}, as shown in the following example:
  807. @cartouche
  808. @smallexample
  809. struct starpu_data_filter f = @{
  810. .filter_func = starpu_vertical_block_filter_func,
  811. .nchildren = nslicesx,
  812. .get_nchildren = NULL,
  813. .get_child_ops = NULL
  814. @};
  815. starpu_data_partition(A_handle, &f);
  816. @end smallexample
  817. @end cartouche
  818. @end deftypefun
  819. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, uint32_t @var{gathering_node})
  820. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  821. collected back into one big piece in the @var{gathering_node} (usually 0).
  822. @cartouche
  823. @smallexample
  824. starpu_data_unpartition(A_handle, 0);
  825. @end smallexample
  826. @end cartouche
  827. @end deftypefun
  828. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  829. This function returns the number of children.
  830. @end deftypefun
  831. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  832. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  833. @end deftypefun
  834. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  835. After partitioning a StarPU data by applying a filter,
  836. @code{starpu_data_get_sub_data} can be used to get handles for each of
  837. the data portions. @var{root_data} is the parent data that was
  838. partitioned. @var{depth} is the number of filters to traverse (in
  839. case several filters have been applied, to e.g. partition in row
  840. blocks, and then in column blocks), and the subsequent
  841. parameters are the indexes. The function returns a handle to the
  842. subdata.
  843. @cartouche
  844. @smallexample
  845. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  846. @end smallexample
  847. @end cartouche
  848. @end deftypefun
  849. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  850. This function is similar to @code{starpu_data_get_sub_data} but uses a
  851. va_list for the parameter list.
  852. @end deftypefun
  853. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  854. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  855. recursively. @var{nfilters} pointers to variables of the type
  856. starpu_data_filter should be given.
  857. @end deftypefun
  858. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  859. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  860. recursively. It uses a va_list of pointers to variables of the typer
  861. starpu_data_filter.
  862. @end deftypefun
  863. @node Predefined filter functions
  864. @subsection Predefined filter functions
  865. @menu
  866. * Partitioning BCSR Data::
  867. * Partitioning BLAS interface::
  868. * Partitioning Vector Data::
  869. * Partitioning Block Data::
  870. @end menu
  871. This section gives a partial list of the predefined partitioning functions.
  872. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  873. list can be found in @code{starpu_data_filters.h} .
  874. @node Partitioning BCSR Data
  875. @subsubsection Partitioning BCSR Data
  876. @deftypefun void starpu_canonical_block_filter_bcsr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  877. This partitions a block-sparse matrix into dense matrices.
  878. @end deftypefun
  879. @deftypefun void starpu_vertical_block_filter_func_csr (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  880. This partitions a block-sparse matrix into vertical block-sparse matrices.
  881. @end deftypefun
  882. @node Partitioning BLAS interface
  883. @subsubsection Partitioning BLAS interface
  884. @deftypefun void starpu_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  885. This partitions a dense Matrix into horizontal blocks.
  886. @end deftypefun
  887. @deftypefun void starpu_vertical_block_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  888. This partitions a dense Matrix into vertical blocks.
  889. @end deftypefun
  890. @node Partitioning Vector Data
  891. @subsubsection Partitioning Vector Data
  892. @deftypefun void starpu_block_filter_func_vector (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  893. Return in @code{*@var{child_interface}} the @var{id}th element of the
  894. vector represented by @var{father_interface} once partitioned in
  895. @var{nparts} chunks of equal size.
  896. @end deftypefun
  897. @deftypefun void starpu_vector_list_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  898. Return in @code{*@var{child_interface}} the @var{id}th element of the
  899. vector represented by @var{father_interface} once partitioned into
  900. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  901. @code{*@var{f}}.
  902. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  903. @code{uint32_t} elements, each of which specifies the number of elements
  904. in each chunk of the partition.
  905. @end deftypefun
  906. @deftypefun void starpu_vector_divide_in_2_filter_func (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  907. Return in @code{*@var{child_interface}} the @var{id}th element of the
  908. vector represented by @var{father_interface} once partitioned in two
  909. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  910. @code{0} or @code{1}.
  911. @end deftypefun
  912. @node Partitioning Block Data
  913. @subsubsection Partitioning Block Data
  914. @deftypefun void starpu_block_filter_func_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  915. This partitions a 3D matrix along the X axis.
  916. @end deftypefun
  917. @node Codelets and Tasks
  918. @section Codelets and Tasks
  919. This section describes the interface to manipulate codelets and tasks.
  920. @deftp {Data Type} {enum starpu_codelet_type}
  921. Describes the type of parallel task. The different values are:
  922. @table @asis
  923. @item @code{STARPU_SEQ} (default) for classical sequential tasks.
  924. @item @code{STARPU_SPMD} for a parallel task whose threads are handled by
  925. StarPU, the code has to use @code{starpu_combined_worker_get_size} and
  926. @code{starpu_combined_worker_get_rank} to distribute the work
  927. @item @code{STARPU_FORKJOIN} for a parallel task whose threads are started by
  928. the codelet function, which has to use @code{starpu_combined_worker_get_size} to
  929. determine how many threads should be started.
  930. @end table
  931. See @ref{Parallel Tasks} for details.
  932. @end deftp
  933. @defmac STARPU_CPU
  934. This macro is used when setting the field @code{where} of a @code{struct
  935. starpu_codelet} to specify the codelet may be executed on a CPU
  936. processing unit.
  937. @end defmac
  938. @defmac STARPU_CUDA
  939. This macro is used when setting the field @code{where} of a @code{struct
  940. starpu_codelet} to specify the codelet may be executed on a CUDA
  941. processing unit.
  942. @end defmac
  943. @defmac STARPU_SPU
  944. This macro is used when setting the field @code{where} of a @code{struct
  945. starpu_codelet} to specify the codelet may be executed on a SPU
  946. processing unit.
  947. @end defmac
  948. @defmac STARPU_GORDON
  949. This macro is used when setting the field @code{where} of a @code{struct
  950. starpu_codelet} to specify the codelet may be executed on a Cell
  951. processing unit.
  952. @end defmac
  953. @defmac STARPU_OPENCL
  954. This macro is used when setting the field @code{where} of a @code{struct
  955. starpu_codelet} to specify the codelet may be executed on a OpenCL
  956. processing unit.
  957. @end defmac
  958. @defmac STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
  959. Setting the field @code{cpu_func} of a @code{struct starpu_codelet}
  960. with this macro indicates the codelet will have several
  961. implementations. The use of this macro is deprecated. One should
  962. always only define the field @code{cpu_funcs}.
  963. @end defmac
  964. @defmac STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
  965. Setting the field @code{cuda_func} of a @code{struct starpu_codelet}
  966. with this macro indicates the codelet will have several
  967. implementations. The use of this macro is deprecated. One should
  968. always only define the field @code{cuda_funcs}.
  969. @end defmac
  970. @defmac STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
  971. Setting the field @code{opencl_func} of a @code{struct starpu_codelet}
  972. with this macro indicates the codelet will have several
  973. implementations. The use of this macro is deprecated. One should
  974. always only define the field @code{opencl_funcs}.
  975. @end defmac
  976. @deftp {Data Type} {struct starpu_codelet}
  977. The codelet structure describes a kernel that is possibly implemented on various
  978. targets. For compatibility, make sure to initialize the whole structure to zero.
  979. @table @asis
  980. @item @code{uint32_t where} (optional)
  981. Indicates which types of processing units are able to execute the
  982. codelet. The different values
  983. @code{STARPU_CPU}, @code{STARPU_CUDA}, @code{STARPU_SPU},
  984. @code{STARPU_GORDON}, @code{STARPU_OPENCL} can be combined to specify
  985. on which types of processing units the codelet can be executed.
  986. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  987. implemented for both CPU cores and CUDA devices while @code{STARPU_GORDON}
  988. indicates that it is only available on Cell SPUs. If the field is
  989. unset, its value will be automatically set based on the availability
  990. of the @code{XXX_funcs} fields defined below.
  991. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  992. Defines a function which should return 1 if the worker designated by @var{workerid} can execute the @var{nimpl}th implementation of the given@var{task}, 0 otherwise.
  993. @item @code{enum starpu_codelet_type type} (optional)
  994. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  995. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  996. implementation is also available. See @ref{Parallel Tasks} for details.
  997. @item @code{int max_parallelism} (optional)
  998. If a parallel implementation is available, this denotes the maximum combined
  999. worker size that StarPU will use to execute parallel tasks for this codelet.
  1000. @item @code{starpu_cpu_func_t cpu_func} (optional)
  1001. This field has been made deprecated. One should use instead the
  1002. @code{cpu_funcs} field.
  1003. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1004. Is an array of function pointers to the CPU implementations of the codelet.
  1005. It must be terminated by a NULL value.
  1006. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  1007. argument being the array of data managed by the data management library, and
  1008. the second argument is a pointer to the argument passed from the @code{cl_arg}
  1009. field of the @code{starpu_task} structure.
  1010. If the @code{where} field is set, then the @code{cpu_funcs} field is
  1011. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  1012. field, it must be non-null otherwise.
  1013. @item @code{starpu_cuda_func_t cuda_func} (optional)
  1014. This field has been made deprecated. One should use instead the
  1015. @code{cuda_funcs} field.
  1016. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1017. Is an array of function pointers to the CUDA implementations of the codelet.
  1018. It must be terminated by a NULL value.
  1019. @emph{The functions must be host-functions written in the CUDA runtime
  1020. API}. Their prototype must
  1021. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  1022. If the @code{where} field is set, then the @code{cuda_funcs}
  1023. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  1024. field, it must be non-null otherwise.
  1025. @item @code{starpu_opencl_func_t opencl_func} (optional)
  1026. This field has been made deprecated. One should use instead the
  1027. @code{opencl_funcs} field.
  1028. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1029. Is an array of function pointers to the OpenCL implementations of the codelet.
  1030. It must be terminated by a NULL value.
  1031. The functions prototype must be:
  1032. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  1033. If the @code{where} field is set, then the @code{opencl_funcs} field
  1034. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  1035. field, it must be non-null otherwise.
  1036. @item @code{uint8_t gordon_func} (optional)
  1037. This field has been made deprecated. One should use instead the
  1038. @code{gordon_funcs} field.
  1039. @item @code{uint8_t gordon_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1040. Is an array of index of the Cell SPU implementations of the codelet within the
  1041. Gordon library.
  1042. It must be terminated by a NULL value.
  1043. See Gordon documentation for more details on how to register a kernel and
  1044. retrieve its index.
  1045. @item @code{unsigned nbuffers}
  1046. Specifies the number of arguments taken by the codelet. These arguments are
  1047. managed by the DSM and are accessed from the @code{void *buffers[]}
  1048. array. The constant argument passed with the @code{cl_arg} field of the
  1049. @code{starpu_task} structure is not counted in this number. This value should
  1050. not be above @code{STARPU_NMAXBUFS}.
  1051. @item @code{enum starpu_access_mode modes[STARPU_NMAXBUFS]}
  1052. Is an array of @code{enum starpu_access_mode}. It describes the
  1053. required access modes to the data neeeded by the codelet (e.g.
  1054. @code{STARPU_RW}). The number of entries in this array must be
  1055. specified in the @code{nbuffers} field (defined above), and should not
  1056. exceed @code{STARPU_NMAXBUFS}.
  1057. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1058. option when configuring StarPU.
  1059. @item @code{struct starpu_perfmodel *model} (optional)
  1060. This is a pointer to the task duration performance model associated to this
  1061. codelet. This optional field is ignored when set to @code{NULL}.
  1062. @item @code{struct starpu_perfmodel *power_model} (optional)
  1063. This is a pointer to the task power consumption performance model associated
  1064. to this codelet. This optional field is ignored when set to @code{NULL}.
  1065. In the case of parallel codelets, this has to account for all processing units
  1066. involved in the parallel execution.
  1067. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  1068. Statistics collected at runtime: this is filled by StarPU and should not be
  1069. accessed directly, but for example by calling the
  1070. @code{starpu_display_codelet_stats} function (See
  1071. @ref{starpu_display_codelet_stats} for details).
  1072. @item @code{const char *name} (optional)
  1073. Define the name of the codelet. This can be useful for debugging purposes.
  1074. @end table
  1075. @end deftp
  1076. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  1077. Initialize @var{cl} with default values. Codelets should preferably be
  1078. initialized statically as shown in @ref{Defining a Codelet}. However
  1079. such a initialisation is not always possible, e.g. when using C++.
  1080. @end deftypefun
  1081. @deftp {Data Type} {enum starpu_task_status}
  1082. State of a task, can be either of
  1083. @table @asis
  1084. @item @code{STARPU_TASK_INVALID} The task has just been initialized.
  1085. @item @code{STARPU_TASK_BLOCKED} The task has just been submitted, and its dependencies has not been checked yet.
  1086. @item @code{STARPU_TASK_READY} The task is ready for execution.
  1087. @item @code{STARPU_TASK_RUNNING} The task is running on some worker.
  1088. @item @code{STARPU_TASK_FINISHED} The task is finished executing.
  1089. @item @code{STARPU_TASK_BLOCKED_ON_TAG} The task is waiting for a tag.
  1090. @item @code{STARPU_TASK_BLOCKED_ON_TASK} The task is waiting for a task.
  1091. @item @code{STARPU_TASK_BLOCKED_ON_DATA} The task is waiting for some data.
  1092. @end table
  1093. @end deftp
  1094. @deftp {Data Type} {struct starpu_buffer_descr}
  1095. This type is used to describe a data handle along with an
  1096. access mode.
  1097. @table @asis
  1098. @item @code{starpu_data_handle_t handle} describes a data,
  1099. @item @code{enum starpu_access_mode mode} describes its access mode
  1100. @end table
  1101. @end deftp
  1102. @deftp {Data Type} {struct starpu_task}
  1103. The @code{starpu_task} structure describes a task that can be offloaded on the various
  1104. processing units managed by StarPU. It instantiates a codelet. It can either be
  1105. allocated dynamically with the @code{starpu_task_create} method, or declared
  1106. statically. In the latter case, the programmer has to zero the
  1107. @code{starpu_task} structure and to fill the different fields properly. The
  1108. indicated default values correspond to the configuration of a task allocated
  1109. with @code{starpu_task_create}.
  1110. @table @asis
  1111. @item @code{struct starpu_codelet *cl}
  1112. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1113. describes where the kernel should be executed, and supplies the appropriate
  1114. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1115. such empty tasks can be useful for synchronization purposes.
  1116. @item @code{struct starpu_buffer_descr buffers[STARPU_NMAXBUFS]}
  1117. This field has been made deprecated. One should use instead the
  1118. @code{handles} field to specify the handles to the data accessed by
  1119. the task. The access modes are now defined in the @code{mode} field of
  1120. the @code{struct starpu_codelet cl} field defined above.
  1121. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1122. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1123. to the different pieces of data accessed by the task. The number
  1124. of entries in this array must be specified in the @code{nbuffers} field of the
  1125. @code{struct starpu_codelet} structure, and should not exceed
  1126. @code{STARPU_NMAXBUFS}.
  1127. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1128. option when configuring StarPU.
  1129. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1130. The actual data pointers to the memory node where execution will happen, managed
  1131. by the DSM.
  1132. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1133. This pointer is passed to the codelet through the second argument
  1134. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1135. In the specific case of the Cell processor, see the @code{cl_arg_size}
  1136. argument.
  1137. @item @code{size_t cl_arg_size} (optional, Cell-specific)
  1138. In the case of the Cell processor, the @code{cl_arg} pointer is not directly
  1139. given to the SPU function. A buffer of size @code{cl_arg_size} is allocated on
  1140. the SPU. This buffer is then filled with the @code{cl_arg_size} bytes starting
  1141. at address @code{cl_arg}. In this case, the argument given to the SPU codelet
  1142. is therefore not the @code{cl_arg} pointer, but the address of the buffer in
  1143. local store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
  1144. codelets, where the @code{cl_arg} pointer is given as such.
  1145. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1146. This is a function pointer of prototype @code{void (*f)(void *)} which
  1147. specifies a possible callback. If this pointer is non-null, the callback
  1148. function is executed @emph{on the host} after the execution of the task. The
  1149. callback is passed the value contained in the @code{callback_arg} field. No
  1150. callback is executed if the field is set to @code{NULL}.
  1151. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1152. This is the pointer passed to the callback function. This field is ignored if
  1153. the @code{callback_func} is set to @code{NULL}.
  1154. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1155. If set, this flag indicates that the task should be associated with the tag
  1156. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1157. with the task and to express task dependencies easily.
  1158. @item @code{starpu_tag_t tag_id}
  1159. This fields contains the tag associated to the task if the @code{use_tag} field
  1160. was set, it is ignored otherwise.
  1161. @item @code{unsigned synchronous}
  1162. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1163. returns only when the task has been executed (or if no worker is able to
  1164. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1165. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1166. This field indicates a level of priority for the task. This is an integer value
  1167. that must be set between the return values of the
  1168. @code{starpu_sched_get_min_priority} function for the least important tasks,
  1169. and that of the @code{starpu_sched_get_max_priority} for the most important
  1170. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1171. are provided for convenience and respectively returns value of
  1172. @code{starpu_sched_get_min_priority} and @code{starpu_sched_get_max_priority}.
  1173. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1174. order to allow static task initialization. Scheduling strategies that take
  1175. priorities into account can use this parameter to take better scheduling
  1176. decisions, but the scheduling policy may also ignore it.
  1177. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1178. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1179. task to the worker specified by the @code{workerid} field.
  1180. @item @code{unsigned workerid} (optional)
  1181. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1182. which is the identifier of the worker that should process this task (as
  1183. returned by @code{starpu_worker_get_id}). This field is ignored if
  1184. @code{execute_on_a_specific_worker} field is set to 0.
  1185. @item @code{starpu_task_bundle_t bundle} (optional)
  1186. The bundle that includes this task. If no bundle is used, this should be NULL.
  1187. @item @code{int detach} (optional) (default: @code{1})
  1188. If this flag is set, it is not possible to synchronize with the task
  1189. by the means of @code{starpu_task_wait} later on. Internal data structures
  1190. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1191. flag is not set.
  1192. @item @code{int destroy} (optional) (default: @code{0} for starpu_task_init, @code{1} for starpu_task_create)
  1193. If this flag is set, the task structure will automatically be freed, either
  1194. after the execution of the callback if the task is detached, or during
  1195. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1196. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1197. called explicitly. Setting this flag for a statically allocated task structure
  1198. will result in undefined behaviour. The flag is set to 1 when the task is
  1199. created by calling @code{starpu_task_create()}. Note that
  1200. @code{starpu_task_wait_for_all} will not free any task.
  1201. @item @code{int regenerate} (optional)
  1202. If this flag is set, the task will be re-submitted to StarPU once it has been
  1203. executed. This flag must not be set if the destroy flag is set too.
  1204. @item @code{enum starpu_task_status status} (optional)
  1205. Current state of the task.
  1206. @item @code{struct starpu_task_profiling_info *profiling_info} (optional)
  1207. Profiling information for the task.
  1208. @item @code{double predicted} (output field)
  1209. Predicted duration of the task. This field is only set if the scheduling
  1210. strategy used performance models.
  1211. @item @code{double predicted_transfer} (optional)
  1212. Predicted data transfer duration for the task in microseconds. This field is
  1213. only valid if the scheduling strategy uses performance models.
  1214. @item @code{struct starpu_task *prev}
  1215. A pointer to the previous task. This should only be used by StarPU.
  1216. @item @code{struct starpu_task *next}
  1217. A pointer to the next task. This should only be used by StarPU.
  1218. @item @code{unsigned int mf_skip}
  1219. This is only used for tasks that use multiformat handle. This should only be
  1220. used by StarPU.
  1221. @item @code{void *starpu_private}
  1222. This is private to StarPU, do not modify. If the task is allocated by hand
  1223. (without starpu_task_create), this field should be set to NULL.
  1224. @item @code{int magic}
  1225. This field is set when initializing a task. It prevents a task from being
  1226. submitted if it has not been properly initialized.
  1227. @end table
  1228. @end deftp
  1229. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1230. Initialize @var{task} with default values. This function is implicitly
  1231. called by @code{starpu_task_create}. By default, tasks initialized with
  1232. @code{starpu_task_init} must be deinitialized explicitly with
  1233. @code{starpu_task_deinit}. Tasks can also be initialized statically,
  1234. using @code{STARPU_TASK_INITIALIZER} defined below.
  1235. @end deftypefun
  1236. @defmac STARPU_TASK_INITIALIZER
  1237. It is possible to initialize statically allocated tasks with this
  1238. value. This is equivalent to initializing a starpu_task structure with
  1239. the @code{starpu_task_init} function defined above.
  1240. @end defmac
  1241. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1242. Allocate a task structure and initialize it with default values. Tasks
  1243. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1244. task is terminated. This means that the task pointer can not be used any more
  1245. once the task is submitted, since it can be executed at any time (unless
  1246. dependencies make it wait) and thus freed at any time.
  1247. If the destroy flag is explicitly unset, the resources used
  1248. by the task have to be freed by calling
  1249. @code{starpu_task_destroy}.
  1250. @end deftypefun
  1251. @deftypefun void starpu_task_deinit ({struct starpu_task} *@var{task})
  1252. Release all the structures automatically allocated to execute @var{task}, but
  1253. not the task structure itself. It is thus useful for statically allocated tasks
  1254. for instance. It is called automatically by @code{starpu_task_destroy}. It
  1255. has to be called only after explicitly waiting for the task or after
  1256. @code{starpu_shutdown} (waiting for the callback is not enough, since starpu
  1257. still manipulates the task after calling the callback).
  1258. @end deftypefun
  1259. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1260. Free the resource allocated during @code{starpu_task_create} and
  1261. associated with @var{task}. This function is already called automatically
  1262. after the execution of a task when the @code{destroy} flag of the
  1263. @code{starpu_task} structure is set, which is the default for tasks created by
  1264. @code{starpu_task_create}. Calling this function on a statically allocated task
  1265. results in an undefined behaviour.
  1266. @end deftypefun
  1267. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1268. This function blocks until @var{task} has been executed. It is not possible to
  1269. synchronize with a task more than once. It is not possible to wait for
  1270. synchronous or detached tasks.
  1271. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1272. indicates that the specified task was either synchronous or detached.
  1273. @end deftypefun
  1274. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1275. This function submits @var{task} to StarPU. Calling this function does
  1276. not mean that the task will be executed immediately as there can be data or task
  1277. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1278. scheduling this task with respect to such dependencies.
  1279. This function returns immediately if the @code{synchronous} field of the
  1280. @code{starpu_task} structure was set to 0, and block until the termination of
  1281. the task otherwise. It is also possible to synchronize the application with
  1282. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1283. function for instance.
  1284. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1285. means that there is no worker able to process this task (e.g. there is no GPU
  1286. available and this task is only implemented for CUDA devices).
  1287. @end deftypefun
  1288. @deftypefun int starpu_task_wait_for_all (void)
  1289. This function blocks until all the tasks that were submitted are terminated. It
  1290. does not destroy these tasks.
  1291. @end deftypefun
  1292. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1293. This function returns the task currently executed by the worker, or
  1294. NULL if it is called either from a thread that is not a task or simply
  1295. because there is no task being executed at the moment.
  1296. @end deftypefun
  1297. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet} *@var{cl})
  1298. @anchor{starpu_display_codelet_stats}
  1299. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1300. @end deftypefun
  1301. @deftypefun int starpu_task_wait_for_no_ready (void)
  1302. This function waits until there is no more ready task.
  1303. @end deftypefun
  1304. @c Callbacks: what can we put in callbacks ?
  1305. @node Explicit Dependencies
  1306. @section Explicit Dependencies
  1307. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1308. Declare task dependencies between a @var{task} and an array of tasks of length
  1309. @var{ndeps}. This function must be called prior to the submission of the task,
  1310. but it may called after the submission or the execution of the tasks in the
  1311. array, provided the tasks are still valid (ie. they were not automatically
  1312. destroyed). Calling this function on a task that was already submitted or with
  1313. an entry of @var{task_array} that is not a valid task anymore results in an
  1314. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1315. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1316. same task, in this case, the dependencies are added. It is possible to have
  1317. redundancy in the task dependencies.
  1318. @end deftypefun
  1319. @deftp {Data Type} {starpu_tag_t}
  1320. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1321. dependencies between tasks by the means of those tags. To do so, fill the
  1322. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1323. be arbitrary) and set the @code{use_tag} field to 1.
  1324. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1325. not be started until the tasks which holds the declared dependency tags are
  1326. completed.
  1327. @end deftp
  1328. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  1329. Specify the dependencies of the task identified by tag @var{id}. The first
  1330. argument specifies the tag which is configured, the second argument gives the
  1331. number of tag(s) on which @var{id} depends. The following arguments are the
  1332. tags which have to be terminated to unlock the task.
  1333. This function must be called before the associated task is submitted to StarPU
  1334. with @code{starpu_task_submit}.
  1335. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  1336. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  1337. typically need to be explicitly casted. Using the
  1338. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  1339. @cartouche
  1340. @smallexample
  1341. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1342. starpu_tag_declare_deps((starpu_tag_t)0x1,
  1343. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  1344. @end smallexample
  1345. @end cartouche
  1346. @end deftypefun
  1347. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  1348. This function is similar to @code{starpu_tag_declare_deps}, except
  1349. that its does not take a variable number of arguments but an array of
  1350. tags of size @var{ndeps}.
  1351. @cartouche
  1352. @smallexample
  1353. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1354. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  1355. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  1356. @end smallexample
  1357. @end cartouche
  1358. @end deftypefun
  1359. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  1360. This function blocks until the task associated to tag @var{id} has been
  1361. executed. This is a blocking call which must therefore not be called within
  1362. tasks or callbacks, but only from the application directly. It is possible to
  1363. synchronize with the same tag multiple times, as long as the
  1364. @code{starpu_tag_remove} function is not called. Note that it is still
  1365. possible to synchronize with a tag associated to a task which @code{starpu_task}
  1366. data structure was freed (e.g. if the @code{destroy} flag of the
  1367. @code{starpu_task} was enabled).
  1368. @end deftypefun
  1369. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  1370. This function is similar to @code{starpu_tag_wait} except that it blocks until
  1371. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  1372. terminated.
  1373. @end deftypefun
  1374. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  1375. This function releases the resources associated to tag @var{id}. It can be
  1376. called once the corresponding task has been executed and when there is
  1377. no other tag that depend on this tag anymore.
  1378. @end deftypefun
  1379. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  1380. This function explicitly unlocks tag @var{id}. It may be useful in the
  1381. case of applications which execute part of their computation outside StarPU
  1382. tasks (e.g. third-party libraries). It is also provided as a
  1383. convenient tool for the programmer, for instance to entirely construct the task
  1384. DAG before actually giving StarPU the opportunity to execute the tasks.
  1385. @end deftypefun
  1386. @node Implicit Data Dependencies
  1387. @section Implicit Data Dependencies
  1388. In this section, we describe how StarPU makes it possible to insert implicit
  1389. task dependencies in order to enforce sequential data consistency. When this
  1390. data consistency is enabled on a specific data handle, any data access will
  1391. appear as sequentially consistent from the application. For instance, if the
  1392. application submits two tasks that access the same piece of data in read-only
  1393. mode, and then a third task that access it in write mode, dependencies will be
  1394. added between the two first tasks and the third one. Implicit data dependencies
  1395. are also inserted in the case of data accesses from the application.
  1396. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  1397. Set the default sequential consistency flag. If a non-zero value is passed, a
  1398. sequential data consistency will be enforced for all handles registered after
  1399. this function call, otherwise it is disabled. By default, StarPU enables
  1400. sequential data consistency. It is also possible to select the data consistency
  1401. mode of a specific data handle with the
  1402. @code{starpu_data_set_sequential_consistency_flag} function.
  1403. @end deftypefun
  1404. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  1405. Return the default sequential consistency flag
  1406. @end deftypefun
  1407. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  1408. Sets the data consistency mode associated to a data handle. The consistency
  1409. mode set using this function has the priority over the default mode which can
  1410. be set with @code{starpu_data_set_default_sequential_consistency_flag}.
  1411. @end deftypefun
  1412. @node Performance Model API
  1413. @section Performance Model API
  1414. @deftp {Data Type} {enum starpu_perf_archtype}
  1415. Enumerates the various types of architectures.
  1416. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  1417. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  1418. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  1419. @table @asis
  1420. @item @code{STARPU_CPU_DEFAULT}
  1421. @item @code{STARPU_CUDA_DEFAULT}
  1422. @item @code{STARPU_OPENCL_DEFAULT}
  1423. @item @code{STARPU_GORDON_DEFAULT}
  1424. @end table
  1425. @end deftp
  1426. @deftp {Data Type} {enum starpu_perfmodel_type}
  1427. The possible values are:
  1428. @table @asis
  1429. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  1430. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  1431. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  1432. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  1433. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  1434. @end table
  1435. @end deftp
  1436. @deftp {Data Type} {struct starpu_perfmodel}
  1437. @anchor{struct starpu_perfmodel}
  1438. contains all information about a performance model. At least the
  1439. @code{type} and @code{symbol} fields have to be filled when defining a
  1440. performance model for a codelet. If not provided, other fields have to be zero.
  1441. @table @asis
  1442. @item @code{type}
  1443. is the type of performance model @code{enum starpu_perfmodel_type}:
  1444. @code{STARPU_HISTORY_BASED},
  1445. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  1446. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  1447. @code{per_arch} has to be filled with functions which return the cost in
  1448. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  1449. a function that returns the cost in micro-seconds on a CPU, timing on other
  1450. archs will be determined by multiplying by an arch-specific factor.
  1451. @item @code{const char *symbol}
  1452. is the symbol name for the performance model, which will be used as
  1453. file name to store the model.
  1454. @item @code{double (*cost_model)(struct starpu_buffer_descr *)}
  1455. This field is deprecated. Use instead the @code{cost_function} field.
  1456. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  1457. Used by @code{STARPU_COMMON}: takes a task and
  1458. implementation number, and must return a task duration estimation in micro-seconds.
  1459. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  1460. Used by @code{STARPU_HISTORY_BASED} and
  1461. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  1462. implementation number, and returns the size to be used as index for
  1463. history and regression.
  1464. @item @code{struct starpu_per_arch_perfmodel per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  1465. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  1466. starpu_per_arch_perfmodel} structures.
  1467. @item @code{unsigned is_loaded}
  1468. Whether the performance model is already loaded from the disk.
  1469. @item @code{unsigned benchmarking}
  1470. Whether the performance model is still being calibrated.
  1471. @item @code{pthread_rwlock_t model_rwlock}
  1472. Lock to protect concurrency between loading from disk (W), updating the values
  1473. (W), and making a performance estimation (R).
  1474. @end table
  1475. @end deftp
  1476. @deftp {Data Type} {struct starpu_regression_model}
  1477. @table @asis
  1478. @item @code{double sumlny} sum of ln(measured)
  1479. @item @code{double sumlnx} sum of ln(size)
  1480. @item @code{double sumlnx2} sum of ln(size)^2
  1481. @item @code{unsigned long minx} minimum size
  1482. @item @code{unsigned long maxx} maximum size
  1483. @item @code{double sumlnxlny} sum of ln(size)*ln(measured)
  1484. @item @code{double alpha} estimated = alpha * size ^ beta
  1485. @item @code{double beta}
  1486. @item @code{unsigned valid} whether the linear regression model is valid (i.e. enough measures)
  1487. @item @code{double a, b, c} estimaed = a size ^b + c
  1488. @item @code{unsigned nl_valid} whether the non-linear regression model is valid (i.e. enough measures)
  1489. @item @code{unsigned nsample} number of sample values for non-linear regression
  1490. @end table
  1491. @end deftp
  1492. @deftp {Data Type} {struct starpu_per_arch_perfmodel}
  1493. contains information about the performance model of a given arch.
  1494. @table @asis
  1495. @item @code{double (*cost_model)(struct starpu_buffer_descr *t)}
  1496. This field is deprecated. Use instead the @code{cost_function} field.
  1497. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perf_archtype arch, unsigned nimpl)}
  1498. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  1499. target arch and implementation number (as mere conveniency, since the array
  1500. is already indexed by these), and must return a task duration estimation in
  1501. micro-seconds.
  1502. @item @code{size_t (*size_base)(struct starpu_task *, enum
  1503. starpu_perf_archtype arch, unsigned nimpl)}
  1504. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  1505. case it depends on the architecture-specific implementation.
  1506. @item @code{struct starpu_htbl32_node *history}
  1507. The history of performance measurements.
  1508. @item @code{struct starpu_history_list *list}
  1509. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  1510. records all execution history measures.
  1511. @item @code{struct starpu_regression_model regression}
  1512. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  1513. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  1514. regression.
  1515. @end table
  1516. @end deftp
  1517. @deftypefun int starpu_load_history_debug ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  1518. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{~/.starpu}.
  1519. @end deftypefun
  1520. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  1521. returns the path to the debugging information for the performance model.
  1522. @end deftypefun
  1523. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  1524. returns the architecture name for @var{arch}.
  1525. @end deftypefun
  1526. @deftypefun void starpu_force_bus_sampling (void)
  1527. forces sampling the bus performance model again.
  1528. @end deftypefun
  1529. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  1530. returns the architecture type of a given worker.
  1531. @end deftypefun
  1532. @deftypefun int starpu_list_models ({FILE *}@var{output})
  1533. prints a list of all performance models on @var{output}.
  1534. @end deftypefun
  1535. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  1536. prints a matrix of bus bandwidths on @var{f}.
  1537. @end deftypefun
  1538. @node Profiling API
  1539. @section Profiling API
  1540. @deftypefun int starpu_profiling_status_set (int @var{status})
  1541. Thie function sets the profiling status. Profiling is activated by passing
  1542. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  1543. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  1544. resets all profiling measurements. When profiling is enabled, the
  1545. @code{profiling_info} field of the @code{struct starpu_task} structure points
  1546. to a valid @code{struct starpu_task_profiling_info} structure containing
  1547. information about the execution of the task.
  1548. Negative return values indicate an error, otherwise the previous status is
  1549. returned.
  1550. @end deftypefun
  1551. @deftypefun int starpu_profiling_status_get (void)
  1552. Return the current profiling status or a negative value in case there was an error.
  1553. @end deftypefun
  1554. @deftypefun void starpu_set_profiling_id (int @var{new_id})
  1555. This function sets the ID used for profiling trace filename
  1556. @end deftypefun
  1557. @deftp {Data Type} {struct starpu_task_profiling_info}
  1558. This structure contains information about the execution of a task. It is
  1559. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  1560. structure if profiling was enabled. The different fields are:
  1561. @table @asis
  1562. @item @code{struct timespec submit_time}
  1563. Date of task submission (relative to the initialization of StarPU).
  1564. @item @code{struct timespec push_start_time}
  1565. Time when the task was submitted to the scheduler.
  1566. @item @code{struct timespec push_end_time}
  1567. Time when the scheduler finished with the task submission.
  1568. @item @code{struct timespec pop_start_time}
  1569. Time when the scheduler started to be requested for a task, and eventually gave
  1570. that task.
  1571. @item @code{struct timespec pop_end_time}
  1572. Time when the scheduler finished providing the task for execution.
  1573. @item @code{struct timespec acquire_data_start_time}
  1574. Time when the worker started fetching input data.
  1575. @item @code{struct timespec acquire_data_end_time}
  1576. Time when the worker finished fetching input data.
  1577. @item @code{struct timespec start_time}
  1578. Date of task execution beginning (relative to the initialization of StarPU).
  1579. @item @code{struct timespec end_time}
  1580. Date of task execution termination (relative to the initialization of StarPU).
  1581. @item @code{struct timespec release_data_start_time}
  1582. Time when the worker started releasing data.
  1583. @item @code{struct timespec release_data_end_time}
  1584. Time when the worker finished releasing data.
  1585. @item @code{struct timespec callback_start_time}
  1586. Time when the worker started the application callback for the task.
  1587. @item @code{struct timespec callback_end_time}
  1588. Time when the worker finished the application callback for the task.
  1589. @item @code{workerid}
  1590. Identifier of the worker which has executed the task.
  1591. @item @code{uint64_t used_cycles}
  1592. Number of cycles used by the task, only available in the MoviSim
  1593. @item @code{uint64_t stall_cycles}
  1594. Number of cycles stalled within the task, only available in the MoviSim
  1595. @item @code{double power_consumed}
  1596. Power consumed by the task, only available in the MoviSim
  1597. @end table
  1598. @end deftp
  1599. @deftp {Data Type} {struct starpu_worker_profiling_info}
  1600. This structure contains the profiling information associated to a
  1601. worker. The different fields are:
  1602. @table @asis
  1603. @item @code{struct timespec start_time}
  1604. Starting date for the reported profiling measurements.
  1605. @item @code{struct timespec total_time}
  1606. Duration of the profiling measurement interval.
  1607. @item @code{struct timespec executing_time}
  1608. Time spent by the worker to execute tasks during the profiling measurement interval.
  1609. @item @code{struct timespec sleeping_time}
  1610. Time spent idling by the worker during the profiling measurement interval.
  1611. @item @code{int executed_tasks}
  1612. Number of tasks executed by the worker during the profiling measurement interval.
  1613. @item @code{uint64_t used_cycles}
  1614. Number of cycles used by the worker, only available in the MoviSim
  1615. @item @code{uint64_t stall_cycles}
  1616. Number of cycles stalled within the worker, only available in the MoviSim
  1617. @item @code{double power_consumed}
  1618. Power consumed by the worker, only available in the MoviSim
  1619. @end table
  1620. @end deftp
  1621. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  1622. Get the profiling info associated to the worker identified by @var{workerid},
  1623. and reset the profiling measurements. If the @var{worker_info} argument is
  1624. NULL, only reset the counters associated to worker @var{workerid}.
  1625. Upon successful completion, this function returns 0. Otherwise, a negative
  1626. value is returned.
  1627. @end deftypefun
  1628. @deftp {Data Type} {struct starpu_bus_profiling_info}
  1629. The different fields are:
  1630. @table @asis
  1631. @item @code{struct timespec start_time}
  1632. Time of bus profiling startup.
  1633. @item @code{struct timespec total_time}
  1634. Total time of bus profiling.
  1635. @item @code{int long long transferred_bytes}
  1636. Number of bytes transferred during profiling.
  1637. @item @code{int transfer_count}
  1638. Number of transfers during profiling.
  1639. @end table
  1640. @end deftp
  1641. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_bus_profiling_info *}@var{bus_info})
  1642. Get the profiling info associated to the worker designated by @var{workerid},
  1643. and reset the profiling measurements. If worker_info is NULL, only reset the
  1644. counters.
  1645. @end deftypefun
  1646. @deftypefun int starpu_bus_get_count (void)
  1647. Return the number of buses in the machine.
  1648. @end deftypefun
  1649. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  1650. Return the identifier of the bus between @var{src} and @var{dst}
  1651. @end deftypefun
  1652. @deftypefun int starpu_bus_get_src (int @var{busid})
  1653. Return the source point of bus @var{busid}
  1654. @end deftypefun
  1655. @deftypefun int starpu_bus_get_dst (int @var{busid})
  1656. Return the destination point of bus @var{busid}
  1657. @end deftypefun
  1658. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  1659. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  1660. @end deftypefun
  1661. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  1662. Converts the given timespec @var{ts} into microseconds.
  1663. @end deftypefun
  1664. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  1665. Displays statistics about the bus on stderr.
  1666. @end deftypefun
  1667. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  1668. Displays statistics about the workers on stderr.
  1669. @end deftypefun
  1670. @node CUDA extensions
  1671. @section CUDA extensions
  1672. @defmac STARPU_USE_CUDA
  1673. This macro is defined when StarPU has been installed with CUDA
  1674. support. It should be used in your code to detect the availability of
  1675. CUDA as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  1676. @end defmac
  1677. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  1678. This function gets the current worker's CUDA stream.
  1679. StarPU provides a stream for every CUDA device controlled by StarPU. This
  1680. function is only provided for convenience so that programmers can easily use
  1681. asynchronous operations within codelets without having to create a stream by
  1682. hand. Note that the application is not forced to use the stream provided by
  1683. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  1684. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  1685. the likelihood of having all transfers overlapped.
  1686. @end deftypefun
  1687. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  1688. This function returns a pointer to device properties for worker @var{workerid}
  1689. (assumed to be a CUDA worker).
  1690. @end deftypefun
  1691. @deftypefun size_t starpu_cuda_get_global_mem_size (int @var{devid})
  1692. Return the size of the global memory of CUDA device @var{devid}.
  1693. @end deftypefun
  1694. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  1695. Report a CUDA error.
  1696. @end deftypefun
  1697. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  1698. Calls starpu_cuda_report_error, passing the current function, file and line
  1699. position.
  1700. @end defmac
  1701. @deftypefun void starpu_helper_cublas_init (void)
  1702. This function initializes CUBLAS on every CUDA device.
  1703. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  1704. @code{starpu_helper_cublas_init} will initialize CUBLAS on every CUDA device
  1705. controlled by StarPU. This call blocks until CUBLAS has been properly
  1706. initialized on every device.
  1707. @end deftypefun
  1708. @deftypefun void starpu_helper_cublas_shutdown (void)
  1709. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  1710. @end deftypefun
  1711. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  1712. Report a cublas error.
  1713. @end deftypefun
  1714. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  1715. Calls starpu_cublas_report_error, passing the current function, file and line
  1716. position.
  1717. @end defmac
  1718. @node OpenCL extensions
  1719. @section OpenCL extensions
  1720. @menu
  1721. * Writing OpenCL kernels:: Writing OpenCL kernels
  1722. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  1723. * Loading OpenCL kernels:: Loading OpenCL kernels
  1724. * OpenCL statistics:: Collecting statistics from OpenCL
  1725. * OpenCL utilities:: Utilities for OpenCL
  1726. @end menu
  1727. @defmac STARPU_USE_OPENCL
  1728. This macro is defined when StarPU has been installed with OpenCL
  1729. support. It should be used in your code to detect the availability of
  1730. OpenCL as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  1731. @end defmac
  1732. @node Writing OpenCL kernels
  1733. @subsection Writing OpenCL kernels
  1734. @deftypefun size_t starpu_opencl_get_global_mem_size (int @var{devid})
  1735. Return the size of global device memory in bytes.
  1736. @end deftypefun
  1737. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  1738. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  1739. @end deftypefun
  1740. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  1741. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  1742. @end deftypefun
  1743. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  1744. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  1745. @end deftypefun
  1746. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  1747. Return the context of the current worker.
  1748. @end deftypefun
  1749. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  1750. Return the computation kernel command queue of the current worker.
  1751. @end deftypefun
  1752. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  1753. Sets the arguments of a given kernel. The list of arguments must be given as
  1754. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  1755. The last argument must be 0. Returns the number of arguments that were
  1756. successfully set. In case of failure, @var{err} is set to the error returned by
  1757. OpenCL.
  1758. @end deftypefun
  1759. @node Compiling OpenCL kernels
  1760. @subsection Compiling OpenCL kernels
  1761. Source codes for OpenCL kernels can be stored in a file or in a
  1762. string. StarPU provides functions to build the program executable for
  1763. each available OpenCL device as a @code{cl_program} object. This
  1764. program executable can then be loaded within a specific queue as
  1765. explained in the next section. These are only helpers, Applications
  1766. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  1767. use (e.g. different programs on the different OpenCL devices, for
  1768. relocation purpose for instance).
  1769. @deftp {Data Type} {struct starpu_opencl_program}
  1770. Stores the OpenCL programs as compiled for the different OpenCL devices.
  1771. @table @asis
  1772. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  1773. Stores each program for each OpenCL device.
  1774. @end table
  1775. @end deftp
  1776. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1777. @anchor{starpu_opencl_load_opencl_from_file}
  1778. This function compiles an OpenCL source code stored in a file.
  1779. @end deftypefun
  1780. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  1781. This function compiles an OpenCL source code stored in a string.
  1782. @end deftypefun
  1783. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  1784. This function unloads an OpenCL compiled code.
  1785. @end deftypefun
  1786. @node Loading OpenCL kernels
  1787. @subsection Loading OpenCL kernels
  1788. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  1789. Create a kernel @var{kernel} for device @var{devid}, on its computation command
  1790. queue returned in @var{queue}, using program @var{opencl_programs} and name
  1791. @var{kernel_name}
  1792. @end deftypefun
  1793. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  1794. Release the given @var{kernel}, to be called after kernel execution.
  1795. @end deftypefun
  1796. @node OpenCL statistics
  1797. @subsection OpenCL statistics
  1798. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  1799. This function allows to collect statistics on a kernel execution.
  1800. After termination of the kernels, the OpenCL codelet should call this function
  1801. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  1802. collect statistics about the kernel execution (used cycles, consumed power).
  1803. @end deftypefun
  1804. @node OpenCL utilities
  1805. @subsection OpenCL utilities
  1806. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  1807. Given a valid error @var{status}, prints the corresponding error message on
  1808. stdout, along with the given function name @var{func}, the given filename
  1809. @var{file}, the given line number @var{line} and the given message @var{msg}.
  1810. @end deftypefun
  1811. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  1812. Call the function @code{starpu_opencl_display_error} with the given
  1813. error @var{status}, the current function name, current file and line
  1814. number, and a empty message.
  1815. @end defmac
  1816. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  1817. Call the function @code{starpu_opencl_display_error} and abort.
  1818. @end deftypefun
  1819. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  1820. Call the function @code{starpu_opencl_report_error} with the given
  1821. error @var{status}, with the current function name, current file and
  1822. line number, and a empty message.
  1823. @end defmac
  1824. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  1825. Call the function @code{starpu_opencl_report_error} with the given
  1826. message and the given error @var{status}, with the current function
  1827. name, current file and line number.
  1828. @end defmac
  1829. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  1830. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  1831. valid combination of cl_mem_flags values.
  1832. @end deftypefun
  1833. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl_async_sync ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  1834. Copy @var{size} bytes asynchronously from the given @var{ptr} on
  1835. @var{src_node} to the given @var{buffer} on @var{dst_node}.
  1836. @var{offset} is the offset, in bytes, in @var{buffer}.
  1837. @var{event} can be used to wait for this particular copy to complete. It can be
  1838. NULL.
  1839. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1840. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  1841. was successful, or to 0 if event was NULL.
  1842. @end deftypefun
  1843. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event})
  1844. Copy @var{size} bytes from the given @var{ptr} on @var{src_node} to the
  1845. given @var{buffer} on @var{dst_node}. @var{offset} is the offset, in bytes,
  1846. in @var{buffer}. @var{event} can be used to wait for this particular copy to
  1847. complete. It can be NULL.
  1848. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1849. otherwise.
  1850. @end deftypefun
  1851. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram_async_sync (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  1852. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  1853. @var{src_node} to the given @var{ptr} on @var{dst_node}.
  1854. @var{offset} is the offset, in bytes, in @var{buffer}.
  1855. @var{event} can be used to wait for this particular copy to complete. It can be
  1856. NULL.
  1857. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1858. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous copy
  1859. was successful, or to 0 if event was NULL.
  1860. @end deftypefun
  1861. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event})
  1862. Copy @var{size} bytes from the given @var{buffer} on @var{src_node} to the
  1863. given @var{ptr} on @var{dst_node}. @var{offset} is the offset, in bytes,
  1864. in @var{buffer}. @var{event} can be used to wait for this particular copy to
  1865. complete. It can be NULL.
  1866. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  1867. otherwise.
  1868. @end deftypefun
  1869. @node Cell extensions
  1870. @section Cell extensions
  1871. nothing yet.
  1872. @node Miscellaneous helpers
  1873. @section Miscellaneous helpers
  1874. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  1875. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  1876. The @var{asynchronous} parameter indicates whether the function should
  1877. block or not. In the case of an asynchronous call, it is possible to
  1878. synchronize with the termination of this operation either by the means of
  1879. implicit dependencies (if enabled) or by calling
  1880. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  1881. this callback function is executed after the handle has been copied, and it is
  1882. given the @var{callback_arg} pointer as argument.
  1883. @end deftypefun
  1884. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  1885. This function executes the given function on a subset of workers.
  1886. When calling this method, the offloaded function specified by the first argument is
  1887. executed by every StarPU worker that may execute the function.
  1888. The second argument is passed to the offloaded function.
  1889. The last argument specifies on which types of processing units the function
  1890. should be executed. Similarly to the @var{where} field of the
  1891. @code{struct starpu_codelet} structure, it is possible to specify that the function
  1892. should be executed on every CUDA device and every CPU by passing
  1893. @code{STARPU_CPU|STARPU_CUDA}.
  1894. This function blocks until the function has been executed on every appropriate
  1895. processing units, so that it may not be called from a callback function for
  1896. instance.
  1897. @end deftypefun