dtpttf.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500
  1. /* dtpttf.f -- translated by f2c (version 20061008).
  2. You must link the resulting object file with libf2c:
  3. on Microsoft Windows system, link with libf2c.lib;
  4. on Linux or Unix systems, link with .../path/to/libf2c.a -lm
  5. or, if you install libf2c.a in a standard place, with -lf2c -lm
  6. -- in that order, at the end of the command line, as in
  7. cc *.o -lf2c -lm
  8. Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
  9. http://www.netlib.org/f2c/libf2c.zip
  10. */
  11. #include "f2c.h"
  12. #include "blaswrap.h"
  13. /* Subroutine */ int _starpu_dtpttf_(char *transr, char *uplo, integer *n, doublereal
  14. *ap, doublereal *arf, integer *info)
  15. {
  16. /* System generated locals */
  17. integer i__1, i__2, i__3;
  18. /* Local variables */
  19. integer i__, j, k, n1, n2, ij, jp, js, nt, lda, ijp;
  20. logical normaltransr;
  21. extern logical _starpu_lsame_(char *, char *);
  22. logical lower;
  23. extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
  24. logical nisodd;
  25. /* -- LAPACK routine (version 3.2) -- */
  26. /* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
  27. /* -- November 2008 -- */
  28. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  29. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  30. /* .. */
  31. /* .. Scalar Arguments .. */
  32. /* .. */
  33. /* .. Array Arguments .. */
  34. /* Purpose */
  35. /* ======= */
  36. /* DTPTTF copies a triangular matrix A from standard packed format (TP) */
  37. /* to rectangular full packed format (TF). */
  38. /* Arguments */
  39. /* ========= */
  40. /* TRANSR (input) CHARACTER */
  41. /* = 'N': ARF in Normal format is wanted; */
  42. /* = 'T': ARF in Conjugate-transpose format is wanted. */
  43. /* UPLO (input) CHARACTER */
  44. /* = 'U': A is upper triangular; */
  45. /* = 'L': A is lower triangular. */
  46. /* N (input) INTEGER */
  47. /* The order of the matrix A. N >= 0. */
  48. /* AP (input) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ), */
  49. /* On entry, the upper or lower triangular matrix A, packed */
  50. /* columnwise in a linear array. The j-th column of A is stored */
  51. /* in the array AP as follows: */
  52. /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
  53. /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
  54. /* ARF (output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ), */
  55. /* On exit, the upper or lower triangular matrix A stored in */
  56. /* RFP format. For a further discussion see Notes below. */
  57. /* INFO (output) INTEGER */
  58. /* = 0: successful exit */
  59. /* < 0: if INFO = -i, the i-th argument had an illegal value */
  60. /* Notes */
  61. /* ===== */
  62. /* We first consider Rectangular Full Packed (RFP) Format when N is */
  63. /* even. We give an example where N = 6. */
  64. /* AP is Upper AP is Lower */
  65. /* 00 01 02 03 04 05 00 */
  66. /* 11 12 13 14 15 10 11 */
  67. /* 22 23 24 25 20 21 22 */
  68. /* 33 34 35 30 31 32 33 */
  69. /* 44 45 40 41 42 43 44 */
  70. /* 55 50 51 52 53 54 55 */
  71. /* Let TRANSR = 'N'. RFP holds AP as follows: */
  72. /* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
  73. /* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
  74. /* the transpose of the first three columns of AP upper. */
  75. /* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
  76. /* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
  77. /* the transpose of the last three columns of AP lower. */
  78. /* This covers the case N even and TRANSR = 'N'. */
  79. /* RFP A RFP A */
  80. /* 03 04 05 33 43 53 */
  81. /* 13 14 15 00 44 54 */
  82. /* 23 24 25 10 11 55 */
  83. /* 33 34 35 20 21 22 */
  84. /* 00 44 45 30 31 32 */
  85. /* 01 11 55 40 41 42 */
  86. /* 02 12 22 50 51 52 */
  87. /* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
  88. /* transpose of RFP A above. One therefore gets: */
  89. /* RFP A RFP A */
  90. /* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
  91. /* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
  92. /* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
  93. /* We first consider Rectangular Full Packed (RFP) Format when N is */
  94. /* odd. We give an example where N = 5. */
  95. /* AP is Upper AP is Lower */
  96. /* 00 01 02 03 04 00 */
  97. /* 11 12 13 14 10 11 */
  98. /* 22 23 24 20 21 22 */
  99. /* 33 34 30 31 32 33 */
  100. /* 44 40 41 42 43 44 */
  101. /* Let TRANSR = 'N'. RFP holds AP as follows: */
  102. /* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
  103. /* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
  104. /* the transpose of the first two columns of AP upper. */
  105. /* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
  106. /* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
  107. /* the transpose of the last two columns of AP lower. */
  108. /* This covers the case N odd and TRANSR = 'N'. */
  109. /* RFP A RFP A */
  110. /* 02 03 04 00 33 43 */
  111. /* 12 13 14 10 11 44 */
  112. /* 22 23 24 20 21 22 */
  113. /* 00 33 34 30 31 32 */
  114. /* 01 11 44 40 41 42 */
  115. /* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
  116. /* transpose of RFP A above. One therefore gets: */
  117. /* RFP A RFP A */
  118. /* 02 12 22 00 01 00 10 20 30 40 50 */
  119. /* 03 13 23 33 11 33 11 21 31 41 51 */
  120. /* 04 14 24 34 44 43 44 22 32 42 52 */
  121. /* ===================================================================== */
  122. /* .. Parameters .. */
  123. /* .. */
  124. /* .. Local Scalars .. */
  125. /* .. */
  126. /* .. External Functions .. */
  127. /* .. */
  128. /* .. External Subroutines .. */
  129. /* .. */
  130. /* .. Intrinsic Functions .. */
  131. /* .. */
  132. /* .. Executable Statements .. */
  133. /* Test the input parameters. */
  134. *info = 0;
  135. normaltransr = _starpu_lsame_(transr, "N");
  136. lower = _starpu_lsame_(uplo, "L");
  137. if (! normaltransr && ! _starpu_lsame_(transr, "T")) {
  138. *info = -1;
  139. } else if (! lower && ! _starpu_lsame_(uplo, "U")) {
  140. *info = -2;
  141. } else if (*n < 0) {
  142. *info = -3;
  143. }
  144. if (*info != 0) {
  145. i__1 = -(*info);
  146. _starpu_xerbla_("DTPTTF", &i__1);
  147. return 0;
  148. }
  149. /* Quick return if possible */
  150. if (*n == 0) {
  151. return 0;
  152. }
  153. if (*n == 1) {
  154. if (normaltransr) {
  155. arf[0] = ap[0];
  156. } else {
  157. arf[0] = ap[0];
  158. }
  159. return 0;
  160. }
  161. /* Size of array ARF(0:NT-1) */
  162. nt = *n * (*n + 1) / 2;
  163. /* Set N1 and N2 depending on LOWER */
  164. if (lower) {
  165. n2 = *n / 2;
  166. n1 = *n - n2;
  167. } else {
  168. n1 = *n / 2;
  169. n2 = *n - n1;
  170. }
  171. /* If N is odd, set NISODD = .TRUE. */
  172. /* If N is even, set K = N/2 and NISODD = .FALSE. */
  173. /* set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe) */
  174. /* where noe = 0 if n is even, noe = 1 if n is odd */
  175. if (*n % 2 == 0) {
  176. k = *n / 2;
  177. nisodd = FALSE_;
  178. lda = *n + 1;
  179. } else {
  180. nisodd = TRUE_;
  181. lda = *n;
  182. }
  183. /* ARF^C has lda rows and n+1-noe cols */
  184. if (! normaltransr) {
  185. lda = (*n + 1) / 2;
  186. }
  187. /* start execution: there are eight cases */
  188. if (nisodd) {
  189. /* N is odd */
  190. if (normaltransr) {
  191. /* N is odd and TRANSR = 'N' */
  192. if (lower) {
  193. /* N is odd, TRANSR = 'N', and UPLO = 'L' */
  194. ijp = 0;
  195. jp = 0;
  196. i__1 = n2;
  197. for (j = 0; j <= i__1; ++j) {
  198. i__2 = *n - 1;
  199. for (i__ = j; i__ <= i__2; ++i__) {
  200. ij = i__ + jp;
  201. arf[ij] = ap[ijp];
  202. ++ijp;
  203. }
  204. jp += lda;
  205. }
  206. i__1 = n2 - 1;
  207. for (i__ = 0; i__ <= i__1; ++i__) {
  208. i__2 = n2;
  209. for (j = i__ + 1; j <= i__2; ++j) {
  210. ij = i__ + j * lda;
  211. arf[ij] = ap[ijp];
  212. ++ijp;
  213. }
  214. }
  215. } else {
  216. /* N is odd, TRANSR = 'N', and UPLO = 'U' */
  217. ijp = 0;
  218. i__1 = n1 - 1;
  219. for (j = 0; j <= i__1; ++j) {
  220. ij = n2 + j;
  221. i__2 = j;
  222. for (i__ = 0; i__ <= i__2; ++i__) {
  223. arf[ij] = ap[ijp];
  224. ++ijp;
  225. ij += lda;
  226. }
  227. }
  228. js = 0;
  229. i__1 = *n - 1;
  230. for (j = n1; j <= i__1; ++j) {
  231. ij = js;
  232. i__2 = js + j;
  233. for (ij = js; ij <= i__2; ++ij) {
  234. arf[ij] = ap[ijp];
  235. ++ijp;
  236. }
  237. js += lda;
  238. }
  239. }
  240. } else {
  241. /* N is odd and TRANSR = 'T' */
  242. if (lower) {
  243. /* N is odd, TRANSR = 'T', and UPLO = 'L' */
  244. ijp = 0;
  245. i__1 = n2;
  246. for (i__ = 0; i__ <= i__1; ++i__) {
  247. i__2 = *n * lda - 1;
  248. i__3 = lda;
  249. for (ij = i__ * (lda + 1); i__3 < 0 ? ij >= i__2 : ij <=
  250. i__2; ij += i__3) {
  251. arf[ij] = ap[ijp];
  252. ++ijp;
  253. }
  254. }
  255. js = 1;
  256. i__1 = n2 - 1;
  257. for (j = 0; j <= i__1; ++j) {
  258. i__3 = js + n2 - j - 1;
  259. for (ij = js; ij <= i__3; ++ij) {
  260. arf[ij] = ap[ijp];
  261. ++ijp;
  262. }
  263. js = js + lda + 1;
  264. }
  265. } else {
  266. /* N is odd, TRANSR = 'T', and UPLO = 'U' */
  267. ijp = 0;
  268. js = n2 * lda;
  269. i__1 = n1 - 1;
  270. for (j = 0; j <= i__1; ++j) {
  271. i__3 = js + j;
  272. for (ij = js; ij <= i__3; ++ij) {
  273. arf[ij] = ap[ijp];
  274. ++ijp;
  275. }
  276. js += lda;
  277. }
  278. i__1 = n1;
  279. for (i__ = 0; i__ <= i__1; ++i__) {
  280. i__3 = i__ + (n1 + i__) * lda;
  281. i__2 = lda;
  282. for (ij = i__; i__2 < 0 ? ij >= i__3 : ij <= i__3; ij +=
  283. i__2) {
  284. arf[ij] = ap[ijp];
  285. ++ijp;
  286. }
  287. }
  288. }
  289. }
  290. } else {
  291. /* N is even */
  292. if (normaltransr) {
  293. /* N is even and TRANSR = 'N' */
  294. if (lower) {
  295. /* N is even, TRANSR = 'N', and UPLO = 'L' */
  296. ijp = 0;
  297. jp = 0;
  298. i__1 = k - 1;
  299. for (j = 0; j <= i__1; ++j) {
  300. i__2 = *n - 1;
  301. for (i__ = j; i__ <= i__2; ++i__) {
  302. ij = i__ + 1 + jp;
  303. arf[ij] = ap[ijp];
  304. ++ijp;
  305. }
  306. jp += lda;
  307. }
  308. i__1 = k - 1;
  309. for (i__ = 0; i__ <= i__1; ++i__) {
  310. i__2 = k - 1;
  311. for (j = i__; j <= i__2; ++j) {
  312. ij = i__ + j * lda;
  313. arf[ij] = ap[ijp];
  314. ++ijp;
  315. }
  316. }
  317. } else {
  318. /* N is even, TRANSR = 'N', and UPLO = 'U' */
  319. ijp = 0;
  320. i__1 = k - 1;
  321. for (j = 0; j <= i__1; ++j) {
  322. ij = k + 1 + j;
  323. i__2 = j;
  324. for (i__ = 0; i__ <= i__2; ++i__) {
  325. arf[ij] = ap[ijp];
  326. ++ijp;
  327. ij += lda;
  328. }
  329. }
  330. js = 0;
  331. i__1 = *n - 1;
  332. for (j = k; j <= i__1; ++j) {
  333. ij = js;
  334. i__2 = js + j;
  335. for (ij = js; ij <= i__2; ++ij) {
  336. arf[ij] = ap[ijp];
  337. ++ijp;
  338. }
  339. js += lda;
  340. }
  341. }
  342. } else {
  343. /* N is even and TRANSR = 'T' */
  344. if (lower) {
  345. /* N is even, TRANSR = 'T', and UPLO = 'L' */
  346. ijp = 0;
  347. i__1 = k - 1;
  348. for (i__ = 0; i__ <= i__1; ++i__) {
  349. i__2 = (*n + 1) * lda - 1;
  350. i__3 = lda;
  351. for (ij = i__ + (i__ + 1) * lda; i__3 < 0 ? ij >= i__2 :
  352. ij <= i__2; ij += i__3) {
  353. arf[ij] = ap[ijp];
  354. ++ijp;
  355. }
  356. }
  357. js = 0;
  358. i__1 = k - 1;
  359. for (j = 0; j <= i__1; ++j) {
  360. i__3 = js + k - j - 1;
  361. for (ij = js; ij <= i__3; ++ij) {
  362. arf[ij] = ap[ijp];
  363. ++ijp;
  364. }
  365. js = js + lda + 1;
  366. }
  367. } else {
  368. /* N is even, TRANSR = 'T', and UPLO = 'U' */
  369. ijp = 0;
  370. js = (k + 1) * lda;
  371. i__1 = k - 1;
  372. for (j = 0; j <= i__1; ++j) {
  373. i__3 = js + j;
  374. for (ij = js; ij <= i__3; ++ij) {
  375. arf[ij] = ap[ijp];
  376. ++ijp;
  377. }
  378. js += lda;
  379. }
  380. i__1 = k - 1;
  381. for (i__ = 0; i__ <= i__1; ++i__) {
  382. i__3 = i__ + (k + i__) * lda;
  383. i__2 = lda;
  384. for (ij = i__; i__2 < 0 ? ij >= i__3 : ij <= i__3; ij +=
  385. i__2) {
  386. arf[ij] = ap[ijp];
  387. ++ijp;
  388. }
  389. }
  390. }
  391. }
  392. }
  393. return 0;
  394. /* End of DTPTTF */
  395. } /* _starpu_dtpttf_ */