123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693 |
- /* dtgsyl.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__2 = 2;
- static integer c_n1 = -1;
- static integer c__5 = 5;
- static doublereal c_b14 = 0.;
- static integer c__1 = 1;
- static doublereal c_b51 = -1.;
- static doublereal c_b52 = 1.;
- /* Subroutine */ int _starpu_dtgsyl_(char *trans, integer *ijob, integer *m, integer *
- n, doublereal *a, integer *lda, doublereal *b, integer *ldb,
- doublereal *c__, integer *ldc, doublereal *d__, integer *ldd,
- doublereal *e, integer *lde, doublereal *f, integer *ldf, doublereal *
- scale, doublereal *dif, doublereal *work, integer *lwork, integer *
- iwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1,
- d_offset, e_dim1, e_offset, f_dim1, f_offset, i__1, i__2, i__3,
- i__4;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer i__, j, k, p, q, ie, je, mb, nb, is, js, pq;
- doublereal dsum;
- integer ppqq;
- extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
- integer *), _starpu_dgemm_(char *, char *, integer *, integer *, integer *
- , doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *);
- extern logical _starpu_lsame_(char *, char *);
- integer ifunc, linfo, lwmin;
- doublereal scale2;
- extern /* Subroutine */ int _starpu_dtgsy2_(char *, integer *, integer *, integer
- *, doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, integer *, integer *);
- doublereal dscale, scaloc;
- extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *),
- _starpu_dlaset_(char *, integer *, integer *, doublereal *, doublereal *,
- doublereal *, integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- integer iround;
- logical notran;
- integer isolve;
- logical lquery;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DTGSYL solves the generalized Sylvester equation: */
- /* A * R - L * B = scale * C (1) */
- /* D * R - L * E = scale * F */
- /* where R and L are unknown m-by-n matrices, (A, D), (B, E) and */
- /* (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n, */
- /* respectively, with real entries. (A, D) and (B, E) must be in */
- /* generalized (real) Schur canonical form, i.e. A, B are upper quasi */
- /* triangular and D, E are upper triangular. */
- /* The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output */
- /* scaling factor chosen to avoid overflow. */
- /* In matrix notation (1) is equivalent to solve Zx = scale b, where */
- /* Z is defined as */
- /* Z = [ kron(In, A) -kron(B', Im) ] (2) */
- /* [ kron(In, D) -kron(E', Im) ]. */
- /* Here Ik is the identity matrix of size k and X' is the transpose of */
- /* X. kron(X, Y) is the Kronecker product between the matrices X and Y. */
- /* If TRANS = 'T', DTGSYL solves the transposed system Z'*y = scale*b, */
- /* which is equivalent to solve for R and L in */
- /* A' * R + D' * L = scale * C (3) */
- /* R * B' + L * E' = scale * (-F) */
- /* This case (TRANS = 'T') is used to compute an one-norm-based estimate */
- /* of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D) */
- /* and (B,E), using DLACON. */
- /* If IJOB >= 1, DTGSYL computes a Frobenius norm-based estimate */
- /* of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the */
- /* reciprocal of the smallest singular value of Z. See [1-2] for more */
- /* information. */
- /* This is a level 3 BLAS algorithm. */
- /* Arguments */
- /* ========= */
- /* TRANS (input) CHARACTER*1 */
- /* = 'N', solve the generalized Sylvester equation (1). */
- /* = 'T', solve the 'transposed' system (3). */
- /* IJOB (input) INTEGER */
- /* Specifies what kind of functionality to be performed. */
- /* =0: solve (1) only. */
- /* =1: The functionality of 0 and 3. */
- /* =2: The functionality of 0 and 4. */
- /* =3: Only an estimate of Dif[(A,D), (B,E)] is computed. */
- /* (look ahead strategy IJOB = 1 is used). */
- /* =4: Only an estimate of Dif[(A,D), (B,E)] is computed. */
- /* ( DGECON on sub-systems is used ). */
- /* Not referenced if TRANS = 'T'. */
- /* M (input) INTEGER */
- /* The order of the matrices A and D, and the row dimension of */
- /* the matrices C, F, R and L. */
- /* N (input) INTEGER */
- /* The order of the matrices B and E, and the column dimension */
- /* of the matrices C, F, R and L. */
- /* A (input) DOUBLE PRECISION array, dimension (LDA, M) */
- /* The upper quasi triangular matrix A. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1, M). */
- /* B (input) DOUBLE PRECISION array, dimension (LDB, N) */
- /* The upper quasi triangular matrix B. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1, N). */
- /* C (input/output) DOUBLE PRECISION array, dimension (LDC, N) */
- /* On entry, C contains the right-hand-side of the first matrix */
- /* equation in (1) or (3). */
- /* On exit, if IJOB = 0, 1 or 2, C has been overwritten by */
- /* the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R, */
- /* the solution achieved during the computation of the */
- /* Dif-estimate. */
- /* LDC (input) INTEGER */
- /* The leading dimension of the array C. LDC >= max(1, M). */
- /* D (input) DOUBLE PRECISION array, dimension (LDD, M) */
- /* The upper triangular matrix D. */
- /* LDD (input) INTEGER */
- /* The leading dimension of the array D. LDD >= max(1, M). */
- /* E (input) DOUBLE PRECISION array, dimension (LDE, N) */
- /* The upper triangular matrix E. */
- /* LDE (input) INTEGER */
- /* The leading dimension of the array E. LDE >= max(1, N). */
- /* F (input/output) DOUBLE PRECISION array, dimension (LDF, N) */
- /* On entry, F contains the right-hand-side of the second matrix */
- /* equation in (1) or (3). */
- /* On exit, if IJOB = 0, 1 or 2, F has been overwritten by */
- /* the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L, */
- /* the solution achieved during the computation of the */
- /* Dif-estimate. */
- /* LDF (input) INTEGER */
- /* The leading dimension of the array F. LDF >= max(1, M). */
- /* DIF (output) DOUBLE PRECISION */
- /* On exit DIF is the reciprocal of a lower bound of the */
- /* reciprocal of the Dif-function, i.e. DIF is an upper bound of */
- /* Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2). */
- /* IF IJOB = 0 or TRANS = 'T', DIF is not touched. */
- /* SCALE (output) DOUBLE PRECISION */
- /* On exit SCALE is the scaling factor in (1) or (3). */
- /* If 0 < SCALE < 1, C and F hold the solutions R and L, resp., */
- /* to a slightly perturbed system but the input matrices A, B, D */
- /* and E have not been changed. If SCALE = 0, C and F hold the */
- /* solutions R and L, respectively, to the homogeneous system */
- /* with C = F = 0. Normally, SCALE = 1. */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. LWORK > = 1. */
- /* If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N). */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* IWORK (workspace) INTEGER array, dimension (M+N+6) */
- /* INFO (output) INTEGER */
- /* =0: successful exit */
- /* <0: If INFO = -i, the i-th argument had an illegal value. */
- /* >0: (A, D) and (B, E) have common or close eigenvalues. */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
- /* Umea University, S-901 87 Umea, Sweden. */
- /* [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
- /* for Solving the Generalized Sylvester Equation and Estimating the */
- /* Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
- /* Department of Computing Science, Umea University, S-901 87 Umea, */
- /* Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
- /* Note 75. To appear in ACM Trans. on Math. Software, Vol 22, */
- /* No 1, 1996. */
- /* [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester */
- /* Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal. */
- /* Appl., 15(4):1045-1060, 1994 */
- /* [3] B. Kagstrom and L. Westin, Generalized Schur Methods with */
- /* Condition Estimators for Solving the Generalized Sylvester */
- /* Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7, */
- /* July 1989, pp 745-751. */
- /* ===================================================================== */
- /* Replaced various illegal calls to DCOPY by calls to DLASET. */
- /* Sven Hammarling, 1/5/02. */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Decode and test input parameters */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1;
- c__ -= c_offset;
- d_dim1 = *ldd;
- d_offset = 1 + d_dim1;
- d__ -= d_offset;
- e_dim1 = *lde;
- e_offset = 1 + e_dim1;
- e -= e_offset;
- f_dim1 = *ldf;
- f_offset = 1 + f_dim1;
- f -= f_offset;
- --work;
- --iwork;
- /* Function Body */
- *info = 0;
- notran = _starpu_lsame_(trans, "N");
- lquery = *lwork == -1;
- if (! notran && ! _starpu_lsame_(trans, "T")) {
- *info = -1;
- } else if (notran) {
- if (*ijob < 0 || *ijob > 4) {
- *info = -2;
- }
- }
- if (*info == 0) {
- if (*m <= 0) {
- *info = -3;
- } else if (*n <= 0) {
- *info = -4;
- } else if (*lda < max(1,*m)) {
- *info = -6;
- } else if (*ldb < max(1,*n)) {
- *info = -8;
- } else if (*ldc < max(1,*m)) {
- *info = -10;
- } else if (*ldd < max(1,*m)) {
- *info = -12;
- } else if (*lde < max(1,*n)) {
- *info = -14;
- } else if (*ldf < max(1,*m)) {
- *info = -16;
- }
- }
- if (*info == 0) {
- if (notran) {
- if (*ijob == 1 || *ijob == 2) {
- /* Computing MAX */
- i__1 = 1, i__2 = (*m << 1) * *n;
- lwmin = max(i__1,i__2);
- } else {
- lwmin = 1;
- }
- } else {
- lwmin = 1;
- }
- work[1] = (doublereal) lwmin;
- if (*lwork < lwmin && ! lquery) {
- *info = -20;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DTGSYL", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- if (*m == 0 || *n == 0) {
- *scale = 1.;
- if (notran) {
- if (*ijob != 0) {
- *dif = 0.;
- }
- }
- return 0;
- }
- /* Determine optimal block sizes MB and NB */
- mb = _starpu_ilaenv_(&c__2, "DTGSYL", trans, m, n, &c_n1, &c_n1);
- nb = _starpu_ilaenv_(&c__5, "DTGSYL", trans, m, n, &c_n1, &c_n1);
- isolve = 1;
- ifunc = 0;
- if (notran) {
- if (*ijob >= 3) {
- ifunc = *ijob - 2;
- _starpu_dlaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc)
- ;
- _starpu_dlaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf);
- } else if (*ijob >= 1) {
- isolve = 2;
- }
- }
- if (mb <= 1 && nb <= 1 || mb >= *m && nb >= *n) {
- i__1 = isolve;
- for (iround = 1; iround <= i__1; ++iround) {
- /* Use unblocked Level 2 solver */
- dscale = 0.;
- dsum = 1.;
- pq = 0;
- _starpu_dtgsy2_(trans, &ifunc, m, n, &a[a_offset], lda, &b[b_offset], ldb,
- &c__[c_offset], ldc, &d__[d_offset], ldd, &e[e_offset],
- lde, &f[f_offset], ldf, scale, &dsum, &dscale, &iwork[1],
- &pq, info);
- if (dscale != 0.) {
- if (*ijob == 1 || *ijob == 3) {
- *dif = sqrt((doublereal) ((*m << 1) * *n)) / (dscale *
- sqrt(dsum));
- } else {
- *dif = sqrt((doublereal) pq) / (dscale * sqrt(dsum));
- }
- }
- if (isolve == 2 && iround == 1) {
- if (notran) {
- ifunc = *ijob;
- }
- scale2 = *scale;
- _starpu_dlacpy_("F", m, n, &c__[c_offset], ldc, &work[1], m);
- _starpu_dlacpy_("F", m, n, &f[f_offset], ldf, &work[*m * *n + 1], m);
- _starpu_dlaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc);
- _starpu_dlaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf);
- } else if (isolve == 2 && iround == 2) {
- _starpu_dlacpy_("F", m, n, &work[1], m, &c__[c_offset], ldc);
- _starpu_dlacpy_("F", m, n, &work[*m * *n + 1], m, &f[f_offset], ldf);
- *scale = scale2;
- }
- /* L30: */
- }
- return 0;
- }
- /* Determine block structure of A */
- p = 0;
- i__ = 1;
- L40:
- if (i__ > *m) {
- goto L50;
- }
- ++p;
- iwork[p] = i__;
- i__ += mb;
- if (i__ >= *m) {
- goto L50;
- }
- if (a[i__ + (i__ - 1) * a_dim1] != 0.) {
- ++i__;
- }
- goto L40;
- L50:
- iwork[p + 1] = *m + 1;
- if (iwork[p] == iwork[p + 1]) {
- --p;
- }
- /* Determine block structure of B */
- q = p + 1;
- j = 1;
- L60:
- if (j > *n) {
- goto L70;
- }
- ++q;
- iwork[q] = j;
- j += nb;
- if (j >= *n) {
- goto L70;
- }
- if (b[j + (j - 1) * b_dim1] != 0.) {
- ++j;
- }
- goto L60;
- L70:
- iwork[q + 1] = *n + 1;
- if (iwork[q] == iwork[q + 1]) {
- --q;
- }
- if (notran) {
- i__1 = isolve;
- for (iround = 1; iround <= i__1; ++iround) {
- /* Solve (I, J)-subsystem */
- /* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) */
- /* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) */
- /* for I = P, P - 1,..., 1; J = 1, 2,..., Q */
- dscale = 0.;
- dsum = 1.;
- pq = 0;
- *scale = 1.;
- i__2 = q;
- for (j = p + 2; j <= i__2; ++j) {
- js = iwork[j];
- je = iwork[j + 1] - 1;
- nb = je - js + 1;
- for (i__ = p; i__ >= 1; --i__) {
- is = iwork[i__];
- ie = iwork[i__ + 1] - 1;
- mb = ie - is + 1;
- ppqq = 0;
- _starpu_dtgsy2_(trans, &ifunc, &mb, &nb, &a[is + is * a_dim1],
- lda, &b[js + js * b_dim1], ldb, &c__[is + js *
- c_dim1], ldc, &d__[is + is * d_dim1], ldd, &e[js
- + js * e_dim1], lde, &f[is + js * f_dim1], ldf, &
- scaloc, &dsum, &dscale, &iwork[q + 2], &ppqq, &
- linfo);
- if (linfo > 0) {
- *info = linfo;
- }
- pq += ppqq;
- if (scaloc != 1.) {
- i__3 = js - 1;
- for (k = 1; k <= i__3; ++k) {
- _starpu_dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
- _starpu_dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
- /* L80: */
- }
- i__3 = je;
- for (k = js; k <= i__3; ++k) {
- i__4 = is - 1;
- _starpu_dscal_(&i__4, &scaloc, &c__[k * c_dim1 + 1], &
- c__1);
- i__4 = is - 1;
- _starpu_dscal_(&i__4, &scaloc, &f[k * f_dim1 + 1], &c__1);
- /* L90: */
- }
- i__3 = je;
- for (k = js; k <= i__3; ++k) {
- i__4 = *m - ie;
- _starpu_dscal_(&i__4, &scaloc, &c__[ie + 1 + k * c_dim1],
- &c__1);
- i__4 = *m - ie;
- _starpu_dscal_(&i__4, &scaloc, &f[ie + 1 + k * f_dim1], &
- c__1);
- /* L100: */
- }
- i__3 = *n;
- for (k = je + 1; k <= i__3; ++k) {
- _starpu_dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
- _starpu_dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
- /* L110: */
- }
- *scale *= scaloc;
- }
- /* Substitute R(I, J) and L(I, J) into remaining */
- /* equation. */
- if (i__ > 1) {
- i__3 = is - 1;
- _starpu_dgemm_("N", "N", &i__3, &nb, &mb, &c_b51, &a[is *
- a_dim1 + 1], lda, &c__[is + js * c_dim1], ldc,
- &c_b52, &c__[js * c_dim1 + 1], ldc);
- i__3 = is - 1;
- _starpu_dgemm_("N", "N", &i__3, &nb, &mb, &c_b51, &d__[is *
- d_dim1 + 1], ldd, &c__[is + js * c_dim1], ldc,
- &c_b52, &f[js * f_dim1 + 1], ldf);
- }
- if (j < q) {
- i__3 = *n - je;
- _starpu_dgemm_("N", "N", &mb, &i__3, &nb, &c_b52, &f[is + js *
- f_dim1], ldf, &b[js + (je + 1) * b_dim1],
- ldb, &c_b52, &c__[is + (je + 1) * c_dim1],
- ldc);
- i__3 = *n - je;
- _starpu_dgemm_("N", "N", &mb, &i__3, &nb, &c_b52, &f[is + js *
- f_dim1], ldf, &e[js + (je + 1) * e_dim1],
- lde, &c_b52, &f[is + (je + 1) * f_dim1], ldf);
- }
- /* L120: */
- }
- /* L130: */
- }
- if (dscale != 0.) {
- if (*ijob == 1 || *ijob == 3) {
- *dif = sqrt((doublereal) ((*m << 1) * *n)) / (dscale *
- sqrt(dsum));
- } else {
- *dif = sqrt((doublereal) pq) / (dscale * sqrt(dsum));
- }
- }
- if (isolve == 2 && iround == 1) {
- if (notran) {
- ifunc = *ijob;
- }
- scale2 = *scale;
- _starpu_dlacpy_("F", m, n, &c__[c_offset], ldc, &work[1], m);
- _starpu_dlacpy_("F", m, n, &f[f_offset], ldf, &work[*m * *n + 1], m);
- _starpu_dlaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc);
- _starpu_dlaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf);
- } else if (isolve == 2 && iround == 2) {
- _starpu_dlacpy_("F", m, n, &work[1], m, &c__[c_offset], ldc);
- _starpu_dlacpy_("F", m, n, &work[*m * *n + 1], m, &f[f_offset], ldf);
- *scale = scale2;
- }
- /* L150: */
- }
- } else {
- /* Solve transposed (I, J)-subsystem */
- /* A(I, I)' * R(I, J) + D(I, I)' * L(I, J) = C(I, J) */
- /* R(I, J) * B(J, J)' + L(I, J) * E(J, J)' = -F(I, J) */
- /* for I = 1,2,..., P; J = Q, Q-1,..., 1 */
- *scale = 1.;
- i__1 = p;
- for (i__ = 1; i__ <= i__1; ++i__) {
- is = iwork[i__];
- ie = iwork[i__ + 1] - 1;
- mb = ie - is + 1;
- i__2 = p + 2;
- for (j = q; j >= i__2; --j) {
- js = iwork[j];
- je = iwork[j + 1] - 1;
- nb = je - js + 1;
- _starpu_dtgsy2_(trans, &ifunc, &mb, &nb, &a[is + is * a_dim1], lda, &
- b[js + js * b_dim1], ldb, &c__[is + js * c_dim1], ldc,
- &d__[is + is * d_dim1], ldd, &e[js + js * e_dim1],
- lde, &f[is + js * f_dim1], ldf, &scaloc, &dsum, &
- dscale, &iwork[q + 2], &ppqq, &linfo);
- if (linfo > 0) {
- *info = linfo;
- }
- if (scaloc != 1.) {
- i__3 = js - 1;
- for (k = 1; k <= i__3; ++k) {
- _starpu_dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
- _starpu_dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
- /* L160: */
- }
- i__3 = je;
- for (k = js; k <= i__3; ++k) {
- i__4 = is - 1;
- _starpu_dscal_(&i__4, &scaloc, &c__[k * c_dim1 + 1], &c__1);
- i__4 = is - 1;
- _starpu_dscal_(&i__4, &scaloc, &f[k * f_dim1 + 1], &c__1);
- /* L170: */
- }
- i__3 = je;
- for (k = js; k <= i__3; ++k) {
- i__4 = *m - ie;
- _starpu_dscal_(&i__4, &scaloc, &c__[ie + 1 + k * c_dim1], &
- c__1);
- i__4 = *m - ie;
- _starpu_dscal_(&i__4, &scaloc, &f[ie + 1 + k * f_dim1], &c__1)
- ;
- /* L180: */
- }
- i__3 = *n;
- for (k = je + 1; k <= i__3; ++k) {
- _starpu_dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
- _starpu_dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
- /* L190: */
- }
- *scale *= scaloc;
- }
- /* Substitute R(I, J) and L(I, J) into remaining equation. */
- if (j > p + 2) {
- i__3 = js - 1;
- _starpu_dgemm_("N", "T", &mb, &i__3, &nb, &c_b52, &c__[is + js *
- c_dim1], ldc, &b[js * b_dim1 + 1], ldb, &c_b52, &
- f[is + f_dim1], ldf);
- i__3 = js - 1;
- _starpu_dgemm_("N", "T", &mb, &i__3, &nb, &c_b52, &f[is + js *
- f_dim1], ldf, &e[js * e_dim1 + 1], lde, &c_b52, &
- f[is + f_dim1], ldf);
- }
- if (i__ < p) {
- i__3 = *m - ie;
- _starpu_dgemm_("T", "N", &i__3, &nb, &mb, &c_b51, &a[is + (ie + 1)
- * a_dim1], lda, &c__[is + js * c_dim1], ldc, &
- c_b52, &c__[ie + 1 + js * c_dim1], ldc);
- i__3 = *m - ie;
- _starpu_dgemm_("T", "N", &i__3, &nb, &mb, &c_b51, &d__[is + (ie +
- 1) * d_dim1], ldd, &f[is + js * f_dim1], ldf, &
- c_b52, &c__[ie + 1 + js * c_dim1], ldc);
- }
- /* L200: */
- }
- /* L210: */
- }
- }
- work[1] = (doublereal) lwmin;
- return 0;
- /* End of DTGSYL */
- } /* _starpu_dtgsyl_ */
|