123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531 |
- /* dtrsen.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c_n1 = -1;
- /* Subroutine */ int _starpu_dtrsen_(char *job, char *compq, logical *select, integer
- *n, doublereal *t, integer *ldt, doublereal *q, integer *ldq,
- doublereal *wr, doublereal *wi, integer *m, doublereal *s, doublereal
- *sep, doublereal *work, integer *lwork, integer *iwork, integer *
- liwork, integer *info)
- {
- /* System generated locals */
- integer q_dim1, q_offset, t_dim1, t_offset, i__1, i__2;
- doublereal d__1, d__2;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer k, n1, n2, kk, nn, ks;
- doublereal est;
- integer kase;
- logical pair;
- integer ierr;
- logical swap;
- doublereal scale;
- extern logical _starpu_lsame_(char *, char *);
- integer isave[3], lwmin;
- logical wantq, wants;
- doublereal rnorm;
- extern /* Subroutine */ int _starpu_dlacn2_(integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *);
- extern doublereal _starpu_dlange_(char *, integer *, integer *, doublereal *,
- integer *, doublereal *);
- extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *),
- _starpu_xerbla_(char *, integer *);
- logical wantbh;
- extern /* Subroutine */ int _starpu_dtrexc_(char *, integer *, doublereal *,
- integer *, doublereal *, integer *, integer *, integer *,
- doublereal *, integer *);
- integer liwmin;
- logical wantsp, lquery;
- extern /* Subroutine */ int _starpu_dtrsyl_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DTRSEN reorders the real Schur factorization of a real matrix */
- /* A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in */
- /* the leading diagonal blocks of the upper quasi-triangular matrix T, */
- /* and the leading columns of Q form an orthonormal basis of the */
- /* corresponding right invariant subspace. */
- /* Optionally the routine computes the reciprocal condition numbers of */
- /* the cluster of eigenvalues and/or the invariant subspace. */
- /* T must be in Schur canonical form (as returned by DHSEQR), that is, */
- /* block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each */
- /* 2-by-2 diagonal block has its diagonal elemnts equal and its */
- /* off-diagonal elements of opposite sign. */
- /* Arguments */
- /* ========= */
- /* JOB (input) CHARACTER*1 */
- /* Specifies whether condition numbers are required for the */
- /* cluster of eigenvalues (S) or the invariant subspace (SEP): */
- /* = 'N': none; */
- /* = 'E': for eigenvalues only (S); */
- /* = 'V': for invariant subspace only (SEP); */
- /* = 'B': for both eigenvalues and invariant subspace (S and */
- /* SEP). */
- /* COMPQ (input) CHARACTER*1 */
- /* = 'V': update the matrix Q of Schur vectors; */
- /* = 'N': do not update Q. */
- /* SELECT (input) LOGICAL array, dimension (N) */
- /* SELECT specifies the eigenvalues in the selected cluster. To */
- /* select a real eigenvalue w(j), SELECT(j) must be set to */
- /* .TRUE.. To select a complex conjugate pair of eigenvalues */
- /* w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, */
- /* either SELECT(j) or SELECT(j+1) or both must be set to */
- /* .TRUE.; a complex conjugate pair of eigenvalues must be */
- /* either both included in the cluster or both excluded. */
- /* N (input) INTEGER */
- /* The order of the matrix T. N >= 0. */
- /* T (input/output) DOUBLE PRECISION array, dimension (LDT,N) */
- /* On entry, the upper quasi-triangular matrix T, in Schur */
- /* canonical form. */
- /* On exit, T is overwritten by the reordered matrix T, again in */
- /* Schur canonical form, with the selected eigenvalues in the */
- /* leading diagonal blocks. */
- /* LDT (input) INTEGER */
- /* The leading dimension of the array T. LDT >= max(1,N). */
- /* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */
- /* On entry, if COMPQ = 'V', the matrix Q of Schur vectors. */
- /* On exit, if COMPQ = 'V', Q has been postmultiplied by the */
- /* orthogonal transformation matrix which reorders T; the */
- /* leading M columns of Q form an orthonormal basis for the */
- /* specified invariant subspace. */
- /* If COMPQ = 'N', Q is not referenced. */
- /* LDQ (input) INTEGER */
- /* The leading dimension of the array Q. */
- /* LDQ >= 1; and if COMPQ = 'V', LDQ >= N. */
- /* WR (output) DOUBLE PRECISION array, dimension (N) */
- /* WI (output) DOUBLE PRECISION array, dimension (N) */
- /* The real and imaginary parts, respectively, of the reordered */
- /* eigenvalues of T. The eigenvalues are stored in the same */
- /* order as on the diagonal of T, with WR(i) = T(i,i) and, if */
- /* T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and */
- /* WI(i+1) = -WI(i). Note that if a complex eigenvalue is */
- /* sufficiently ill-conditioned, then its value may differ */
- /* significantly from its value before reordering. */
- /* M (output) INTEGER */
- /* The dimension of the specified invariant subspace. */
- /* 0 < = M <= N. */
- /* S (output) DOUBLE PRECISION */
- /* If JOB = 'E' or 'B', S is a lower bound on the reciprocal */
- /* condition number for the selected cluster of eigenvalues. */
- /* S cannot underestimate the true reciprocal condition number */
- /* by more than a factor of sqrt(N). If M = 0 or N, S = 1. */
- /* If JOB = 'N' or 'V', S is not referenced. */
- /* SEP (output) DOUBLE PRECISION */
- /* If JOB = 'V' or 'B', SEP is the estimated reciprocal */
- /* condition number of the specified invariant subspace. If */
- /* M = 0 or N, SEP = norm(T). */
- /* If JOB = 'N' or 'E', SEP is not referenced. */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. */
- /* If JOB = 'N', LWORK >= max(1,N); */
- /* if JOB = 'E', LWORK >= max(1,M*(N-M)); */
- /* if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)). */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK)) */
- /* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
- /* LIWORK (input) INTEGER */
- /* The dimension of the array IWORK. */
- /* If JOB = 'N' or 'E', LIWORK >= 1; */
- /* if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)). */
- /* If LIWORK = -1, then a workspace query is assumed; the */
- /* routine only calculates the optimal size of the IWORK array, */
- /* returns this value as the first entry of the IWORK array, and */
- /* no error message related to LIWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* = 1: reordering of T failed because some eigenvalues are too */
- /* close to separate (the problem is very ill-conditioned); */
- /* T may have been partially reordered, and WR and WI */
- /* contain the eigenvalues in the same order as in T; S and */
- /* SEP (if requested) are set to zero. */
- /* Further Details */
- /* =============== */
- /* DTRSEN first collects the selected eigenvalues by computing an */
- /* orthogonal transformation Z to move them to the top left corner of T. */
- /* In other words, the selected eigenvalues are the eigenvalues of T11 */
- /* in: */
- /* Z'*T*Z = ( T11 T12 ) n1 */
- /* ( 0 T22 ) n2 */
- /* n1 n2 */
- /* where N = n1+n2 and Z' means the transpose of Z. The first n1 columns */
- /* of Z span the specified invariant subspace of T. */
- /* If T has been obtained from the real Schur factorization of a matrix */
- /* A = Q*T*Q', then the reordered real Schur factorization of A is given */
- /* by A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the first n1 columns of Q*Z span */
- /* the corresponding invariant subspace of A. */
- /* The reciprocal condition number of the average of the eigenvalues of */
- /* T11 may be returned in S. S lies between 0 (very badly conditioned) */
- /* and 1 (very well conditioned). It is computed as follows. First we */
- /* compute R so that */
- /* P = ( I R ) n1 */
- /* ( 0 0 ) n2 */
- /* n1 n2 */
- /* is the projector on the invariant subspace associated with T11. */
- /* R is the solution of the Sylvester equation: */
- /* T11*R - R*T22 = T12. */
- /* Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote */
- /* the two-norm of M. Then S is computed as the lower bound */
- /* (1 + F-norm(R)**2)**(-1/2) */
- /* on the reciprocal of 2-norm(P), the true reciprocal condition number. */
- /* S cannot underestimate 1 / 2-norm(P) by more than a factor of */
- /* sqrt(N). */
- /* An approximate error bound for the computed average of the */
- /* eigenvalues of T11 is */
- /* EPS * norm(T) / S */
- /* where EPS is the machine precision. */
- /* The reciprocal condition number of the right invariant subspace */
- /* spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP. */
- /* SEP is defined as the separation of T11 and T22: */
- /* sep( T11, T22 ) = sigma-min( C ) */
- /* where sigma-min(C) is the smallest singular value of the */
- /* n1*n2-by-n1*n2 matrix */
- /* C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) ) */
- /* I(m) is an m by m identity matrix, and kprod denotes the Kronecker */
- /* product. We estimate sigma-min(C) by the reciprocal of an estimate of */
- /* the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C) */
- /* cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2). */
- /* When SEP is small, small changes in T can cause large changes in */
- /* the invariant subspace. An approximate bound on the maximum angular */
- /* error in the computed right invariant subspace is */
- /* EPS * norm(T) / SEP */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Decode and test the input parameters */
- /* Parameter adjustments */
- --select;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1;
- t -= t_offset;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1;
- q -= q_offset;
- --wr;
- --wi;
- --work;
- --iwork;
- /* Function Body */
- wantbh = _starpu_lsame_(job, "B");
- wants = _starpu_lsame_(job, "E") || wantbh;
- wantsp = _starpu_lsame_(job, "V") || wantbh;
- wantq = _starpu_lsame_(compq, "V");
- *info = 0;
- lquery = *lwork == -1;
- if (! _starpu_lsame_(job, "N") && ! wants && ! wantsp) {
- *info = -1;
- } else if (! _starpu_lsame_(compq, "N") && ! wantq) {
- *info = -2;
- } else if (*n < 0) {
- *info = -4;
- } else if (*ldt < max(1,*n)) {
- *info = -6;
- } else if (*ldq < 1 || wantq && *ldq < *n) {
- *info = -8;
- } else {
- /* Set M to the dimension of the specified invariant subspace, */
- /* and test LWORK and LIWORK. */
- *m = 0;
- pair = FALSE_;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (pair) {
- pair = FALSE_;
- } else {
- if (k < *n) {
- if (t[k + 1 + k * t_dim1] == 0.) {
- if (select[k]) {
- ++(*m);
- }
- } else {
- pair = TRUE_;
- if (select[k] || select[k + 1]) {
- *m += 2;
- }
- }
- } else {
- if (select[*n]) {
- ++(*m);
- }
- }
- }
- /* L10: */
- }
- n1 = *m;
- n2 = *n - *m;
- nn = n1 * n2;
- if (wantsp) {
- /* Computing MAX */
- i__1 = 1, i__2 = nn << 1;
- lwmin = max(i__1,i__2);
- liwmin = max(1,nn);
- } else if (_starpu_lsame_(job, "N")) {
- lwmin = max(1,*n);
- liwmin = 1;
- } else if (_starpu_lsame_(job, "E")) {
- lwmin = max(1,nn);
- liwmin = 1;
- }
- if (*lwork < lwmin && ! lquery) {
- *info = -15;
- } else if (*liwork < liwmin && ! lquery) {
- *info = -17;
- }
- }
- if (*info == 0) {
- work[1] = (doublereal) lwmin;
- iwork[1] = liwmin;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DTRSEN", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible. */
- if (*m == *n || *m == 0) {
- if (wants) {
- *s = 1.;
- }
- if (wantsp) {
- *sep = _starpu_dlange_("1", n, n, &t[t_offset], ldt, &work[1]);
- }
- goto L40;
- }
- /* Collect the selected blocks at the top-left corner of T. */
- ks = 0;
- pair = FALSE_;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (pair) {
- pair = FALSE_;
- } else {
- swap = select[k];
- if (k < *n) {
- if (t[k + 1 + k * t_dim1] != 0.) {
- pair = TRUE_;
- swap = swap || select[k + 1];
- }
- }
- if (swap) {
- ++ks;
- /* Swap the K-th block to position KS. */
- ierr = 0;
- kk = k;
- if (k != ks) {
- _starpu_dtrexc_(compq, n, &t[t_offset], ldt, &q[q_offset], ldq, &
- kk, &ks, &work[1], &ierr);
- }
- if (ierr == 1 || ierr == 2) {
- /* Blocks too close to swap: exit. */
- *info = 1;
- if (wants) {
- *s = 0.;
- }
- if (wantsp) {
- *sep = 0.;
- }
- goto L40;
- }
- if (pair) {
- ++ks;
- }
- }
- }
- /* L20: */
- }
- if (wants) {
- /* Solve Sylvester equation for R: */
- /* T11*R - R*T22 = scale*T12 */
- _starpu_dlacpy_("F", &n1, &n2, &t[(n1 + 1) * t_dim1 + 1], ldt, &work[1], &n1);
- _starpu_dtrsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 1 + (n1
- + 1) * t_dim1], ldt, &work[1], &n1, &scale, &ierr);
- /* Estimate the reciprocal of the condition number of the cluster */
- /* of eigenvalues. */
- rnorm = _starpu_dlange_("F", &n1, &n2, &work[1], &n1, &work[1]);
- if (rnorm == 0.) {
- *s = 1.;
- } else {
- *s = scale / (sqrt(scale * scale / rnorm + rnorm) * sqrt(rnorm));
- }
- }
- if (wantsp) {
- /* Estimate sep(T11,T22). */
- est = 0.;
- kase = 0;
- L30:
- _starpu_dlacn2_(&nn, &work[nn + 1], &work[1], &iwork[1], &est, &kase, isave);
- if (kase != 0) {
- if (kase == 1) {
- /* Solve T11*R - R*T22 = scale*X. */
- _starpu_dtrsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 +
- 1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
- ierr);
- } else {
- /* Solve T11'*R - R*T22' = scale*X. */
- _starpu_dtrsyl_("T", "T", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 +
- 1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
- ierr);
- }
- goto L30;
- }
- *sep = scale / est;
- }
- L40:
- /* Store the output eigenvalues in WR and WI. */
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- wr[k] = t[k + k * t_dim1];
- wi[k] = 0.;
- /* L50: */
- }
- i__1 = *n - 1;
- for (k = 1; k <= i__1; ++k) {
- if (t[k + 1 + k * t_dim1] != 0.) {
- wi[k] = sqrt((d__1 = t[k + (k + 1) * t_dim1], abs(d__1))) * sqrt((
- d__2 = t[k + 1 + k * t_dim1], abs(d__2)));
- wi[k + 1] = -wi[k];
- }
- /* L60: */
- }
- work[1] = (doublereal) lwmin;
- iwork[1] = liwmin;
- return 0;
- /* End of DTRSEN */
- } /* _starpu_dtrsen_ */
|