123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607 |
- /* dtrsna.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static logical c_true = TRUE_;
- static logical c_false = FALSE_;
- /* Subroutine */ int _starpu_dtrsna_(char *job, char *howmny, logical *select,
- integer *n, doublereal *t, integer *ldt, doublereal *vl, integer *
- ldvl, doublereal *vr, integer *ldvr, doublereal *s, doublereal *sep,
- integer *mm, integer *m, doublereal *work, integer *ldwork, integer *
- iwork, integer *info)
- {
- /* System generated locals */
- integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset,
- work_dim1, work_offset, i__1, i__2;
- doublereal d__1, d__2;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer i__, j, k, n2;
- doublereal cs;
- integer nn, ks;
- doublereal sn, mu, eps, est;
- integer kase;
- doublereal cond;
- extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *,
- integer *);
- logical pair;
- integer ierr;
- doublereal dumm, prod;
- integer ifst;
- doublereal lnrm;
- integer ilst;
- doublereal rnrm;
- extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);
- doublereal prod1, prod2, scale, delta;
- extern logical _starpu_lsame_(char *, char *);
- integer isave[3];
- logical wants;
- doublereal dummy[1];
- extern /* Subroutine */ int _starpu_dlacn2_(integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *);
- extern doublereal _starpu_dlapy2_(doublereal *, doublereal *);
- extern /* Subroutine */ int _starpu_dlabad_(doublereal *, doublereal *);
- extern doublereal _starpu_dlamch_(char *);
- extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *),
- _starpu_xerbla_(char *, integer *);
- doublereal bignum;
- logical wantbh;
- extern /* Subroutine */ int _starpu_dlaqtr_(logical *, logical *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, integer *), _starpu_dtrexc_(char *, integer *
- , doublereal *, integer *, doublereal *, integer *, integer *,
- integer *, doublereal *, integer *);
- logical somcon;
- doublereal smlnum;
- logical wantsp;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DTRSNA estimates reciprocal condition numbers for specified */
- /* eigenvalues and/or right eigenvectors of a real upper */
- /* quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q */
- /* orthogonal). */
- /* T must be in Schur canonical form (as returned by DHSEQR), that is, */
- /* block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each */
- /* 2-by-2 diagonal block has its diagonal elements equal and its */
- /* off-diagonal elements of opposite sign. */
- /* Arguments */
- /* ========= */
- /* JOB (input) CHARACTER*1 */
- /* Specifies whether condition numbers are required for */
- /* eigenvalues (S) or eigenvectors (SEP): */
- /* = 'E': for eigenvalues only (S); */
- /* = 'V': for eigenvectors only (SEP); */
- /* = 'B': for both eigenvalues and eigenvectors (S and SEP). */
- /* HOWMNY (input) CHARACTER*1 */
- /* = 'A': compute condition numbers for all eigenpairs; */
- /* = 'S': compute condition numbers for selected eigenpairs */
- /* specified by the array SELECT. */
- /* SELECT (input) LOGICAL array, dimension (N) */
- /* If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
- /* condition numbers are required. To select condition numbers */
- /* for the eigenpair corresponding to a real eigenvalue w(j), */
- /* SELECT(j) must be set to .TRUE.. To select condition numbers */
- /* corresponding to a complex conjugate pair of eigenvalues w(j) */
- /* and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be */
- /* set to .TRUE.. */
- /* If HOWMNY = 'A', SELECT is not referenced. */
- /* N (input) INTEGER */
- /* The order of the matrix T. N >= 0. */
- /* T (input) DOUBLE PRECISION array, dimension (LDT,N) */
- /* The upper quasi-triangular matrix T, in Schur canonical form. */
- /* LDT (input) INTEGER */
- /* The leading dimension of the array T. LDT >= max(1,N). */
- /* VL (input) DOUBLE PRECISION array, dimension (LDVL,M) */
- /* If JOB = 'E' or 'B', VL must contain left eigenvectors of T */
- /* (or of any Q*T*Q**T with Q orthogonal), corresponding to the */
- /* eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
- /* must be stored in consecutive columns of VL, as returned by */
- /* DHSEIN or DTREVC. */
- /* If JOB = 'V', VL is not referenced. */
- /* LDVL (input) INTEGER */
- /* The leading dimension of the array VL. */
- /* LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N. */
- /* VR (input) DOUBLE PRECISION array, dimension (LDVR,M) */
- /* If JOB = 'E' or 'B', VR must contain right eigenvectors of T */
- /* (or of any Q*T*Q**T with Q orthogonal), corresponding to the */
- /* eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
- /* must be stored in consecutive columns of VR, as returned by */
- /* DHSEIN or DTREVC. */
- /* If JOB = 'V', VR is not referenced. */
- /* LDVR (input) INTEGER */
- /* The leading dimension of the array VR. */
- /* LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N. */
- /* S (output) DOUBLE PRECISION array, dimension (MM) */
- /* If JOB = 'E' or 'B', the reciprocal condition numbers of the */
- /* selected eigenvalues, stored in consecutive elements of the */
- /* array. For a complex conjugate pair of eigenvalues two */
- /* consecutive elements of S are set to the same value. Thus */
- /* S(j), SEP(j), and the j-th columns of VL and VR all */
- /* correspond to the same eigenpair (but not in general the */
- /* j-th eigenpair, unless all eigenpairs are selected). */
- /* If JOB = 'V', S is not referenced. */
- /* SEP (output) DOUBLE PRECISION array, dimension (MM) */
- /* If JOB = 'V' or 'B', the estimated reciprocal condition */
- /* numbers of the selected eigenvectors, stored in consecutive */
- /* elements of the array. For a complex eigenvector two */
- /* consecutive elements of SEP are set to the same value. If */
- /* the eigenvalues cannot be reordered to compute SEP(j), SEP(j) */
- /* is set to 0; this can only occur when the true value would be */
- /* very small anyway. */
- /* If JOB = 'E', SEP is not referenced. */
- /* MM (input) INTEGER */
- /* The number of elements in the arrays S (if JOB = 'E' or 'B') */
- /* and/or SEP (if JOB = 'V' or 'B'). MM >= M. */
- /* M (output) INTEGER */
- /* The number of elements of the arrays S and/or SEP actually */
- /* used to store the estimated condition numbers. */
- /* If HOWMNY = 'A', M is set to N. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (LDWORK,N+6) */
- /* If JOB = 'E', WORK is not referenced. */
- /* LDWORK (input) INTEGER */
- /* The leading dimension of the array WORK. */
- /* LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N. */
- /* IWORK (workspace) INTEGER array, dimension (2*(N-1)) */
- /* If JOB = 'E', IWORK is not referenced. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* Further Details */
- /* =============== */
- /* The reciprocal of the condition number of an eigenvalue lambda is */
- /* defined as */
- /* S(lambda) = |v'*u| / (norm(u)*norm(v)) */
- /* where u and v are the right and left eigenvectors of T corresponding */
- /* to lambda; v' denotes the conjugate-transpose of v, and norm(u) */
- /* denotes the Euclidean norm. These reciprocal condition numbers always */
- /* lie between zero (very badly conditioned) and one (very well */
- /* conditioned). If n = 1, S(lambda) is defined to be 1. */
- /* An approximate error bound for a computed eigenvalue W(i) is given by */
- /* EPS * norm(T) / S(i) */
- /* where EPS is the machine precision. */
- /* The reciprocal of the condition number of the right eigenvector u */
- /* corresponding to lambda is defined as follows. Suppose */
- /* T = ( lambda c ) */
- /* ( 0 T22 ) */
- /* Then the reciprocal condition number is */
- /* SEP( lambda, T22 ) = sigma-min( T22 - lambda*I ) */
- /* where sigma-min denotes the smallest singular value. We approximate */
- /* the smallest singular value by the reciprocal of an estimate of the */
- /* one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is */
- /* defined to be abs(T(1,1)). */
- /* An approximate error bound for a computed right eigenvector VR(i) */
- /* is given by */
- /* EPS * norm(T) / SEP(i) */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Decode and test the input parameters */
- /* Parameter adjustments */
- --select;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1;
- t -= t_offset;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1;
- vr -= vr_offset;
- --s;
- --sep;
- work_dim1 = *ldwork;
- work_offset = 1 + work_dim1;
- work -= work_offset;
- --iwork;
- /* Function Body */
- wantbh = _starpu_lsame_(job, "B");
- wants = _starpu_lsame_(job, "E") || wantbh;
- wantsp = _starpu_lsame_(job, "V") || wantbh;
- somcon = _starpu_lsame_(howmny, "S");
- *info = 0;
- if (! wants && ! wantsp) {
- *info = -1;
- } else if (! _starpu_lsame_(howmny, "A") && ! somcon) {
- *info = -2;
- } else if (*n < 0) {
- *info = -4;
- } else if (*ldt < max(1,*n)) {
- *info = -6;
- } else if (*ldvl < 1 || wants && *ldvl < *n) {
- *info = -8;
- } else if (*ldvr < 1 || wants && *ldvr < *n) {
- *info = -10;
- } else {
- /* Set M to the number of eigenpairs for which condition numbers */
- /* are required, and test MM. */
- if (somcon) {
- *m = 0;
- pair = FALSE_;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (pair) {
- pair = FALSE_;
- } else {
- if (k < *n) {
- if (t[k + 1 + k * t_dim1] == 0.) {
- if (select[k]) {
- ++(*m);
- }
- } else {
- pair = TRUE_;
- if (select[k] || select[k + 1]) {
- *m += 2;
- }
- }
- } else {
- if (select[*n]) {
- ++(*m);
- }
- }
- }
- /* L10: */
- }
- } else {
- *m = *n;
- }
- if (*mm < *m) {
- *info = -13;
- } else if (*ldwork < 1 || wantsp && *ldwork < *n) {
- *info = -16;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DTRSNA", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- if (*n == 1) {
- if (somcon) {
- if (! select[1]) {
- return 0;
- }
- }
- if (wants) {
- s[1] = 1.;
- }
- if (wantsp) {
- sep[1] = (d__1 = t[t_dim1 + 1], abs(d__1));
- }
- return 0;
- }
- /* Get machine constants */
- eps = _starpu_dlamch_("P");
- smlnum = _starpu_dlamch_("S") / eps;
- bignum = 1. / smlnum;
- _starpu_dlabad_(&smlnum, &bignum);
- ks = 0;
- pair = FALSE_;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- /* Determine whether T(k,k) begins a 1-by-1 or 2-by-2 block. */
- if (pair) {
- pair = FALSE_;
- goto L60;
- } else {
- if (k < *n) {
- pair = t[k + 1 + k * t_dim1] != 0.;
- }
- }
- /* Determine whether condition numbers are required for the k-th */
- /* eigenpair. */
- if (somcon) {
- if (pair) {
- if (! select[k] && ! select[k + 1]) {
- goto L60;
- }
- } else {
- if (! select[k]) {
- goto L60;
- }
- }
- }
- ++ks;
- if (wants) {
- /* Compute the reciprocal condition number of the k-th */
- /* eigenvalue. */
- if (! pair) {
- /* Real eigenvalue. */
- prod = _starpu_ddot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks *
- vl_dim1 + 1], &c__1);
- rnrm = _starpu_dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
- lnrm = _starpu_dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
- s[ks] = abs(prod) / (rnrm * lnrm);
- } else {
- /* Complex eigenvalue. */
- prod1 = _starpu_ddot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks *
- vl_dim1 + 1], &c__1);
- prod1 += _starpu_ddot_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1, &vl[(ks
- + 1) * vl_dim1 + 1], &c__1);
- prod2 = _starpu_ddot_(n, &vl[ks * vl_dim1 + 1], &c__1, &vr[(ks + 1) *
- vr_dim1 + 1], &c__1);
- prod2 -= _starpu_ddot_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1, &vr[ks *
- vr_dim1 + 1], &c__1);
- d__1 = _starpu_dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
- d__2 = _starpu_dnrm2_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1);
- rnrm = _starpu_dlapy2_(&d__1, &d__2);
- d__1 = _starpu_dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
- d__2 = _starpu_dnrm2_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1);
- lnrm = _starpu_dlapy2_(&d__1, &d__2);
- cond = _starpu_dlapy2_(&prod1, &prod2) / (rnrm * lnrm);
- s[ks] = cond;
- s[ks + 1] = cond;
- }
- }
- if (wantsp) {
- /* Estimate the reciprocal condition number of the k-th */
- /* eigenvector. */
- /* Copy the matrix T to the array WORK and swap the diagonal */
- /* block beginning at T(k,k) to the (1,1) position. */
- _starpu_dlacpy_("Full", n, n, &t[t_offset], ldt, &work[work_offset],
- ldwork);
- ifst = k;
- ilst = 1;
- _starpu_dtrexc_("No Q", n, &work[work_offset], ldwork, dummy, &c__1, &
- ifst, &ilst, &work[(*n + 1) * work_dim1 + 1], &ierr);
- if (ierr == 1 || ierr == 2) {
- /* Could not swap because blocks not well separated */
- scale = 1.;
- est = bignum;
- } else {
- /* Reordering successful */
- if (work[work_dim1 + 2] == 0.) {
- /* Form C = T22 - lambda*I in WORK(2:N,2:N). */
- i__2 = *n;
- for (i__ = 2; i__ <= i__2; ++i__) {
- work[i__ + i__ * work_dim1] -= work[work_dim1 + 1];
- /* L20: */
- }
- n2 = 1;
- nn = *n - 1;
- } else {
- /* Triangularize the 2 by 2 block by unitary */
- /* transformation U = [ cs i*ss ] */
- /* [ i*ss cs ]. */
- /* such that the (1,1) position of WORK is complex */
- /* eigenvalue lambda with positive imaginary part. (2,2) */
- /* position of WORK is the complex eigenvalue lambda */
- /* with negative imaginary part. */
- mu = sqrt((d__1 = work[(work_dim1 << 1) + 1], abs(d__1)))
- * sqrt((d__2 = work[work_dim1 + 2], abs(d__2)));
- delta = _starpu_dlapy2_(&mu, &work[work_dim1 + 2]);
- cs = mu / delta;
- sn = -work[work_dim1 + 2] / delta;
- /* Form */
- /* C' = WORK(2:N,2:N) + i*[rwork(1) ..... rwork(n-1) ] */
- /* [ mu ] */
- /* [ .. ] */
- /* [ .. ] */
- /* [ mu ] */
- /* where C' is conjugate transpose of complex matrix C, */
- /* and RWORK is stored starting in the N+1-st column of */
- /* WORK. */
- i__2 = *n;
- for (j = 3; j <= i__2; ++j) {
- work[j * work_dim1 + 2] = cs * work[j * work_dim1 + 2]
- ;
- work[j + j * work_dim1] -= work[work_dim1 + 1];
- /* L30: */
- }
- work[(work_dim1 << 1) + 2] = 0.;
- work[(*n + 1) * work_dim1 + 1] = mu * 2.;
- i__2 = *n - 1;
- for (i__ = 2; i__ <= i__2; ++i__) {
- work[i__ + (*n + 1) * work_dim1] = sn * work[(i__ + 1)
- * work_dim1 + 1];
- /* L40: */
- }
- n2 = 2;
- nn = *n - 1 << 1;
- }
- /* Estimate norm(inv(C')) */
- est = 0.;
- kase = 0;
- L50:
- _starpu_dlacn2_(&nn, &work[(*n + 2) * work_dim1 + 1], &work[(*n + 4) *
- work_dim1 + 1], &iwork[1], &est, &kase, isave);
- if (kase != 0) {
- if (kase == 1) {
- if (n2 == 1) {
- /* Real eigenvalue: solve C'*x = scale*c. */
- i__2 = *n - 1;
- _starpu_dlaqtr_(&c_true, &c_true, &i__2, &work[(work_dim1
- << 1) + 2], ldwork, dummy, &dumm, &scale,
- &work[(*n + 4) * work_dim1 + 1], &work[(*
- n + 6) * work_dim1 + 1], &ierr);
- } else {
- /* Complex eigenvalue: solve */
- /* C'*(p+iq) = scale*(c+id) in real arithmetic. */
- i__2 = *n - 1;
- _starpu_dlaqtr_(&c_true, &c_false, &i__2, &work[(
- work_dim1 << 1) + 2], ldwork, &work[(*n +
- 1) * work_dim1 + 1], &mu, &scale, &work[(*
- n + 4) * work_dim1 + 1], &work[(*n + 6) *
- work_dim1 + 1], &ierr);
- }
- } else {
- if (n2 == 1) {
- /* Real eigenvalue: solve C*x = scale*c. */
- i__2 = *n - 1;
- _starpu_dlaqtr_(&c_false, &c_true, &i__2, &work[(
- work_dim1 << 1) + 2], ldwork, dummy, &
- dumm, &scale, &work[(*n + 4) * work_dim1
- + 1], &work[(*n + 6) * work_dim1 + 1], &
- ierr);
- } else {
- /* Complex eigenvalue: solve */
- /* C*(p+iq) = scale*(c+id) in real arithmetic. */
- i__2 = *n - 1;
- _starpu_dlaqtr_(&c_false, &c_false, &i__2, &work[(
- work_dim1 << 1) + 2], ldwork, &work[(*n +
- 1) * work_dim1 + 1], &mu, &scale, &work[(*
- n + 4) * work_dim1 + 1], &work[(*n + 6) *
- work_dim1 + 1], &ierr);
- }
- }
- goto L50;
- }
- }
- sep[ks] = scale / max(est,smlnum);
- if (pair) {
- sep[ks + 1] = sep[ks];
- }
- }
- if (pair) {
- ++ks;
- }
- L60:
- ;
- }
- return 0;
- /* End of DTRSNA */
- } /* _starpu_dtrsna_ */
|