123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696 |
- /* dtgsna.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static doublereal c_b19 = 1.;
- static doublereal c_b21 = 0.;
- static integer c__2 = 2;
- static logical c_false = FALSE_;
- static integer c__3 = 3;
- /* Subroutine */ int _starpu_dtgsna_(char *job, char *howmny, logical *select,
- integer *n, doublereal *a, integer *lda, doublereal *b, integer *ldb,
- doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr,
- doublereal *s, doublereal *dif, integer *mm, integer *m, doublereal *
- work, integer *lwork, integer *iwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
- vr_offset, i__1, i__2;
- doublereal d__1, d__2;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer i__, k;
- doublereal c1, c2;
- integer n1, n2, ks, iz;
- doublereal eps, beta, cond;
- extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *,
- integer *);
- logical pair;
- integer ierr;
- doublereal uhav, uhbv;
- integer ifst;
- doublereal lnrm;
- integer ilst;
- doublereal rnrm;
- extern /* Subroutine */ int _starpu_dlag2_(doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *);
- extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);
- doublereal root1, root2, scale;
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *);
- doublereal uhavi, uhbvi, tmpii;
- integer lwmin;
- logical wants;
- doublereal tmpir, tmpri, dummy[1], tmprr;
- extern doublereal _starpu_dlapy2_(doublereal *, doublereal *);
- doublereal dummy1[1];
- extern doublereal _starpu_dlamch_(char *);
- doublereal alphai, alphar;
- extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *),
- _starpu_xerbla_(char *, integer *), _starpu_dtgexc_(logical *, logical *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *, integer *,
- integer *, doublereal *, integer *, integer *);
- logical wantbh, wantdf, somcon;
- doublereal alprqt;
- extern /* Subroutine */ int _starpu_dtgsyl_(char *, integer *, integer *, integer
- *, doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, integer *, integer *);
- doublereal smlnum;
- logical lquery;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DTGSNA estimates reciprocal condition numbers for specified */
- /* eigenvalues and/or eigenvectors of a matrix pair (A, B) in */
- /* generalized real Schur canonical form (or of any matrix pair */
- /* (Q*A*Z', Q*B*Z') with orthogonal matrices Q and Z, where */
- /* Z' denotes the transpose of Z. */
- /* (A, B) must be in generalized real Schur form (as returned by DGGES), */
- /* i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal */
- /* blocks. B is upper triangular. */
- /* Arguments */
- /* ========= */
- /* JOB (input) CHARACTER*1 */
- /* Specifies whether condition numbers are required for */
- /* eigenvalues (S) or eigenvectors (DIF): */
- /* = 'E': for eigenvalues only (S); */
- /* = 'V': for eigenvectors only (DIF); */
- /* = 'B': for both eigenvalues and eigenvectors (S and DIF). */
- /* HOWMNY (input) CHARACTER*1 */
- /* = 'A': compute condition numbers for all eigenpairs; */
- /* = 'S': compute condition numbers for selected eigenpairs */
- /* specified by the array SELECT. */
- /* SELECT (input) LOGICAL array, dimension (N) */
- /* If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
- /* condition numbers are required. To select condition numbers */
- /* for the eigenpair corresponding to a real eigenvalue w(j), */
- /* SELECT(j) must be set to .TRUE.. To select condition numbers */
- /* corresponding to a complex conjugate pair of eigenvalues w(j) */
- /* and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be */
- /* set to .TRUE.. */
- /* If HOWMNY = 'A', SELECT is not referenced. */
- /* N (input) INTEGER */
- /* The order of the square matrix pair (A, B). N >= 0. */
- /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */
- /* The upper quasi-triangular matrix A in the pair (A,B). */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* B (input) DOUBLE PRECISION array, dimension (LDB,N) */
- /* The upper triangular matrix B in the pair (A,B). */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* VL (input) DOUBLE PRECISION array, dimension (LDVL,M) */
- /* If JOB = 'E' or 'B', VL must contain left eigenvectors of */
- /* (A, B), corresponding to the eigenpairs specified by HOWMNY */
- /* and SELECT. The eigenvectors must be stored in consecutive */
- /* columns of VL, as returned by DTGEVC. */
- /* If JOB = 'V', VL is not referenced. */
- /* LDVL (input) INTEGER */
- /* The leading dimension of the array VL. LDVL >= 1. */
- /* If JOB = 'E' or 'B', LDVL >= N. */
- /* VR (input) DOUBLE PRECISION array, dimension (LDVR,M) */
- /* If JOB = 'E' or 'B', VR must contain right eigenvectors of */
- /* (A, B), corresponding to the eigenpairs specified by HOWMNY */
- /* and SELECT. The eigenvectors must be stored in consecutive */
- /* columns ov VR, as returned by DTGEVC. */
- /* If JOB = 'V', VR is not referenced. */
- /* LDVR (input) INTEGER */
- /* The leading dimension of the array VR. LDVR >= 1. */
- /* If JOB = 'E' or 'B', LDVR >= N. */
- /* S (output) DOUBLE PRECISION array, dimension (MM) */
- /* If JOB = 'E' or 'B', the reciprocal condition numbers of the */
- /* selected eigenvalues, stored in consecutive elements of the */
- /* array. For a complex conjugate pair of eigenvalues two */
- /* consecutive elements of S are set to the same value. Thus */
- /* S(j), DIF(j), and the j-th columns of VL and VR all */
- /* correspond to the same eigenpair (but not in general the */
- /* j-th eigenpair, unless all eigenpairs are selected). */
- /* If JOB = 'V', S is not referenced. */
- /* DIF (output) DOUBLE PRECISION array, dimension (MM) */
- /* If JOB = 'V' or 'B', the estimated reciprocal condition */
- /* numbers of the selected eigenvectors, stored in consecutive */
- /* elements of the array. For a complex eigenvector two */
- /* consecutive elements of DIF are set to the same value. If */
- /* the eigenvalues cannot be reordered to compute DIF(j), DIF(j) */
- /* is set to 0; this can only occur when the true value would be */
- /* very small anyway. */
- /* If JOB = 'E', DIF is not referenced. */
- /* MM (input) INTEGER */
- /* The number of elements in the arrays S and DIF. MM >= M. */
- /* M (output) INTEGER */
- /* The number of elements of the arrays S and DIF used to store */
- /* the specified condition numbers; for each selected real */
- /* eigenvalue one element is used, and for each selected complex */
- /* conjugate pair of eigenvalues, two elements are used. */
- /* If HOWMNY = 'A', M is set to N. */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. LWORK >= max(1,N). */
- /* If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* IWORK (workspace) INTEGER array, dimension (N + 6) */
- /* If JOB = 'E', IWORK is not referenced. */
- /* INFO (output) INTEGER */
- /* =0: Successful exit */
- /* <0: If INFO = -i, the i-th argument had an illegal value */
- /* Further Details */
- /* =============== */
- /* The reciprocal of the condition number of a generalized eigenvalue */
- /* w = (a, b) is defined as */
- /* S(w) = (|u'Av|**2 + |u'Bv|**2)**(1/2) / (norm(u)*norm(v)) */
- /* where u and v are the left and right eigenvectors of (A, B) */
- /* corresponding to w; |z| denotes the absolute value of the complex */
- /* number, and norm(u) denotes the 2-norm of the vector u. */
- /* The pair (a, b) corresponds to an eigenvalue w = a/b (= u'Av/u'Bv) */
- /* of the matrix pair (A, B). If both a and b equal zero, then (A B) is */
- /* singular and S(I) = -1 is returned. */
- /* An approximate error bound on the chordal distance between the i-th */
- /* computed generalized eigenvalue w and the corresponding exact */
- /* eigenvalue lambda is */
- /* chord(w, lambda) <= EPS * norm(A, B) / S(I) */
- /* where EPS is the machine precision. */
- /* The reciprocal of the condition number DIF(i) of right eigenvector u */
- /* and left eigenvector v corresponding to the generalized eigenvalue w */
- /* is defined as follows: */
- /* a) If the i-th eigenvalue w = (a,b) is real */
- /* Suppose U and V are orthogonal transformations such that */
- /* U'*(A, B)*V = (S, T) = ( a * ) ( b * ) 1 */
- /* ( 0 S22 ),( 0 T22 ) n-1 */
- /* 1 n-1 1 n-1 */
- /* Then the reciprocal condition number DIF(i) is */
- /* Difl((a, b), (S22, T22)) = sigma-min( Zl ), */
- /* where sigma-min(Zl) denotes the smallest singular value of the */
- /* 2(n-1)-by-2(n-1) matrix */
- /* Zl = [ kron(a, In-1) -kron(1, S22) ] */
- /* [ kron(b, In-1) -kron(1, T22) ] . */
- /* Here In-1 is the identity matrix of size n-1. kron(X, Y) is the */
- /* Kronecker product between the matrices X and Y. */
- /* Note that if the default method for computing DIF(i) is wanted */
- /* (see DLATDF), then the parameter DIFDRI (see below) should be */
- /* changed from 3 to 4 (routine DLATDF(IJOB = 2 will be used)). */
- /* See DTGSYL for more details. */
- /* b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair, */
- /* Suppose U and V are orthogonal transformations such that */
- /* U'*(A, B)*V = (S, T) = ( S11 * ) ( T11 * ) 2 */
- /* ( 0 S22 ),( 0 T22) n-2 */
- /* 2 n-2 2 n-2 */
- /* and (S11, T11) corresponds to the complex conjugate eigenvalue */
- /* pair (w, conjg(w)). There exist unitary matrices U1 and V1 such */
- /* that */
- /* U1'*S11*V1 = ( s11 s12 ) and U1'*T11*V1 = ( t11 t12 ) */
- /* ( 0 s22 ) ( 0 t22 ) */
- /* where the generalized eigenvalues w = s11/t11 and */
- /* conjg(w) = s22/t22. */
- /* Then the reciprocal condition number DIF(i) is bounded by */
- /* min( d1, max( 1, |real(s11)/real(s22)| )*d2 ) */
- /* where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1), where */
- /* Z1 is the complex 2-by-2 matrix */
- /* Z1 = [ s11 -s22 ] */
- /* [ t11 -t22 ], */
- /* This is done by computing (using real arithmetic) the */
- /* roots of the characteristical polynomial det(Z1' * Z1 - lambda I), */
- /* where Z1' denotes the conjugate transpose of Z1 and det(X) denotes */
- /* the determinant of X. */
- /* and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an */
- /* upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-2) */
- /* Z2 = [ kron(S11', In-2) -kron(I2, S22) ] */
- /* [ kron(T11', In-2) -kron(I2, T22) ] */
- /* Note that if the default method for computing DIF is wanted (see */
- /* DLATDF), then the parameter DIFDRI (see below) should be changed */
- /* from 3 to 4 (routine DLATDF(IJOB = 2 will be used)). See DTGSYL */
- /* for more details. */
- /* For each eigenvalue/vector specified by SELECT, DIF stores a */
- /* Frobenius norm-based estimate of Difl. */
- /* An approximate error bound for the i-th computed eigenvector VL(i) or */
- /* VR(i) is given by */
- /* EPS * norm(A, B) / DIF(i). */
- /* See ref. [2-3] for more details and further references. */
- /* Based on contributions by */
- /* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
- /* Umea University, S-901 87 Umea, Sweden. */
- /* References */
- /* ========== */
- /* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
- /* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
- /* M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
- /* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
- /* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
- /* Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
- /* Estimation: Theory, Algorithms and Software, */
- /* Report UMINF - 94.04, Department of Computing Science, Umea */
- /* University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */
- /* Note 87. To appear in Numerical Algorithms, 1996. */
- /* [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
- /* for Solving the Generalized Sylvester Equation and Estimating the */
- /* Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
- /* Department of Computing Science, Umea University, S-901 87 Umea, */
- /* Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
- /* Note 75. To appear in ACM Trans. on Math. Software, Vol 22, */
- /* No 1, 1996. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Decode and test the input parameters */
- /* Parameter adjustments */
- --select;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1;
- vr -= vr_offset;
- --s;
- --dif;
- --work;
- --iwork;
- /* Function Body */
- wantbh = _starpu_lsame_(job, "B");
- wants = _starpu_lsame_(job, "E") || wantbh;
- wantdf = _starpu_lsame_(job, "V") || wantbh;
- somcon = _starpu_lsame_(howmny, "S");
- *info = 0;
- lquery = *lwork == -1;
- if (! wants && ! wantdf) {
- *info = -1;
- } else if (! _starpu_lsame_(howmny, "A") && ! somcon) {
- *info = -2;
- } else if (*n < 0) {
- *info = -4;
- } else if (*lda < max(1,*n)) {
- *info = -6;
- } else if (*ldb < max(1,*n)) {
- *info = -8;
- } else if (wants && *ldvl < *n) {
- *info = -10;
- } else if (wants && *ldvr < *n) {
- *info = -12;
- } else {
- /* Set M to the number of eigenpairs for which condition numbers */
- /* are required, and test MM. */
- if (somcon) {
- *m = 0;
- pair = FALSE_;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (pair) {
- pair = FALSE_;
- } else {
- if (k < *n) {
- if (a[k + 1 + k * a_dim1] == 0.) {
- if (select[k]) {
- ++(*m);
- }
- } else {
- pair = TRUE_;
- if (select[k] || select[k + 1]) {
- *m += 2;
- }
- }
- } else {
- if (select[*n]) {
- ++(*m);
- }
- }
- }
- /* L10: */
- }
- } else {
- *m = *n;
- }
- if (*n == 0) {
- lwmin = 1;
- } else if (_starpu_lsame_(job, "V") || _starpu_lsame_(job,
- "B")) {
- lwmin = (*n << 1) * (*n + 2) + 16;
- } else {
- lwmin = *n;
- }
- work[1] = (doublereal) lwmin;
- if (*mm < *m) {
- *info = -15;
- } else if (*lwork < lwmin && ! lquery) {
- *info = -18;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DTGSNA", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* Get machine constants */
- eps = _starpu_dlamch_("P");
- smlnum = _starpu_dlamch_("S") / eps;
- ks = 0;
- pair = FALSE_;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- /* Determine whether A(k,k) begins a 1-by-1 or 2-by-2 block. */
- if (pair) {
- pair = FALSE_;
- goto L20;
- } else {
- if (k < *n) {
- pair = a[k + 1 + k * a_dim1] != 0.;
- }
- }
- /* Determine whether condition numbers are required for the k-th */
- /* eigenpair. */
- if (somcon) {
- if (pair) {
- if (! select[k] && ! select[k + 1]) {
- goto L20;
- }
- } else {
- if (! select[k]) {
- goto L20;
- }
- }
- }
- ++ks;
- if (wants) {
- /* Compute the reciprocal condition number of the k-th */
- /* eigenvalue. */
- if (pair) {
- /* Complex eigenvalue pair. */
- d__1 = _starpu_dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
- d__2 = _starpu_dnrm2_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1);
- rnrm = _starpu_dlapy2_(&d__1, &d__2);
- d__1 = _starpu_dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
- d__2 = _starpu_dnrm2_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1);
- lnrm = _starpu_dlapy2_(&d__1, &d__2);
- _starpu_dgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1
- + 1], &c__1, &c_b21, &work[1], &c__1);
- tmprr = _starpu_ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
- c__1);
- tmpri = _starpu_ddot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1],
- &c__1);
- _starpu_dgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[(ks + 1) *
- vr_dim1 + 1], &c__1, &c_b21, &work[1], &c__1);
- tmpii = _starpu_ddot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1],
- &c__1);
- tmpir = _starpu_ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
- c__1);
- uhav = tmprr + tmpii;
- uhavi = tmpir - tmpri;
- _starpu_dgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1
- + 1], &c__1, &c_b21, &work[1], &c__1);
- tmprr = _starpu_ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
- c__1);
- tmpri = _starpu_ddot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1],
- &c__1);
- _starpu_dgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[(ks + 1) *
- vr_dim1 + 1], &c__1, &c_b21, &work[1], &c__1);
- tmpii = _starpu_ddot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1],
- &c__1);
- tmpir = _starpu_ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
- c__1);
- uhbv = tmprr + tmpii;
- uhbvi = tmpir - tmpri;
- uhav = _starpu_dlapy2_(&uhav, &uhavi);
- uhbv = _starpu_dlapy2_(&uhbv, &uhbvi);
- cond = _starpu_dlapy2_(&uhav, &uhbv);
- s[ks] = cond / (rnrm * lnrm);
- s[ks + 1] = s[ks];
- } else {
- /* Real eigenvalue. */
- rnrm = _starpu_dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
- lnrm = _starpu_dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
- _starpu_dgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1
- + 1], &c__1, &c_b21, &work[1], &c__1);
- uhav = _starpu_ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1)
- ;
- _starpu_dgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1
- + 1], &c__1, &c_b21, &work[1], &c__1);
- uhbv = _starpu_ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1)
- ;
- cond = _starpu_dlapy2_(&uhav, &uhbv);
- if (cond == 0.) {
- s[ks] = -1.;
- } else {
- s[ks] = cond / (rnrm * lnrm);
- }
- }
- }
- if (wantdf) {
- if (*n == 1) {
- dif[ks] = _starpu_dlapy2_(&a[a_dim1 + 1], &b[b_dim1 + 1]);
- goto L20;
- }
- /* Estimate the reciprocal condition number of the k-th */
- /* eigenvectors. */
- if (pair) {
- /* Copy the 2-by 2 pencil beginning at (A(k,k), B(k, k)). */
- /* Compute the eigenvalue(s) at position K. */
- work[1] = a[k + k * a_dim1];
- work[2] = a[k + 1 + k * a_dim1];
- work[3] = a[k + (k + 1) * a_dim1];
- work[4] = a[k + 1 + (k + 1) * a_dim1];
- work[5] = b[k + k * b_dim1];
- work[6] = b[k + 1 + k * b_dim1];
- work[7] = b[k + (k + 1) * b_dim1];
- work[8] = b[k + 1 + (k + 1) * b_dim1];
- d__1 = smlnum * eps;
- _starpu_dlag2_(&work[1], &c__2, &work[5], &c__2, &d__1, &beta, dummy1,
- &alphar, dummy, &alphai);
- alprqt = 1.;
- c1 = (alphar * alphar + alphai * alphai + beta * beta) * 2.;
- c2 = beta * 4. * beta * alphai * alphai;
- root1 = c1 + sqrt(c1 * c1 - c2 * 4.);
- root2 = c2 / root1;
- root1 /= 2.;
- /* Computing MIN */
- d__1 = sqrt(root1), d__2 = sqrt(root2);
- cond = min(d__1,d__2);
- }
- /* Copy the matrix (A, B) to the array WORK and swap the */
- /* diagonal block beginning at A(k,k) to the (1,1) position. */
- _starpu_dlacpy_("Full", n, n, &a[a_offset], lda, &work[1], n);
- _starpu_dlacpy_("Full", n, n, &b[b_offset], ldb, &work[*n * *n + 1], n);
- ifst = k;
- ilst = 1;
- i__2 = *lwork - (*n << 1) * *n;
- _starpu_dtgexc_(&c_false, &c_false, n, &work[1], n, &work[*n * *n + 1], n,
- dummy, &c__1, dummy1, &c__1, &ifst, &ilst, &work[(*n * *
- n << 1) + 1], &i__2, &ierr);
- if (ierr > 0) {
- /* Ill-conditioned problem - swap rejected. */
- dif[ks] = 0.;
- } else {
- /* Reordering successful, solve generalized Sylvester */
- /* equation for R and L, */
- /* A22 * R - L * A11 = A12 */
- /* B22 * R - L * B11 = B12, */
- /* and compute estimate of Difl((A11,B11), (A22, B22)). */
- n1 = 1;
- if (work[2] != 0.) {
- n1 = 2;
- }
- n2 = *n - n1;
- if (n2 == 0) {
- dif[ks] = cond;
- } else {
- i__ = *n * *n + 1;
- iz = (*n << 1) * *n + 1;
- i__2 = *lwork - (*n << 1) * *n;
- _starpu_dtgsyl_("N", &c__3, &n2, &n1, &work[*n * n1 + n1 + 1], n,
- &work[1], n, &work[n1 + 1], n, &work[*n * n1 + n1
- + i__], n, &work[i__], n, &work[n1 + i__], n, &
- scale, &dif[ks], &work[iz + 1], &i__2, &iwork[1],
- &ierr);
- if (pair) {
- /* Computing MIN */
- d__1 = max(1.,alprqt) * dif[ks];
- dif[ks] = min(d__1,cond);
- }
- }
- }
- if (pair) {
- dif[ks + 1] = dif[ks];
- }
- }
- if (pair) {
- ++ks;
- }
- L20:
- ;
- }
- work[1] = (doublereal) lwmin;
- return 0;
- /* End of DTGSNA */
- } /* _starpu_dtgsna_ */
|